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Abstract 

It is shown that the matrix elements of the tensor operators describing a new type of crystal field can 
be calculated using the properties of the spin ~ quasi-spin transformation. The relationship of this 
field to electron correlation in open shells is clarified, and its contribution to the ground state split
tings of S-state ions is discussed. 

Introduction 

There is considerable interest in obtaining an understanding of the physical pro
cesses underlying the observed splitting of the S ground state of ions with half-filled 
shells, such as Gd 3 +. An important aspect of these splittings is that significant contri
butions arise from processes which give small (i.e. unobservable) contributions to the 
crystal field splittings in other open shell ions. In particular, Wybourne (1965, 1966) 
pointed out that large contributions to the S-state splittings arise from the relativistic 
crystal field. A more recent analysis (Newman and Urban 1972) has made it clear 
that other processes must also make important contributions to these splittings. 

Schwiesow and Crosswhite (1969) suggested that the large deviations of the excited 
state levels of Gd3 + from fitted crystal field parameters could be explained in terms 
of an effective 'charge conjugation invariant' form of the crystal field. This makes 
nonzero contributions to diagonal matrix elements of the type 

(where L represents an arbitrary total orbital angular momentum), for which the 
crystal field contribution is identically zero. Newman (1970) pointed out that a crystal 
field of the type postulated by Schwiesow and Crosswhite could arise as a result of 
there being a difference between the radial forms of the spin-up and spin-down 
electronic wavefunctions. Freeman and Watson (1961) have obtained a Hartree-Fock 
solution for Gd 3 + showing a considerable spin dependence of the radial wavefunctions 
in this ion due to exchange polarization. 

The purpose of the present work is to give a formal treatment of this new type of 
crystal field (which we shall call the exchange crystaljield), relating it explicitly to the 
'classical' crystal field and giving a prescription for the evaluation of its matrix 
elements. At the same time we shall establish the validity of the intuitive dia
grammatic representation of Gd3+ matrix elements given by Newman (1970) and 
find a relationship between the exchange crystal field and the correlation crystal field 
discussed in that paper. 
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Spin +-t Quasi-spin Transformation 

Judd (1967a) introduced the concept of 'complementary; states related by the 
interchange of spin and quasi-spin quantum numbers. This transformation can be 
expressed simply as a transformation of the annihilation and creation operators for 
electrons in a given nl shell am,ms' a~,ms as 

(1) 

the spin-up operators remaining unchanged. It is easily checked that the commutation 
relations are preserved by this transformation. The spin operators 

(2a) 
Sz = 1- L (a~+ am + -a~_ am -) 

m 

become quasi-spin operators (Flowers and Szpikowski 1964) 

Q+ = L (_ly-m a~+ a~m-' 
m 

(2b) 

where the sums are over the orbital states within a given nl shell. 
Judd (1967b) has noted that hole-particle conjugation of the spin-down electrons 

(as represented by equation 1) corresponds to a simple interchange of the representa
tions of U7 which span the spin-down states of the lanthanide fN shell. In the standard 
notation this transformation interchanges the number of ones and zeros in the repre
sentation [1 ... 1 0 ... 0]. We now see that the equivalence of this transformation to 
equation (1) proves it to be equivalent to the spin +-t quasi-spin transformation re
lating equations (2a) and (2b). Hence the results obtained by Judd (1967b) are relevant 
to the present discussion. In particular, this formulation shows that the spin +-t quasi
spin transformation gives a complete mapping of the states with an even number of 
electrons in the nl shell onto the states with an odd number of electrons in the same 
shell. The vacuum state ifo) transforms as 

I fO> --+- I f1 8 S Ms= --t>. 
This validates the use of Feynman diagrams by Newman (1970), in which 

If78SMs=--t> 
replaces the vacuum state. Hence, every Feynman diagram defined in the usual way 
with respect to the vacuum state has a new and well-determined significance after the 
spin +-t quasi-spin transformation. 

Transformation of the Crystal Field 

The crystal field is a one-particle spin-independent potential of the form 
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where V may be expressed in terms of the unit tensor operators U~k) as 

V = I 13: U~k). 
q, even k 

The spin <--+ quasi-spin transformation gives 

= I (a~1+am2+-a~1_amz-)<mlIVlm2>+f3g, (3) 
mlmZ 

where we have used the relation < - m1 I V I - m2> = <m21 V I m1>. Hence, VT repre
sents the difference in the crystal field experienced by electrons with spin-up and spin
down. It is not invariant under rotations in spin space, as it depends on the arbitrary 
choice of the spin quantization axis for the state corresponding to the vacuum state. 

We note that an alternative way of writing t\ is 

VT = I a~1I'am21'<mlIlIO"zVlm21l>+f3g. (4) 
mlm2Jl 

Dropping the additive constant and transforming to an arbitrary axis of quantization, 
we can generalize the operator expression O"z V to 

VT = (4j7h2) I Si' S ~ , 
i 

where S represents the total spin operator for the many-electron state. This is just 
the spin-dependent operator proposed by Newman (1970) to account for the obser
vations of Schwiesow and Crosswhite (1969). It may also be written in the more 
symmetric form 

VT = (2j7h2) I Si' Sj (~+ Vj), (5) 
i,j 

which suggests that we refer to VT as the exchange crystal field. 
The main aim of this work, however, is to find a procedure for evaluating the 

many-electron matrix elements of VT so that it can be employed in fitting experimental 
data. Let the transform of the unit tensor operator Uik) be Xik), so that 

V --+ VT = I f3:X~k) . 
kq 

Using the fact that matrix elements are invariant under the spin <--+ quasi-spin trans
formation, we may evaluate the matrix elements of X?) between [7 states which are 
diagonal in total spin S' (= Q) as follows. 

= <fNrQM (2S+1)LM M =0 I U(k) I fNrQM (2s+1)L'M' M =0> Q £os q Q £os, (6) 

where N is even and the common label r indicates that the remaining quantum numbers 
for all states are indentical. 
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According to the Wigner-Eckart theorem, the right-hand side of equation (6) may 
be written as 

( L k L') (_1)L-ML (fN"QM (2S+1)LIIU(k)llfN"QM (2S+1)L). 
-ML q M' Q Q 

L 

It follows that the matrix elements of X?) which are diagonal in S' may be determined 
using 

<f1,,(2S'+1)LM Q'=S M' IX(k)1 f1,,(2S'+1)L' M' Q'=S M') 
L> 'S q L> ,·s 

= (_1)L-ML (L k L' ) M~ 
-ML q M{ 

There are also matrix elements of X(k) between f1 states of different total spin S' 
with the same value of M~. Following the same procedure as above we find that these 
can be evaluated using the relation 

<f1,,(2 Q+1)LM Q'=S M' =M I X(k) I f1,,(2Q+3)L' M' Q'=S M' =M ) 
L> 'S Qq L> 's Q 

= (_1)L-ML (L k L') 
-ML q M{ 

(8) 

where, again, the reduced matrix elements of U(k) have been tabulated by Nielson 
and Koster (1963). 

Racah (1943, equation 67) gives the relation which enables us to remove the 
M~ (= MQ) dependence of the reduced matrix element. In terms of quasi-spin 
formalism this may be written 

(fN" Q MQ (2S+1) L II U(k) II fN", Q + 1, MQ (2S+1) L') 

= (Q+MQ+ 1)(Q-MQ))t 
2Q+1 

x (fN"Q, M Q= -Q, (2S+1)L II U(k) II fN", Q+ 1, MQ= -Q, (2S+1)L'). (9) 

If this equation is used it becomes unnecessary to look up separate reduced matrix 
elements for each value of M~ (=MQ). 

An attempt to use second-order perturbation theory to calculate the spin dependence 
of the 4f radial wavefunctions for Gd3 +, and hence Vn gave an effect that was an order 
of magnitude too large. This failure is presumably due to the fact that higher order 
contributions, due to the spin polarization of closed shells, are also important. Never
theless, the result makes it unlikely that VT is negligible for Gd3 +. 
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Transformation of the Correlation Crystal Field 

The correlation crystal field is a general two-particle spin-independent effective 
potential 

o = 1 L a~21'2 a~11'1 a m3l'1 a m41'4 <ml m21 U 1m3 m4 ), (10) 
mtlli 

which includes anisotropic components due to the effect of the crystalline environment 
on the electron-electron interaction, but which is normally taken to exclude the large 
isotropic Coulomb interaction (U = e2 /r12). In tensor operator form it may be 
written 

(11) 

where kl + k2 is restricted to even values (Bishton and Newman 1970). A consideration 
of possible mechanisms (Newman et al. 1971) suggests that terms with even kl and k2 
dominate, so we shall neglect the odd-k terms in the following. 

In order to investigate the effect of the spin +--+ quasi-spin transformation on 0, it 
is convenient to separate it into four components depending on the spin suffixes of 
the operators: 

o = L 0(J11112)' (12) 
1'11'2 

Transforming the operator products in equation (10) according to the spin +--+ quasi
spin transformation (1), we find that 

o -'> 0' = O( + + ) + O( - - ) - O( + - ) - O( - + ) 

+1 L «mlm2IUlmlm2)-<mlm2IUlm2ml» 
mlm2 

+ L a~1+ am2+ <ml m I U 1m m2)' (13) 
mmlm2 

The matrix elements of 0 with respect to given states of fN will be equal to the matrix 
elements of 0' with respect to the complementary states. Judd (1967b) has discussed 
some consequences of this relation in the special case where 0 represents the Coulomb 
interaction. We are more concerned here with relationships between the anisotropic 
parts of O. 

The last term of equation (13) has the form of the exchange crystal field described 
in the previous section. Hence the correlation crystal field in the f2 configuration 
gives a contribution in the sextet states of the [7 configuration which can be represented 
as an exchange crystal field, quite apart from any processes which contribute directly 
to this potential. This means that a parameterization of the type suggested by Schwie
sow and Crosswhite (1969), which neglects explicit consideration of the correlation 
crystal field, will nevertheless include some contributions from this source. 

The components O( + +) and O( - - ) give zero contribution to the sextet states 
of f7. Hence equation (13) shows that the contribution of the correlation crystal field 
to the energy of these states is equal and opposite to that in the f2 states with the same 
L values, apart from the extra term already discussed. 
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Conclusions 

It has been shown that the spin ~ quasi-spin transformation allows us to adapt 
tables of matrix elements for the unit tensor operators Uik ) so that they can be used 
to calculate matrix elements of the tensor operators Xik ) which describe the exchange 
crystal field. This new type of field has been demonstrated to be equivalent to the 
spin-dependent field proposed by Newman (1970). The existence of an effective 
correlation contribution to the exchange crystal field for f7 systems has also been 
noted. 
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