Notice to Authors

AUSTRALIAN JOURNAL OF PHYSICS

Papers will be considered for publication if they make an original contribution to any branch of physics. In addition to Papers, articles which are complete but of limited scope are published as Short Communications. Compilations of astrophysical data are published in Astrophysical Supplements. All papers are refereed.
Submission of a paper implies that the results reported have not been published or submitted for publication elsewhere.
Accessory Publication. Supplementary material of a detailed nature which is not essential in the printed paper but may be useful to other workers may be lodged with the Editor-in-Chief if submitted with the manuscript for inspection by the referees. Such material will be made available on request and a note to this effect should be included in the paper.
General Presentation. The work should be presented concisely and clearly in English. Introductory material, including a review of the literature, should not exceed what is necessary to indicate the reason for the work and the essential background.

Authors are advised to note the typographical conventions and layout of headings, tables and illustrations exemplified in recent issues of the Journal. Strict observance of these and the following requirements will shorten the interval between submission and publication.
Manuscripts. The original and one copy of the manuscript should be typed three lines to an inch throughout on good quality paper. The marginal space on the left-hand side should not be less than one and a half inches. All pages of the manuscript must be numbered consecutively, including those containing references, tables and captions to illustrations, which are to be placed after the text.
Title. This should be concise and appropriately informative for retrieval by modern searching techniques.

If the paper is one of a numbered series, a reference to the previous part should be given as a footnote on the first page. If a part not yet published should be consulted for a proper understanding of the paper, a copy of the manuscript should be supplied to assist the referees.
Abstract. This should state concisely the scope of the work and the principal findings, and should be suitable for direct use by abstracting journals; this will seldom require more than 200 words.
Footnotes within the text should be used only when essential. They should be placed within horizontal rules immediately under the lines to which they refer.
References are cited in the text by the author and date and are not numbered. Authors are referred to recent issues for the style used in the Journal for citing references to books, periodicals and other literature. Titles of published papers are not included, but the reference to any paper accepted for publication but not yet published must include the title. No editorial responsibility can be taken for the accuracy of the references; authors are requested to check these with special care. All references in the text must be listed, with the names of authors arranged alphabetically; all entries in this list must correspond to references in the text. Abbreviations of titles of periodicals should conform to those used by Chemical Abstracts.
Units. Authors will be encouraged to assist in the general adoption of the International System of Units (Système International d'Unités). SI units should be used for exact measurements of physical quantities and as far as practical elsewhere.
Mathematical formulae should be carefully typed with symbols in correct alignment and adequately spaced. At least two clear lines should be left above and below all displayed equations. If special symbols must be hand-written, they should be inserted with care and identified by pencilled notes in the margins. Judicious use should be made of the solidus to avoid two-line mathematical expressions wherever possible and especially in the running text. All long formulae should be displayed. Vectors should be indicated by single underlinings (not overhead arrows).
Tables should be numbered with arabic numerals and be accompanied by a title. They should be arranged having regard to the dimensions of the printed page, and the number of columns should be kept to a minimum. Long headings to columns should be avoided by the use of explanatory footnotes.

Each table must be referred to in the text and its approximate position should be indicated in the margin of the manuscript. Only in exceptional circumstances will presentation of essentially the same data in tabular and graphical form be permitted; where adequate, the latter form should be used.
Illustrations. The originals and two copies are required. The originals must not be lettered; copies should be lettered with ink. Half-tone illustrations and line drawings are to be numbered in a common sequence and their approximate position should be indicated in the margin of the text. A typed list of captions is required.

Line drawings must be drawn with black ink on board, drawing or tracing paper, or plastic sheet. Authors should note the size of comparable drawings in recent issues of the Journal and submit originals that are three times as large. In this case the axes and curves should be not less than 0.6 mm thick and of uniform density. Symbols should be $3-4 \mathrm{~mm}$ across. Allowance should be made for the effect of reduction on dots and stipples. Drawings must not exceed 35 cm in either dimension. If the originals are larger than this they should be photographically reduced and good quality prints twice the estimated final size should be submitted.

Photographic prints for half-tone reproduction must be of the highest quality with a full range of tones and good contrast. They should be trimmed to exclude features not relevant to the paper.

The Reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\eta}^{\prime}\left(\boldsymbol{X}^{0}\right) \gamma$ and the New Vector Mesons

T. Chandramohan and P. Achuthan
Department of Mathematics, Indian Institute of Technology, Madras 600036, India.

Abstract

The generalized vector meson dominance theory of Sakurai is used to study the production of η^{\prime} mesons in electron-positron collisions. The differential and total cross sections are calculated, especially taking into account contributions from the new vector mesons $\rho^{\prime}(1250)$ and $\rho^{\prime \prime}(1600)$. The influence of an $\operatorname{SU}(3)$ symmetry-breaking parameter β on the numerical results is also investigated

Introduction

The several successes as well as failures of the vector meson dominance (VMD) hypothesis are by now well known. The essence of VMD (Sakurai 1960, 1971) can be summarized by the following statement: the entire hadronic electromagnetic current $\left[j_{\mu}(x)\right]$ is identical with a linear combination of the known neutral vector meson fields $\left[\rho_{\mu}^{0}(x), \omega_{\mu}(x), \phi_{\mu}(x)\right]$, that is,

$$
\begin{equation*}
j_{\mu}(x)=-e\left\{\left(m_{\rho}^{2} / 2 \gamma_{\rho}\right) \rho_{\mu}^{0}(x)+\left(m_{\omega}^{2} / 2 \gamma_{\omega}\right) \omega_{\mu}(x)+\left(m_{\phi}^{2} / 2 \gamma_{\phi}\right) \phi_{\mu}(x)\right\} \tag{1}
\end{equation*}
$$

where $m_{V}(V=\rho, \omega, \phi)$ denotes the vector-meson mass and γ_{V} is a measure of the $\gamma-V$ coupling strength:

$$
\begin{equation*}
e m_{V}^{2} / 2 \gamma_{V} \equiv(\alpha \pi)^{\frac{1}{2}} m_{V}^{2} / \gamma_{V} \tag{2}
\end{equation*}
$$

here α is the fine structure constant ($=1 / 137$). This conjecture has greatly stimulated the study of photon-hadron interactions and has proved to be a useful guide in explaining many of the observed phenomena. Nevertheless, there are difficulties with the theory. For example, according to VMD the Compton amplitude T is related to the transverse vector meson photoproduction amplitudes T_{tr} by

$$
\begin{equation*}
T(\gamma \mathrm{p} \rightarrow \gamma \mathrm{p})=\sum_{V=\rho, \omega, \phi}\left\{(\alpha \pi)^{\frac{1}{2}} / \gamma_{V}\right\} T_{\mathrm{tr}}\left(\gamma \mathrm{p} \rightarrow V^{0} \mathrm{p}\right) . \tag{3}
\end{equation*}
$$

However, if the values of the interaction constants γ_{V} are taken from the experimental determinations at Orsay and Novosibirsk, it is found that the ρ, ω and ϕ mesons in equation (3) contribute only to about 78% of the Compton amplitude. Difficulties with the VMD interpretation are also encountered in other areas of photoproduction and in the study of electromagnetic form factors (Schildknecht 1969). One of these difficulties is attributed to the ambiguity in choosing the frames of reference.

The missing 22% contribution in equation (3) above has presented the theorists with a challenging problem. One explanation put forward is that we are finally starting
to see the effects of parton scattering not dominated by the ρ meson (cf. the fourpoint diagrams of Brodsky et al. 1972). Another possibility has been proposed by Sakurai (1972): that the missing 22% is simply due to the presence of higher mass vector states coupled to the photon. In fact, there is some experimental evidence for the existence of two new vector mesons, namely $\rho^{\prime}(1250)$ and $\rho^{\prime \prime}(1600)$ (Bacci et al. 1972; Barbarino et al. 1972; Conversi et al. 1974; Alles-Borelli et al. 1975). Also the possibility of there being vector mesons heavier than the well-established ρ, ω and ϕ mesons has been predicted by the Veneziano and Regge pole models (Veneziano 1968; Shapiro 1969; Barger and Cline 1969). If the higher mass vector mesons do exist and if they decay into $\pi \pi$ (Johnson et al. 1976), $\pi \pi \pi$ or $\mathrm{K} \overline{\mathrm{K}}$ modes, then, in the case when they retain the s-channel helicity of the photon, we would expect certain decay correlations similar to those observed for ρ, ω and ϕ. Higher mass vector mesons could, of course, also decay into other final states.

Wolf (1972) has considered the effect on the VMD model of including a contribution from the $\rho^{\prime \prime}(1600)$ meson alone, and has evaluated the sum rule for amplitudes in equation (3) at $9 \cdot 3 \mathrm{GeV} / c$. He obtained

$$
\begin{align*}
0.87 \pm 0 \cdot 02= & 0.52 \pm 0.04+0.066 \pm 0 \cdot 014+0.043 \pm 0.004+0.08 \pm 0.03 \\
(\gamma p \rightarrow \gamma p) \quad & (\gamma p \rightarrow \rho p) \quad(\gamma \mathrm{p} \rightarrow \omega \mathrm{p}) \quad(\gamma \mathrm{p} \rightarrow \phi \mathrm{p}) \quad\left(\gamma \mathrm{p} \rightarrow \rho^{\prime \prime} \mathrm{p}\right) \\
= & 0.71 \pm 0.09 . \tag{4}
\end{align*}
$$

The $\rho^{\prime \prime}$ contribution clearly reduces the gap between the left- and right-hand sides of the sum rule, but further contributions from high mass vector mesons are required to satisfy equation (3).

It is the aim of the present paper to consider the reaction

$$
\begin{equation*}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta^{\prime}\left(X^{0}\right) \gamma \tag{5}
\end{equation*}
$$

in the framework of a generalized vector meson dominance (GVMD) model. Here η^{\prime} is taken to be the ninth member of the pseudoscalar nonet with quantum numbers $J^{P C}=0^{-+}$and mass $\mu_{\eta^{\prime}}=958 \mathrm{MeV}$. We exclude the possibility of the $\mathrm{E}(1420)$ meson being the ninth member. In addition to the ρ, ω and ϕ mesons we include the two new vector mesons $\rho^{\prime}(1250)$ and $\rho^{\prime \prime}(1600)$. These new mesons can be the first and second daughters respectively of the ρ meson in the Veneziano spectrum, the $\rho^{\prime \prime}$ mass being close to the g-meson mass (1680 MeV). In our calculations, the relevant coupling strengths are determined using the quark model with the presently known decay rates.

In all calculations similar to the present ones it has been found to be necessary to amend the original GVMD scheme in order to obtain quantitative agreement with the experimental results. One generally adopted improvement has been to incorporate the effects of breaking of $\mathrm{SU}(3)$ symmetry. This amounts to the inclusion of corrections for $\omega-\phi$ and $\eta-\eta^{\prime}$ mixing (Baracca and Bramon 1967, 1970; Cremmer 1969) and the use of chiral symmetries (Alles 1970; Gounaris $1970 a, 1970 b$). In view of this we have introduced here a symmetry-breaking parameter β in the $g_{V \eta^{\prime} \gamma}(V=\rho, \omega, \phi)$ coupling constant. The effect on the cross sections for different values of this parameter is also studied.

Cross Section Formulae

In what follows we assume that the principal mechanism for the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta^{\prime} \gamma$ is governed by the $\gamma \rightarrow V$ transition followed by the $V \rightarrow \eta^{\prime} \gamma$ decay (Fig. 1). Let $p_{1}, p_{2}, k, k^{\prime}$ and q be the four-momenta of the electron, positron, photons (real and virtual) and η^{\prime} meson respectively. Then, to the lowest order in α, the matrix element M for the reaction has the form

$$
\begin{equation*}
M=\left(e / k^{\prime 2}\right) F(V) \bar{v}\left(-p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) \varepsilon^{\mu v \tau \sigma} k_{v}^{\prime} k_{\tau} A_{\sigma} \bar{\phi}(q) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
F(V)=\sum_{V=\rho, \omega, \phi, \rho^{\prime}, \rho^{\prime \prime}}\left(-\frac{e m_{V}^{2}}{g_{V}}\right) \frac{g_{V \eta^{\prime} \gamma}}{k^{\prime 2}-m_{V}^{2}+\mathrm{i} \Gamma_{V} m_{V}} \tag{7}
\end{equation*}
$$

$g_{V}=2 \gamma_{V}, g_{V \eta^{\prime} \gamma}$ is the interaction constant at the vertex of η^{\prime} with V and γ, m_{V} is the mass of the vector meson V with width Γ_{V}, and A_{σ} is the photon polarization vector.

Fig. 1. Feynman diagram for electronpositron annihilation into an η^{\prime} meson and a photon via a virtual photon and an intermediate vector meson.

Table 1. Interaction constants used in calculations

$\begin{aligned} & \text { Vector meson } \\ & V \end{aligned}$	$\begin{gathered} \text { Mass }^{\mathrm{A}} \\ m_{V}(\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \text { Width }^{\mathrm{A}} \\ \Gamma_{V}(\mathrm{MeV}) \end{gathered}$	Coupling constants	
			$g_{V}^{2} / 4 \pi$	$g_{V n^{\prime} \gamma}$
ρ	770	150	$2 \cdot 1 \pm 0 \cdot 11^{\text {B }}$	$0 \cdot 06360$
ω	780	10	$14 \cdot 8 \pm 2 \cdot 80^{\text {B }}$	-0.02121
ϕ	1020	4	$11 \cdot 0 \pm 1 \cdot 60^{\text {B }}$	-0.04242
ρ^{\prime}	1250	150	$7{ }^{\text {c }}$	$\left\{\begin{array}{l}0.04154^{\mathrm{E}} \\ 0.05872^{\mathrm{F}}\end{array}\right.$
$\rho^{\prime \prime}$	1600	350	$16^{\text {D }}$	$\left\{\begin{array}{l}0.01735^{\text {E }} \\ 0.02452^{\text {F }}\end{array}\right.$

[^0]From equation (6) the expression for the differential cross section can be obtained as

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{d} \Omega=(\alpha / 128 \pi)|F(V)|^{2}\left\{1-\left(\mu_{n^{\prime}} / 2 E\right)^{2}\right\}^{3}\left(1+x^{2}\right) \tag{8}
\end{equation*}
$$

where $\mu_{\eta^{\prime}}$ is the mass of the η^{\prime} meson, $x=\cos \theta$ with θ the angle between the threedimensional momenta of the electron and the η^{\prime} meson, and $2 E=\sqrt{ } s$ with E the beam energy. A straightforward integration of equation (8) gives

$$
\begin{equation*}
\sigma=\frac{1}{24} \alpha|F(V)|^{2}\left\{1-\left(\mu_{\eta^{\prime}} / 2 E\right)^{2}\right\}^{3} . \tag{9}
\end{equation*}
$$

Interaction Constants

The interaction constants used in the calculations are summarized in Table 1. For the $g_{V \eta^{\prime} \gamma}$ vertex, since there are as yet no experimental data available for $V \rightarrow \eta^{\prime} \gamma$ decay widths we have used the quark model (Bramon and Greco 1974), which leads to the results

$$
\begin{aligned}
& g_{\rho \pi 0 \gamma}=-\frac{1}{3} g_{\omega \pi 0 \gamma} \equiv g / 3, \quad g_{\rho \eta \gamma}=-g_{\rho \eta^{\prime} \gamma}=g / \sqrt{ } 2, \\
& g_{\omega \eta \gamma}=g_{\omega \eta^{\prime} \gamma}=g / 3 \sqrt{ } 2, \quad g_{\phi \eta \gamma}=g_{\phi \eta^{\prime} \gamma}=\sqrt{ } 2 g / 3 .
\end{aligned}
$$

Taking the experimental value of the $\omega \rightarrow \pi^{0} \gamma$ decay width ($\approx 0.9 \mathrm{MeV}$) and using the width formula

$$
\begin{equation*}
\Gamma(V \rightarrow P \gamma)=g_{V P \gamma}^{2}\left(m_{V}^{2}-m_{P}^{2}\right)^{3} / 96 \pi m_{V}^{3} \tag{10}
\end{equation*}
$$

where P indicates a pseudoscalar meson, we obtain $g_{\omega \pi^{0} \gamma} \approx 0 \cdot 09$, which then leads to the values of $g_{\rho \eta^{\prime} \gamma}, g_{\omega \eta^{\prime} \gamma}$ and $g_{\phi \eta^{\prime} \gamma}$ given in the last column of Table 1.

Assuming the existence of the new vector meson nonets $V^{\prime}\left(\rho^{\prime}, \omega^{\prime}, \phi^{\prime}, \mathrm{K}^{* \prime}\right)$ and $V^{\prime \prime}\left(\rho^{\prime \prime}, \omega^{\prime \prime}, \phi^{\prime \prime}, \mathrm{K}^{* \prime}\right)$, Renard (1974) has recently calculated some of the decay widths of the members of these nonets. Under a hypothesis of linear $\eta-\eta^{\prime}$ mixing he obtains

$$
\begin{equation*}
\Gamma\left(\rho^{\prime} \rightarrow \eta^{\prime} \gamma\right)=0.04 \mathrm{MeV}, \quad \Gamma\left(\rho^{\prime \prime} \rightarrow \eta^{\prime} \gamma\right)=0.06 \mathrm{MeV} \tag{11a}
\end{equation*}
$$

from which follow the values for $g_{\rho^{\prime} \eta^{\prime} \gamma}$ and $g_{\rho^{\prime} \eta^{\prime} \gamma}$ of 0.04154 and 0.01735 shown in Table 1. Similarly the values for quadratic $\eta-\eta^{\prime}$ mixing are obtained from the results

$$
\begin{equation*}
\Gamma\left(\rho^{\prime} \rightarrow \eta^{\prime} \gamma\right)=0.08 \mathrm{MeV}, \quad \Gamma\left(\rho^{\prime \prime} \rightarrow \eta^{\prime} \gamma\right)=0.11 \mathrm{MeV} \tag{11b}
\end{equation*}
$$

In an alternative approach to the computation of the coupling strengths using the effective Lagrangian with $\mathrm{SU}(3)$ octet breaking, the expressions for the $g_{V \eta^{\prime} \gamma}$ ($V=\rho, \omega, \phi$) take the form (Singer 1970)

$$
\begin{equation*}
g_{\rho \eta^{\prime} \gamma}=\frac{2 h e}{g} \frac{1+\beta}{K_{\rho}^{\frac{1}{2}}}, \quad g_{\omega \eta^{\prime} \gamma}=\frac{2 h e}{g} \frac{(1-\beta) \sin \theta}{\left(3 K_{\omega}\right)^{\frac{1}{2}}}, \quad g_{\phi \eta^{\prime} \gamma}=-\frac{2 h e}{g} \frac{(1-\beta) \cos \theta}{\left(3 K_{\phi}\right)^{\frac{1}{2}}} \tag{12}
\end{equation*}
$$

where $K_{V}=m^{2} / m_{V}^{2}$ with $m=847 \mathrm{MeV}, \theta=27 \cdot 5^{\circ}, \beta$ is a symmetry-breaking parameter and the quantities g and h are given by

$$
\begin{equation*}
g^{2} / 4 \pi=3.35, \quad h^{2} / 4 \pi=0.03192 \tag{13}
\end{equation*}
$$

In this effective Lagrangian model the results for the coupling constants (12) are somewhat controlled by the choice of the parameter β. In a similar analysis of photoproduction of η^{\prime} mesons, Matinian and Shakhnazarian (1971) found β values of $-0.7,-0.5$ and -0.3 to give reasonable results, and these values have been adopted here.

Results

With the set of parameters given in the preceding section we have calculated the differential and total cross sections for the process (5), and the results are presented graphically in Figs 2 and 3.

Fig. 2. Total cross sections σ in the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta^{\prime} \gamma$, as a function of the energy parameter $\sqrt{ } s$, for: (a) contributions from ρ, ω, and ϕ mesons only; (b) inclusion of contributions from ρ^{\prime} and $\rho^{\prime \prime}$ mesons, with both linear (σ_{L}) and quadratic (σ_{Q}) mixing of $\dot{\eta}$ and $\eta^{\prime} ;(c)$ the three indicated values of the symmetry-breaking parameter β. (Note that nonlinear condensed scales for σ have been employed for convenience here.)

Fig. $2 a$ gives the total cross section σ as a function of the energy parameter $\sqrt{ } s$, taking into account only contributions from the vector mesons ρ, ω and ϕ. In this case σ remains almost constant between about 1.6 and 2 GeV and then begins to gradually decrease. The production of the ϕ mesons is clearly indicated by a peak very near threshold ($\approx 1 \mathrm{GeV}$).

Fig. $2 b$ gives the total cross sections for linear $\left(\sigma_{\mathrm{L}}\right)$ and quadratic $\left(\sigma_{\mathrm{Q}}\right)$ mixing of η and η^{\prime}, including contributions from all five mesons $\rho, \omega, \phi, \rho^{\prime}$ and $\rho^{\prime \prime}$. Near threshold the σ_{L} value is above that for σ_{Q}, but the curves cross at about $1 \cdot 03 \mathrm{GeV}$ and thereafter σ_{L} is always less than σ_{Q}. The production of the ρ^{\prime} and $\rho^{\prime \prime}$ mesons is shown by distinct peaks. It is clear that the inclusion of these new mesons considerably enhances the cross section.

Fig. $2 c$ shows the cross section corresponding to the three values $-0 \cdot 3,-0 \cdot 5$ and -0.7 of the symmetry-breaking parameter β. It is interesting to note that the curve for $\beta=-0 \cdot 3$ starts from the lowest point but after generating two peaks becomes the upper value and tends to maintain a relative position with respect to the curve for $\beta=-0 \cdot 7$, which has opposite behaviour. The -0.5 curve, however, takes a middle course throughout. All three curves are seen to intersect at an energy $\sqrt{ } s$ of about 1.275 GeV .

The angular distributions corresponding to energy values equivalent to the $\rho^{\prime \prime}$ and ρ^{\prime} masses are given in Fig. 3.

Fig. 3. Angular distributions for the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta^{\prime} \gamma$ corresponding to values of the energy parameter $\sqrt{ } s$ equivalent to the masses of the $\rho^{\prime \prime}$ and ρ^{\prime} mesons, namely 1.60 and 1.25 GeV respectively. The curves for linear (L) and quadratic (Q) mixing of η and η^{\prime} are indicated.

Shui-Yin Lo (1966) has previously calculated cross sections for the reactions

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow P P, P V, V V, P \gamma,
$$

not including the new ρ^{\prime} and $\rho^{\prime \prime}$ mesons. Comparison of his results with the above calculations shows that the cross sections for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta^{\prime} \gamma$ are extremely small relative to those for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{0} \gamma$ (Cremmer and Gourdin 1969). The present calculations, which are based on a GVMD approach, focus attention on the possible role of the proposed new vector mesons ρ^{\prime} and $\rho^{\prime \prime}$ in electron-positron reactions. In principle we could have also chosen to consider contributions from other vector mesons ω^{\prime}, $\omega^{\prime \prime}, \phi^{\prime}$ and $\phi^{\prime \prime}$, but there is little evidence as yet for the existence of these mesons. There have been several recent attempts to study similar reactions with colliding
beams (Bacci et al. 1975; B. Stella, personal communication), and we hope that the present calculations will, in addition to providing a crucial test of the GVMD model, assist in the interpretation of the results of such experiments.

Acknowledgment

One of us (T.C.) received financial support from the CSIR, India, during the period of this work.

References

Alles, W. (1970). Lett. Nuovo Cimento 4, 137.
Alles-Borelli, V., et al. (1975). Nuovo Cimento A 30, 136.
Augustin, J. E., et al. (1969). Phys. Lett. B 28, 503.
Bacci, C., et al. (1972). Phys. Lett. B 38, 551.
Bacci, C., et al. (1975). Frascati Preprint No. LNF-39.
Baracca, A., and Bramon, A. (1967). Nuovo Cimento A 51, 873.
Baracca, A., and Bramon, A. (1970). Nuovo Cimento A 69, 613.
Barbarino, G., et al. (1972). Lett. Nuovo Cimento (N.S.) 3, 689.
Barger, V., and Cline, D. (1969). Phys. Rev. 182, 1849.
Bramon, A., and Greco, M. (1974). Phys. Lett. B 48, 137.
Brodsky, S. J., Close, F. E., and Gunion, J. F. (1972). Phys. Rev. D 6, 177.
Conversi, M., et al. (1974). Phys. Lett. B 52, 493.
Cremmer, E. (1969). Nucl. Phys. B 14, 52.
Cremmer, E., and Gourdin, M. (1969). Nucl. Phys. B 10, 179.
Gounaris, G. J. (1970a). Phys. Rev. D 1, 1426.
Gounaris, G. J. (1970b). Phys. Rev. D 2, 2134.
Johnson, R. C., Martin, A. D., and Pennington, M. R. (1976). CERN Preprint No. TH-2153.
Matinian, S. G., and Shakhnazarian, Yu. G. (1971). Yerevan Preprint No. TP/71/5.
Particle Data Group (CERN) (1974). Phys. Lett. B 50, 1.
Renard, F. M. (1974). Nucl. Phys. B 82, 1.
Sakurai, J. (1960). Ann. Phys. (N.Y.) 11, 1.
Sakurai, J. (1971). Invited talk at Japan-U.S. Joint Seminar on Elementary Particle Physics with Bubble Chamber Detectors, February.
Sakurai, J. (1972). Invited paper at Canadian Inst. Particle Phys. Summer School, McGill Univ., August.
Schildknecht, D. (1969). DESY Rep. No. 10.
Shapiro, J. A. (1969). Phys. Rev. 179, 1345.
Shui-Yin Lo (1966). Univ. Chicago Preprint No. EFINS/66/23.
Singer, P. (1970). Phys. Rev. D 1, 86.
Veneziano, G. (1968). Nuovo Cimento A 57, 190.
Wolf, G. (1972). DESY Preprint No. DESY/72/61.

[^0]: ${ }^{\text {A }}$ Values from Particle Data Group (1974). ${ }^{\text {B }}$ Augustin (1969). ${ }^{\text {C }}$ Conversi et al. (1974).
 ${ }^{\mathrm{D}}$ Wolf (1972). ${ }^{\mathrm{E}}$ Assuming linear $\eta-\eta^{\prime}$ mixing. ${ }^{\mathrm{F}}$ Assuming quadratic $\eta-\eta^{\prime}$ mixing.

