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Abstract 

Most field theories allow an isolated particle to possess a rest mass, and thereby violate Mach's 
principle. The nonsymmetric theories of Schrodinger and of Einstein do not have this defect. 

The origin of inertia has been a problem for workers in general relativity since the 
inception of that theory. Beginning with Einstein (1955), many have tried to attribute 
the inertia of bodies to interactions with other matter in the universe. None of these 
attempts has been generally accepted as a satisfactory expression of this idea of the 
relativity of inertia, usually known as Mach's principle (Mach 1893). 

The inertia of elementary particles has also been an important topic in other field 
theories, in the guise of the self-energy problem. This is also the self-inertia problem, 
as is shown by Einstein's discovery of the inertia of energy. Discussions of the self­
energy have usually concentrated on its divergence, and on ways to adjust a theory 
to make it finite. But if Mach was right, the mass of a particle in an otherwise empty 
universe must vanish. There should be no self-energy, and the inertial resistance of 
particles should be a cosmological effect. 

The self-energy of a particle in electrodynamics, for example, comes about because 
of the interaction between charge and field, but is essentially a local effect. In 
classical electron theory, 99 % of the electromagnetic mass of each particle is concen­
trated within 100 particle radii. (Matters are even worse in quantum theory, where 
the self-energy diverges logarithmically.) The situation is different in general 
relativity, because the equivalence principle forbids localization of gravitational energy. 
Nevertheless, the mass of an isolated, static, uncharged particle in an empty, 
asymptotically flat space, as calculated with any of the well-known energy­
momentum pseudotensors, is the Schwarzschild mass m (Trautman 1962). This is 
clearly not a result of any interaction with other bodies, for the model contains no 
other bodies. 

Thus conventional field theories, by allowing isolated bodies to possess inertia, 
violate the basic requirement of Mach's principle. We require a theory in which the 
energy of a single particle vanishes, and in which inertia arises when other bodies 
are present. A class of theories satisfying at least the first of these conditions consists 
of the nonsymmetric generalizations of Einstein's gravitational theory: the purely 
affine theory of Schrodinger (1963) and the mixed affine-metric theory of Einstein 
(1955, Appendix II). I shall deal with Schrodinger's theory here. The corresponding 
results in Einstein's theory may be obtained by simply setting the cosmological 
constant A = O. 
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SchrOdinger's Lagrangian is 

with R!'v the Ricci tensor. A metric tensor is defined by Ag!'v = R!'v, so that A is the 
cosmological constant. il is a function of the affinity r~v and its first derivatives, and 
a canonical energy-momentum complex can be constructed. (In gravitation theory, 
where the metric is the basic quantity, second derivatives of g!'v must be eliminated 
before this procedure, leading to the Einstein pseudotensor, can be carried out.) 
This complex is 

.It/ = -b/il+r~p,!,ail/ar~p,v = (-g)t(g Pv r: rT ,!,-gP"r;",!,-2Ab/). 

av.lt!,v = 0 when the field equations are satisfied. The part not involving A is the 
corresponding complex for the mixed affine-metric theory, which Einstein (1955, 
Appendix II) took as the energy-momentum density in his final theory. He noted 
the essential fact that it gives zero for the energy of any static field. 

To proceed, we require a solution of the field equations. The Schwarz schild 
solution with cosmological term, 

with A = I-2m/r -tAr2, 

may be used, though the singularity at r = 0 is unsatisfactory from the standpoint of 
a unified theory. In spite of this defect, we obtain an acceptable result: Denoting by 
.It'!'v the energy-momentum complex with terms which do not involve m omitted, we 
find .It'o' = 4m cos e to be the only non-vanishing term. The energy density is zero every­
where, and the mass of the 'particle' therefore vanishes. This conclusion is not changed 
by the fact that rand t exchange roles as space and time coordinates inside r = 2m. 

The subtraction from .It!'v of terms which do not depend on m is not an omission 
of self-energy: The omitted terms would give an energy and stresses independent 
of the particle's existence, and can have nothing to do with determining its mass. 
The significance of the surviving stress term .It'o' is not clear, but it vanishes on 
integration over a 2-sphere. There are also terms which arise when the particle is in 
motion, and which represent a type of kinetic energy, though no rest mass can be 
ascribed to the particle. 

The vanishing .of the self-energy is merely the pons asinorum of Mach's principle. 
The theory must show how the inertia of a body arises from the presence of other 
matter. A satisfactory demonstration of this in the nonsymmetric theories must 
await the discovery of non-empty cosmological models, matter being represented by 
non-Riemannian features of the geometry. Meanwhile, the fact that the self-energy 
vanishes in an unforced way seems to be a point in favour of these theories. 
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