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Abstract 

The isoscalar sum rules of Deal and Fallieros (1973) and generalizations of these sum rules are 
discussed. The isoscalar form factor and transition density for an arbitrary eigenstate of the nucleus 
are given as sums over the sum rules and, for a particular choice of the operators in the sum rules, 
are given by a series of which the first terms are the same as the results of the hydrodynamical 
model. It is shown that caution is needed in making nuclear spin assignments from inelastic electron 
scattering. The sum rule of Deal and Fallieros is used to clarify the calculation of Bohr and Mottelson 
(1975) of the energy of the isosca1.ar giant quadrupole resonance. 

Introduction 

This paper is concerned with the isoscalar sum rules of Deal and Fallieros (1973), 
a generalization of these sum rules, and applications of them to giant resonances 
and inelastic scattering, including electron scattering. The sum rules are also important 
for inelastic scattering of strongly interacting particles by nuclei. The treatment 
is confined, for simplicity, to nuclei with zero spin in the ground state, and only 
excitation of excited states with parity (_I)J, where J is the spin, are considered. 

Previously a hydrodynamical model was used in which the nucleus was considered 
to be composed of an inhomogeneous fluid (Tassie 1956). The fluid flow was assumed 
to be irrotational and incompressible. This model yielded the transition density: 

for J = 2,3, ... , 0) 

where 10) and I f) are the ground state and the excited state of the nucleus, and 

poo(r) = (0 I p(r) I 0) (2) 

is the ground state density distribution. The result (1) is usually referred to as the 
Tassie model. This model, and generalizations of its, have been widely used to 
analyse inelastic electron scattering (Uberall 1971), while Boridy and Feshbach 
(1974) have used it successfully to fit high energy proton scattering data. 

It is clearly undesirable for such a useful result to be dependent on hydrodynamical 
assumptions, such as incompressible and irrotational flow. Fortunately, Deal and 
Fallieros (1973) have derived the result (1) for AT = 0 transitions from an energy
weighted sum rule and an assumption that a single doorway state dominates inelastic 
electric scattering. The treatment given here is confined to isoscalar transitions 
(AT = 0), except for a few remarks about the isovector giant dipole resonance. 
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The sum rule of Deal and Fallieros can be generalized to an infinite set of sum rules, 
each being a summation over all the final states. This process is then inverted, and 
the transition density for excitation of a particular final state can be written as a 
summation over the sum rules, the first term in this summation being just the Tassie 
model result (1). 

In recent years there has been considerable interest in giant resonances of nuclei 
and, in particular, in the giant isoscalar electric quadrupole resonance. Bohr and 
Mottelson (1975) have predicted that the energy of this resonance is given by 

hw::::; 58A- 1/ 3 MeV. (3) 

The sum rule of Deal and Fallieros (1973) is used here to clarify the derivation of 
this result. 

Derivation of Isoscalar Sum Rules 

We let 

where Ai and Bi are real functions of the position coordinates of the ith nucleon, 
and take E = 0 as the energy of the ground state, so that 

HIO) = 0, (4) 

where H is the nuclear Hamiltonian. We then obtain 

(01 [A,[H,B]] 10) = (01 (AHB+BHA) 10). 

Now AHB is invariant under time reversal, so that <0 I AHB I 0) is real. Since A, 
Hand B are hermitian, we have 

and 
(OIAHBIO) = (OIBHAIO), 

(OIAHBIO) = !(OI[A,[H,B]]IO). 

Inserting the complete set of eigenstates of H, 

Hln) = Enln), 
yields the sum rule 

IE/OIAln)(nIBIO) = !(OI[A,[H,B]]IO). 
n 

We define 
where 

and consider [QJP' [H, QJ~]]' 
Now, the nuclear Hamiltonian has the form 

H = T+ V, with 

(5) 

(6) 

(7) 

(8a, b) 

(9a, b) 
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For V velocity independent, we have 

[V,QJ .. ] = O. (10) 

For a spin-orbit coupling which is linear in the momentum variables, 

(11) 

but it has no momentum dependence, so that 

(12) 

Since QJa is an isoscalar operator, symmetric in the coordinates of all nucleons, 
equation (12) holds even in the presence of exchange forces. For an isovector operator, 
exchange corrections to the sum rules have to be included. This is why the present 
treatment is only valid for isoscalar transitions. 

Neglecting more general velocity-dependent interactions, we have 

(0 I QJP HQJa I 0) = !(O I [QJP' [H, QJa]] 10) 

= -!-(O I [QJP' [T, QJ .. ]] 10) 

= (h2/2m) L (0 I (''Vi rf+2P YJO(Qi)) • ('Virf+2aYJO(Qi») 10) 
i 

= (h2/2m) I d3rpoo(r)('VrJ+2PYJo(Q»).('VrJ+2"YJo(Q») 

= (h2 /2m)(4n)-1 {J(2J + 2(J(+ 2P + 1) + 4(J(p}A<r 2J+2a+2P-2> , (13) 

where the density operator 

per) = L c5(r-ri) (14) 
i 

and the ground state density distribution (2) have been used, and 

(15) 

The properties of spherical harmonics used in the derivation of (13) are given, for 
instance, in Appendix A of Uberall (1971). Equation (13) has also been given by Vi 
and Tsukamoto (1974). For (J( = P = 0, equation (13) reduces to the usual energy
weighted sum rule for the isoscalar electric multipole operator. 

In the same way, sum rules are obtained for the isoscalar transition density 

LEn<OI QJaln><nlp(r)IO> = <01 QJaHp(r)IO> 
" = !(O I [QJa, [H, p(r)]] 10), (16) 
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but it is easier to work with the fonn factor 

A 

FJ(q) = {4n(2J+ I)}! L jiqr;)YJo(Q/) 
i=l 

= {4n(2J + l)}t f d3r jiqr) Y Jo(Q) p(~). (17) 

Note that 

F(q) = fF FJ(q) = f d3rexp(iq.r)p(r), (18) 

so that the form factor and the transition density are just Fourier transfonns of each 
other. In the first Born approximation, the cross section for longitudinal electric 
excitation is given by 

(19) 

where (du/dQ)p is the point nucleus cross section, and the momentum transfer is 
given by hq. Unfortunately, the transition density is sometimes referred to as the 
radial fonn factor, or just as the form factor, which can cause some confusion. 

Thus, we now have 

(0 I [Q1<x' [H, FJ(q)]] I 0) = (h2/m){(2J + 1)/4n}t f d3r poo(r) rJ+2,.-2 

x {J(J+ l)jiqr) +(J+2oc)rdjiqr)/dr}. 

After integration by parts, the sum rule becomes 

(0 I QJ,.H FJ(q) I 0) = t(O I [QJ,,' [H,FJ(q)]] 10) 

= -(h2/2m){(2J+ 1)/4n}t f d3r jiqr)rJ+2,.-2 

x {2oc(2oc + 2J+ l)poo(r) + (J+2oc)r dpoo/dr} . (20) 
Since 

we have the sum rule for the transition density: 

(0 1 QJ" H p(r) 1 0) 

= -(h2/2m)rJ+2,,-2{2oc(2oc+2J + l)poo +(J+2oc)rdpoo/dr }YJo(Q). (22) 

This result has also been given by Vi and Tsukamoto (1974). 
For J =f. 0 and oc = 0, equation (22) reduces to 

(01 QJoH per) 1 0) = -(h2/2m)JrJ-l(dpoo/dr)YJo(Q), (23) 

the sum rule given by Deal and Fallieros (1973), in which the right-hand side has 
the same radial dependence as equation (1), the hydrodynamical model of Tassie 
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(1956). For J = ° and rJ. = 1, equation (22) reduces to 

(01 QOl H per) I 0) = -(hz/2m){6poo +2rdpoo/dr}Yoo(Q) , (24) 

which is the monopole sum rule given by Deal and Fallieros (1973), and for which 
the right-hand side has the radial dependence given for monopole transitions by 
Werntz and Uberall (1966). 

Giant Isoscalar Electric Quadrupole Resonance 

Among the giant resonances discovered in inelastic electron and proton scattering 
and in other reactions, after the well-known isovector giant dipole resonance, the 
most investigated resonance is that identified as the E2, !::iT = ° isoscalar electric 
quadrupole, for which Bohr and Mottelson (1975) made the prediction (3) above. 
This prediction is in good agreement with the observed energies (see e.g. Walcher 
1973). Apart from the use of the sum rule of Deal and Fallieros (1973), the present 
treatment follows that of Bohr and Mottelson (1975). 

Bohr and Mottelson (1975) considered the operator, which in our notation is 
Qzo and which in the harmonic oscillator shell model induces transitions from the 
ground state with !::iN = ° and energy hw(O) = 0, and with !::iN = 2 and energy 
hw(O) = 2hwo, where Wo is the harmonic oscillator frequency. The !::iN = 2 levels 
provide the first approximation to the giant resonance, which is considered to be 
the first excited state of a collective harmonic oscillator with coordinate rJ. and 
Hamiltonian 

where 

with 
c = hw/2rJ.~, D = h/2wrJ.~, 

rJ.o == (n=IIrJ.ln=O) 

(25) 

(26) 

(27) 

and w the frequency of the collective oscillator. In the first approximation, we have 
w = 2wo. The normalization of rJ. is chosen so that 

rJ.o = (n= 11 Qzo I n=O). (28) 

Only the !::iN = 2 level contributes to the sum 

(29) 

so that 
rJ.~ = S/2hwo, (30) 

giving as the first approximation 

(31) 

In the collective oscillation, the nuclear density distribution oscillates, causing 
the nuclear potential to oscillate and giving rise to corrections to the equations (31). 
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The sum rule (23) of Deal and Fallieros (1973) is 

(32) 

If we write 
P = Poo +IXOp, (33) 

we obtain 

= 2hwo op IX~ = Sop. (34) 

On comparing the results (34) and (32), we see that 

(35) 

Since the transition density in the Deal-Fallieros sum rule is of the same form as that 
for an incompressible deformation (Tassie 1956), we can write 

p(r) = poo(ro) , 

and the displacement from ro to r can be written 

so that 

Comparing the results (38), (35) and (33), we find 

fer) = 2(h2/2mS). 

Deforming the potential in the same way, we get 

VCr) = Vo(ro) 

::;:: Vo(r) -1X(h2/2mS)2r Y 20 d Vo/dr 

which, for the harmonic oscillator potential, becomes 

Vo(r) = tmw~ r 2 

VCr) ::;:: Vo(r) -lXh2W~ S -1 r 2y 20 . 

As the potential is due to two-body forces, summing over all particles by 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

counts contributions twice. Thus the correction to the potential energy must be 
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divided by 2, giving a correction 

H' = --!-ahZw~S-l Lr;YZO(Qk) 
k 

= ha Q20 = ha2 , (44) 
where 

(45) 

Addition of the correction (44) gives 

D = D(O) , (46) 
so that 

hw = h(C/D}~ = J2 hwo ~ 58A- 1/ 3 MeV. (47) 

Excitation of Eigenstate 

The states of spin J obtainable from the ground state by inelastic electron scattering 
are given by FJ(q) I 0) for all q. These are also all the states with nonvanishing 
transition density for transitions to the ground state. From equation (17) and 

zJ (1 ) 
h(Z) = (2J+ I)!! 1- 1!(2J+3) ~Z2 + ... , (48) 

the states QJ~ I 0) give all the states excited by electron scattering. Then any final 
eigenstate of the nucleus can be written 

If) = Lb~QJ~IO)+ I Rem), (49) 
IX 

where the remainder I Rem) does not contribute to inelastic electron scattering, 
and satisfies 

(Rem I p(r) I 0) = O. (50) 

Note that the states QJa I 0) are not eigenstates of any Hamiltonian and are not 
orthogonal. It is more convenient to use 

(51) 

such that 
for a =f= f3 . (52) 

The states MJ~ I 0) are not necessarily orthogonal. In general, we have 

(53) 

(when the coefficients AaP are real, the MJ~ are real). 
We consider the isoscalar excitation of a particular final state I f) with spin J. 

From equations (51), (48) and (17), we can write 

(54) 
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It then follows that 

I <fl MJy I 0)<0 I MJyH FJ(q) I 0)/<01 MJyH MJy I 0) 
y 

= I <f I MJy I 0)<0 I MJy H MJp I 0) fp(q)/<O I MJy H MJyl 0) 
yp 

= I <fl MJy I O)f,(q) 
y 

= <fl Ifiq)MJyIO) 
y 

(55) 

which is the required form factor. 
Using equation (51), we have 

<fl FJ(q) I 0) = I B/O I QJyH FJ(q) I 0), (56) 
y 

and the terms in the form factor are given by equation (20), so that equation (56) 
could be used to fit electron scattering data. But the coefficients By are not simply 
related to the properties of the state If). The expansion in MJy is more useful, 
especially as we propose to construct M Jy so that 

as q~O, (57) 

so that the term with y = ° predominates at small q. By comparison, we have the 
relation 

as q ~ ° (J", 0). (58) 
Defining 

(59) 
we see that 

ICyl2 = Efl<fIMJyIO)12/<0IMJyHMJyIO) 

= Efl<fIMJyIO)12/ ~Enl<nIMJyIO)12, (60) 

which is the fraction of the sum rule satisfied by the state If). It follows then that 

<fIFJ(q)IO) = EftICy<OIMJyHFJIO)/<OIMJyHMJyIO)t. (61) 
y 

Similarly, the transition density is given by 

<fl per) I 0) = Eft I C/o I MJyH per) I 0) /<01 MJyH MJy I O)t. (62) 
y 

A set of M J is constructed by taking 

IX 

MJ = I A",pQJp, 
p=o 

(63) 
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with A~~ = 1. The condition (52) is satisfied by 

for P<rx (64) 

which, for given rx, provides rx simultaneous linear equations to determine the IX 

coefficients A~p (P < rx). The A~p will depend on the ground state density distribution. 
It can be shown that this set of MJ~ satisfies the relation (57). Since 

(65) 

the first term in the form factor is 

and so the first term in the transition density is 

<0 I QJO H p(r) I 0) , 

which has the same radial dependence as the Tassie model result (1). At small q, 
the first term predominates, and so at small q we get the same answer as the Tassie 
model. The remaining terms will give corrections which become more important as 
q increases. 

After solving the equations (64) we then eventually obtain from the equations 
(13), (22), (62) and (63), writing out only the first two terms, 

<II p(r) 10) = (2nh2/mEj A)t(2J+l)-tyJo(O) 

x [ - Co Jt<r2J-2) -t rJ- l dpoo/dr 

-Cl {(2J+ 1){J(2J+5) +4}<r2J+2) 

-J(2J + 3)2<r21)2<r 2J-2) -l}-t 

x {(2J + 1)rJ {2(2J + 3)poo + (J + 2)rdpoo/dr} 

-(2J+3)<r2J)<r21-2)-lJrJ-ldpoo/dr} + ... ]. (66) 

The first term is the Tassie model (1). It should be noted that, even in the higher terms, 
the transition density does not involve any derivatives higher than the first of the 
ground state density distribution. 

For the uniform density distribution 

<r") = 3(n+3)-1 R", (67) 

where R is the nuclear radius, and the form factor is 

<II FJ(q) I 0) = {3E;1 (h2/2m)(2J+ 1)A}t R- 1 

x (Co JtjiqR) + ~ (-1)~Cc«2J+4rx+ 1)tjJ+2aCqR») , (68) 
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which we write as 

<fIFJ(q)IO) = {3Ejl(/i2j2m)(2J+l)A}tR-l L C(1.F(1.' (69) 
(1. 

Fig. 1 shows FQ , - F l , F2 and - F3 for J = 2. If all the C(1. are taken to have the 
same magnitude, it is seen that summation to IX = 2 is adequate for values of qR ~ 4. 
The predominance of the first term for qR ~ 3 shows why the hydrodynamical 
model has been so useful in analysing electron scattering data. 

0'6 -/)\ 0'4 

~ F2 r.... 
0·2 

I 
-F3 

0 

4 6 

qR 

10-1 

2 

.~ 

.~ 

- {i2(qR)}2 

-- (7/5)h(qR)iJ{qR) 

2 

qR 

Fig. 1. Plot of the q dependence of the leading F. terms in the series (69) for the inelastic form 
factor for electric quadrupole transitions, assuming a uniform density distribution. 

Fig. 2. Comparison between the q dependence of {h(qR)}2 and ofh(qR)h(qR), showing the 
difficulty of distinguishing between E2 and an additional contribution to E1 electron scattering. 

Discussion 

Equation (68) shows that higher order terms in the form factor for the excitation 
of a state of spin J have the same q dependence as the first term for the excitation of a 
state of higher spin, J+2, J+4, etc., as was also noted by Vi and Tsukamoto (1974) 
for IX = 1 and 2. Although this result does not hold for an arbitrary density distribution, 
the actual nuclear density distribution for heavy nuclei is roughly like the uniform 
distribution, and so qualitatively we should expect a similarity between the higher 
order terms for spin J and the lower order terms for states with higher spin. A well
known special case is the similarity for electric monopole and quadrupole transitions: 

(70) 

which is valid for an arbitrary density distribution. 
If the form factors for two transitions are the same, it is only in the first Born 

approximation that the scattering must be the same. In the DWBA approximation, 
the effects of distortion depend on the multipolarity of the transition, and this provides 
some help in determining spins. However, caution is needed in allocating spins to 
nuclear states according to the shape of the angular distribution of inelastic electron 
scattering. 
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Equation (62) can be used to fit inelastic scattering of either electrons or protons 
by using the procedure of Boridy and Feshbach (1974), with the Ca as adjustable 
parameters subject to the restriction 

(71) 

The values of the Ca determined from experiment can then be compared with the 
results of nuclear structure calculations, by using some nuclear model to calculate the 
</1 Q]yl 0). 

Deal (1973) has calculated inelastic scattering using what he calls the single doorway 
and double doorway approximations. The single doorway approximation is just 
the first term in the sum in equation (66), and the double doorway approximation is 
equivalent to taking the two terms shown in equation (66). For electron excitation 
of the 2 + level in 12C at 4· 43 MeV, Deal (1973) obtained a good fit to the experimental 
data for q ::::; 0·7 fm -1 with the single doorway approximation, and for q ::::; 1·8 fm- 1 

with the double doorway approximation. The data for q ::::; 2·2 fm -1 deviate from 
the double doorway approximation, showing the need to include a third term in the 
sum in equation (66). 

If the no-particle-no-hole state is defined as the ground state of the nucleus then 
inelastic electron scattering excites only one-particle-one-hole states, whereas inelastic 
scattering by strongly interacting particles can excite higher excitations: two
particle-two-hole states and so on. This arises from the effects of coupling between 
channels which, for electron scattering, are negligible because of the weakness of the 
electromagnetic interaction. In principle it is possible to learn more about nuclear 
wave functions from the inelastic scattering of strongly interacting particles, but in 
practice this is difficult because of complications due to the strength of the interaction 
and the sensitivity of the interaction to many nuclear parameters. The analysis of the 
scattering of strongly interacting particles could be approached more readily if the 
one-particle-one-hole components of nuclear wave functions were first determined 
by a systematic study of electron scattering. 

There are basically two reasons for the success of the hydrodynamical model 
based on irrotational and incompressible flow. The first is that inelastic electron 
scattering excites only the one-particle-one-hole parts of the excited nuclear states. 
The second is that, no matter how compressible or how viscous a fluid is, it flows 
incompressibly and irrotationally if it is struck gently enough, which is equivalent 
to inelastic scattering at low q in the nuclear case. 

The treatment given above strictly holds only for isoscalar transitions but, if we 
ignore exchange corrections, it can be used for isovector transitions. Then, for an 
isovector El transition, the form factor for a uniform charge distribution is 

In the first Born approximation, the scattering is proportional to 

and the first term is the result of the Tassie model or the Goldhaber-Teller (1948) 
model (the Tassie model strictly does not apply for J = 1 but, as it gives the same 
result as the Goldhaber-Teller model, it may be used). However, the second term 
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of equation (72), containing the factor jl(qR)j3(qR), has a similar q dependence 
(for qR not too large) to the first term for an electric quadrupole transition, namely 
{j2(qR)V, as is shown in Fig. 2. In analysing electron scattering to the giant I1T = 0, 
E2 resonance, the contribution from the giant I1T = 1, El resonance has to be 
subtracted, and we see that subtracting the El contribution according to the hydro
dynamical model will leave a contribution with a q dependence similar to an E2 
contribution. This result shows that care is needed when making multipole assign
ments on the basis of the hydrodynamical model. 
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