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Abstract 

A comparison is made between the theoretical and experimental cell sizes manifest at the onset of 
stationary convection in a mercury layer heated from below and subject to the influence of rotation 
about a vertical axis and a vertical magnetic field. The theoretical cell sizes have been derived on the 
basis of a variational technique, and the boundary conditions appropriate to the experimental 
situation have been applied. 

Introduction 

Astrophysical and geophysical situations are known to exist where both rotation 
and a magnetic field are present, and convection is cited as the dominant means of 
energy transport. Hence an appreciation of the conditions prevailing under which 
convection will become established as an effective mode of heat transfer, subject to the 
influence of external constraints, is of considerable interest. Benard's and later 
experiments illustrated, while Rayleigh's pioneering theory established, that convective 
heat transport would only take place in a horizontal layer of viscous fluid, heated from 
below, provided the Rayleigh number exceeded a certain critical value Re. Moreover, 
at marginal stability, this Re is associated with a particular value of the horizontal 
wave number ae , which determines the horizontal extent of the convective cell. 

A series of experiments conducted by Nakagawa (1957, 1959) determined the values 
of the critical Rayleigh number and wave number for the onset of cellular convection 
in a rotating layer of mercury, heated uniformly from below, and subject to an 
impressed vertical magnetic field. These experimental investigations established that 
the overall effect of the simultaneous action of a magnetic field and rotation on the 
convective processes was one of inhibition. In particular, Nakagawa (1959) 
established the dependence of the critical wave number on the magnetic field strength 
and, for a constant speed of rotation, showed that a discontinuous change in wave 
number takes place when the field strength is increased beyond a certain value. At 
the same time the manner of the instability was observed to change from overstable 
convection to cellular convection. For the problem under examination, only the role 
of cellular convection is considered (below). 

Here a comparison is made between the theoretical cell sizes, derived on the basis 
of a variational technique using boundary conditions appropriate to the experimental 
situation, and the cell sizes observed (Nakagawa 1959) at marginal stability for the 
same parameter values. In dimensionless terms, the two parameters associated with 
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the magnetic field strength and rate of rotation are 

Q = /1: H6 d 2 (J/ pv, the Chandrasekhar number, 

the Taylor number. 

The Rayleigh number is defined by 

R = gaI1Td 3/KV, 

and the cell size b, measured in centimetres, is related to the dimensionless wave 
number through (Nakagawa and Frenzen 1955; Nakagawa 1959) 

b = 4nd/-J3 a, 

where d is the depth of the fluid layer. Furthermore (Chandrasekhar 1961), Ho is the 
strength of the applied magnetic field, Q is the angular speed of rotation about a 
vertical axis, I1T is the temperature difference across the mercury layer, while g, a, K, 

V, /1e, P and (J denote respectively the acceleration due to gravity, the coefficient of 
thermal expansion, the coefficient of thermal diffusivity, the kinematic viscosity, the 
magnetic permeability, the density and the coefficient of electrical conductivity. 
Throughout these experiments the layer of mercury was of depth 3 cm and was 
rotated at a constant angular speed of 5 revolutions per minute (or was stationary). 
Due to differences in the average temperature of the mercury layer, an average value 
of.r1 was arrived at and given, in the case of the experiments devoted to the determina­
tion of the sizes of the convection cells (Nakagawa 1959), by 

.r1 = .r/n4 = 7'30x105 , 

while Q1 = Q/n2 was varied from 9·46 to 1·05 X 104• 

The basic differential equations governing thermal instability in a horizontal layer 
of viscous fluid heated from below and subject to the influence of both rotation about 
a vertical axis and a vertical magnetic field were derived by Chandrasekhar (1961). 
In terms of the vertical velocity W(z), temperature fluctuation F(z), vorticity Z (z) 
and current density X (z) (0 :( z :( 1), we have the following system for stationary 
convection (Chandrasekhar 1961) 

where 

{(D2_a2)2 -QD2}Z = -(2Qd/v)O(D2-a2)W, 

(D2 - a2)X = - (Ho d/I])DZ, 

{(D2_a2)2 -QD2}W -(2Qd 3/v)DZ = F, 

D == d/dz and I] = 1/4n/1e (J • 

(1) 

(2) 

(3) 

(4) 

As a necessary qualification to the above system, it should be added that the onset 
of stationary convection is independent of the planform of the convective cells and 
the Prandtl number, whichformercuryisratherlow, having the value p = V/K = 0·025. 
Furthermore, the variational principle as it applies to this system has also been 



Cell Sizes at Onset of Thermal Convection 179 

established by Chandrasekhar (1961), and this characteristic value problem can be 
solved without reference to the boundary conditions on the magnetic field. Accord­
ingly, the perturbed magnetic field H(z) has been eliminated (without increasing the 
order) from the differential system given by Chandrasekhar (1961). 

When conducting his experiments, Nakagawa (1957) found that the mercury 
oxidized and formed in effect a rigid-type surface on top, and as a consequence he 
was unable to observe the cell sizes using fine sand particles as tracers. This difficulty 
was overcome (Nakagawa 1959) by pouring a thin layer of distilled water on top of 
the mercury, contained in a bakelite cylinder with a stainless steel base, providing in 
effect a free surface. Therefore, in the next section, the rigid-free boundary conditions 
have been applied to W (z) and Z (z), the conducting-nonconducting conditions to 
X(z), and the conditions for uniform heating to F(z). 

Earlier theoretical studies, which involved free-free (Chandrasekhar 1961) and 
rigid-rigid (Murphy and Steiner 1975) type boundary conditions, established the same 
qualitative behaviour as observed experimentally. The latter conditions, for reasons 
given above, are only appropriate to measurements of Rc (Nakagawa 1957). With 
the mixed boundary conditions now proposed we have a quantitative basis for 
comparison between theoretical and observed cell sizes at the onset of convective 
instability. 

Variational Solution 

In the case under consideration, different boundary conditions have to be satisfied 
on the two bounding surfaces. For a rigid lower boundary we have 

W=DW=F=Z=O at z = 0, (5) 

and for an upper free boundary we have 

W = D Z W = F = DZ = 0 at z = l. (6) 

In view of the general symmetry properties associated with the problem (Roberts 
1966), the fluid layer can also be contained over -t :;;;; z :;;;; t and, in this case, by 
rigid boundaries with the conditions (5) applying. The variational approach can be 
utilized by taking odd solutions for W (z) and considering a layer of depth 
td (-t :;;;; z :;;;; 0). Under these circumstances the free surface conditions (6) on W 
will apply at z = O. Coupled with an odd solution for W is an even solution for Z, 
and hence we have DZ = 0 at z = 0 also, and solutions applicable to the rigid-free 
case follow on dividing a by 2, Rand Y by 16, and Q by 4. 

At this stage Z can be eliminated by differentiation from equation (4), using (2), 
to give 

Substituting F, expanded as an odd function 

F = L Am sin(2mnz ) (8) 
m=l 

into equation (7), the resulting equation to be solved for W then becomes 

[{(DZ_aZ)z _QDzy +YDz(Dz-az)]W = L Am Czm sin(2mnz) , (9) 
m=l 
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with 
(lO) 

If we have 
and (lla, b) 

then Wm and Zm are the solutions of 

and 
(13) 

Now the general solution of equation (12), which is odd, can be written in the form 

with 

4 

Wm = L Bfm) sinh( qj z) + e2m }'2m sin(2mnz), 
j=l 

(14) 

(15) 

Here the Blm ) (j = 1,2,3,4; m = 1,2, ... ) are constants of integration and the ± qj 
are the roots of the eighth degree polynomial equation 

(16) 

A solution for Zm is now given by 

It is also convenient to expand X(z) in the form 

and an appropriate odd solution of equation (3) is then 

(18) 

where 

When the rigid boundary conditions (5), together with the condition DX = ° for 
a conducting boundary, are taken into account at z = ± -!-, the following equations 
for the constants Blm ) in the sum (14) are obtained: 

For Wm = 0, 
4 

L Bfm) sinh(-!-q) = 0. 
j=l 

(19) 
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For DWm = 0, 

4 

I qjBfm)cosh(1q) = (_l)m+1C2mYzm2mn. 
j=l 

For Zm = 0, 

For DXm = 0, 

The solution of 

q 1 cosh(-tq 1) q2 cosh(-tq2) 

q 1 cosh(-tq 1) 
Xl 

q2 cosh(-tq2) 
X2 

qi cosh(tq 1) q ~ cosh(1q 2)! 

xl(qi-a2) X2( q~ _a2) 

q3 cosh(-tq3) 

q3 cosh(1q3) 
X3 

q~ cosh(tq3) 
xiq~-a2) 

q4 cosh(-tq4) 

q4 cosh(tq4) 
X4 

q~ cosh(-tq4) 
X4( q~ - a2) 

0 

B(m) 
1 

( -1)mY2m 2mn{(2mn? +a2} 

( _1)m Y2m (2mn)3 
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(20) 

(22) 

(23) 

is required for m = 1, 2, 3, ... , where the qj are complex and given by equation (16). 
In addition, these solutions for W, F and Z clearly satisfy the free boundary con­

ditions (6) and the condition X = 0 for a nonconducting upper boundary at z = O. 
On this basis we can now proceed to obtain the value of Rc for the onset of stationary 
convection in a fluid layer of depth -td, with one rigid and one free boundary. 
Substituting the expansions for F and W in accordance with equations (8) and (lla) 
into (1), establishes 

I Am{(2mn)2+a2}sin(2mnz) = Ra2 I Am Wm 
m m 

= Ra2 ~ Am( C2mY2msin(2mnz) + Jl Bfm) sinh(qj z)) . (24) 

Next multiplying both sides of equation (24) by sin(2nnz) (n = 1,2, ... ) and integrating 
over the range of z from --t to -t leads to a set oflinear homogeneous equations for 
the coefficients Am. Now the determinant of this system of equations must vanish, 
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and the following characteristic equation for R is established: 

II (2nn)2 + a2 ) " (n) II Ra2 - C2n 1'2n 1<5mn - ,,(;;1 m = 0, (25) 

where, in Chandrasekhar's (1961) notation, 

(n) 4 It 4 B~m)sinh(tq.) 
- = L BJm) sinK( qj z) sin(2nnz) dz = ( _l)n+ 14nn L J 2 z' . (26) 
m j=l -t j=l qj +(2nn) 

Numerical Methods and Results 

The first stage in the numerical procedures utilized here involved the determination 
of the four roots qJ (j = 1,2,3,4) of the polynomial equation (16), which has 
coefficients dependent on a, !I and Q. This reduced quartic equation allows two real 
roots and two complex conjugate roots. Computer evaluation of the matrix equation 
(23) for the constants of integration Bjm) now clearly includes calculations with 
complex elements, and it was found expedient to employ the FORTRAN 'type complex' 
option. The Bjm) were also found to be complex. However, the elements (n/m) of 
equation (25), when evaluated from (26), were found to have zero imaginary part. 
This is in accordance with the physical expectations of R taking only a real value. 

The required characteristic values of R as a function of a, !I and Q were evaluated 
with increasing precision by including successively more rows and columns in the 
determinantal equation (25). The expression (26) for the determinant elements (n/m) 
is symmetric in nand m, and an initial approximation for R to initiate any calculations 
was obtained from the first element when m = n = 1. Thereafter a half-interval 
search procedure was employed on an iterative basis to solve for R. Sufficient precision 
was always obtained for this value from a 3 x 3 determinant. To calculate the 
theoretical cell size that could be expected at the onset of stationary convection for a 
particular speed of rotation and magnetic field strength, it was necessary to obtain 
the a = ac corresponding to minimum R = Rc for these values of !I and Q. Overall, 
this approach provides a solution for rigid-free boundaries applicable to a cell depth 
-td, horizontal wave number 1a, Rayleigh number /6R, Chandrasekhar number iQ 
and Taylor number /6 !I. 

Solutions obtained from a completely independent approach, using an initial value 
method, were found to be in agreement with the variational method of solution already 
described. Under these circumstances, the Runge-Kutta technique was applied to 
the 10th-order linear differential system represented by equations (1)-(4), together with 
the lower and upper boundary conditions (5) and (6) supplemented by DX = 0 at 
z = 0 and X = 0 at z = 1. For specified a, !I and Q, the role of R is that of an 
eigenvalue. The generalized Newton-Raphson method was also incorporated in the 
numerical routine to improve on successive iterations the initial estimates of the 
required variables, including R, not already determined by the boundary con­
ditions at z = O. In this manner the numerical procedures automatically established 
convergence for the system and therefore gave the required value of R. However, at 
large values of the parameters some convergence problems were experienced. 

The general features of the solutions pertaining to this problem with a conducting 
lower rigid boundary and a nonconducting upper free boundary are also representative 
of the associated free-free case (Chandrasekhar 1961) and rigid-rigid case (Murphy 
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and Steiner 1975). For example, the lOglO R versus a dependence for :Y = 108 and 
varying Q given in Fig. 1 is representative of all three cases. For Q small, ac is large; 
minimum Rc occurs for Q ~ ,rt with ac ~ 0(1), and any further increase in Q 
increases both minimum Rc and aO' with the magnetic forces ultimately dominating. 
Application of a magnetic field to this rotating system clearly facilitates the onset of 
cellular convection as established experimentally by Nakagawa (1957). Eltayeb (1972) 
reached similar conclusions in the case of the double limit :Y -+ 00 and Q -+ 00 for 
nonmixed boundaries. 

8 

10 4 
O~--~----~10~--~----~20~--~-----3~O----~-----4~O-----L----io 

a 

Fig. 1. Dependence of the Rayleigh number R on the horizontal wave number a for the indicated 
values of the Chandrasekhar number Q when the Taylor number :T = 108 • The critical values of 
ac and Rc for the onset of stationary convection are indicated by triangles. 

The theoretical dependence of Rc and ac on QI (where QI = Q/n2), for Nakagawa's 
(1959) parameter values, is given in Fig. 2 and, for comparison, the :YI = 0 (where 
:YI = :Y/n4 ) curves for rigid-free boundaries have also been included. These values 
were calculated from the characteristic determinant given by Chandrasekhar (1961). 
Separate ranges of QI values in this figure illustrate the evident dominance on the 
convective processes of either the magnetic or rotational forces involved. The shaded 
region, 1·8 :( 10giO QI :( 2· 7, indicates the range of magnetic field strengths where 
two minima exist on the R - a curve for :Y I = 7·3 X 105• The discontinuous change 
in the wave number corresponds to stationary convection always being established at 
the absolute Rc minimum. In fact, only for rotation rates where :Y ~ 106 can we 
expect to observe any dramatic change in cell size with increasing Q-the rate of 5 
revolutions per minute in Nakagawa's experiments gives a Taylor number well in 
excess of this value. 

In keeping with the stated aims of this study, our main interest and conclusions 
are centred on Fig. 3 where the theoretical and observed cell sizes at marginal stability 
are compared in relation to the field strength QI' To focus attention on the role 
played by rotation in this situation, the results for :YI = 0 as well as for :YI = 
7·3 X 105 have been included. The experimental results for the cell sizes b, together 
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Fig. 2. Numerical results for the variation of Rc and ao with the magnetic field strength Ql when Y 1 = 0 and 7·3 X 105 (as indicated) in the case of a 
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Fig. 3. Comparison of experimental and theoretical results for the dependence of the convective cell size b on the magnetic field strength Ql at 
marginal stability. Nakagawa's (1959) experimental results are: triangles, Yl = 7·3 X 105 ; circles, Y 1 = O. Theoretical numerical results are: 
solid curve, fluid layer contained by a lower rigid conducting boundary and an upper free nonconducting boundary: short dashed curve, fluid 
layer contained by rigid-free boundaries. The stippled region designates the range of values of Ql where two minimum values exist on the theoretical 
R - a curve for Y 1 = 7·3 X 105 , while the cross-hatched region indicates that overstability was observed during Nakagawa's experiments. Points A 
and B denote the range of Ql values associated with two possible cell sizes. 
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with the error bars are from Nakagawa's (1959) work. Clearly the agreement with 
the rigid-free theoretical values for f71 = 0 is acceptable. Although the horizontal 
branch of the cellular convection curve at low values of Q 1 for f71 = 7·3 x 105 cannot 
be directly compared with the corresponding experimental curve because of the 
different mode of instability observed, it can be said that in the presence of rotation 
the magnetic field has little initial influence on the resultant cell size for stationary 
convection. Again, the shading specifies the range of Q1' calculated in the case of 
rigid-free boundaries for f71 = 7·3 X 105, where two cell sizes can occur at the onset 
of cellular convection, and it is seen that the observed experimental transition takes 
place within this region. It should also be pointed out that the calculated discontinuous 
cell size change does not correspond to the same value of Q1 as for minimum 
theoretical Rc which, as can be noted from Fig. 2, is achieved at a higher value of Q1, 
but instead takes place at the largest possible cell size-i.e. minimum ac . This feature 
of the rigid-free results compares very favourably with the experimental situation, 
whereas calculations for the rigid-rigid case show that minimum ac is attained, for 
Q1 increasing, after the discontinuous change in cell size. 

Table 1. Variation in cell size at onset of cellular convection 

Cell size b at onset of cellular convection is listed as a function of the magnetic field strength Ql at 
Taylor number .oF 1 = 7·3 X 105 for upper and lower boundaries nonconducting. Also listed are the 

minimum values of the horizontal wavenumber a and the Rayleigh number R 

loglo Ql amin 10- 5 Rm1n b (cm) 

0·0 25·13 13·775 0·87 
0·2 25·13 13·774 0·87 
0·4 25·13 13·773 0·87 
0·6 25·13 13·771 0·87 
0·8 25·12 13·767 0·87 
1·0 25·10 13 ·761 0·87 
1·2 25·08 13·752 0·87 
1·4 25·05 13·737 0·87 
1·6 25·01 13·714 0·87 
1·7 24·97 13·698 0·87 
1·8 24·91 3·99 13·677 0·88 
1·9 24·85 3·66 13·651 0·88 
2·0 24·78 3·51 13·618 26·550 0·88 
2·1 24·69 3·43 13·577 21·561 0·88 
2·2 24·56 3·37 13·524 17·477 0·89 
2·3 24·39~ 3·35 13·457~ 14·174 0·89 
2·4 24·18 3·33 13·372 11·531 6·55 
2·5 23·90 3·35 13·262 9·433 6·51 
2·6 23·51 3·38 13 ·121 7·861 6·45 
2·7 22·95 3·45 12·937 6·576 6·32 
2·8 3·56 5·659 6·12 
2·9 3·72 5·014 5·86 
3·0 3·96 4·602 5·51 
3·2 4·62 4·363 4·72 
3·4 5·58 4·816 3·91 

In Table 1 the critical Rayleigh and wave numbers, and the calculated cell size at 
the onset of stationary convection in a fluid layer of depth 3 cm are given as functions 
of Q 1 for f71 = 7·3 x 105 when both the rigid lower boundary and free upper boundary 
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are taken to be nonconducting. The condition X = 0 now applies on both boundaries, 
and to undertake these calculations necessitated appropriate modification of 
equations (22) and (23). 

To complete the theoretical analysis of the experimental findings, the equivalent 
problem of over stability (which requires specification of the Prandtl number) in a 
mercury layer with rigid-free boundaries should be considered. Additional experi­
mental results in this field would further aid our understanding of the interaction 
of rotation and a magnetic field on the convective processes. 
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