The Molonglo Deep Sky Survey of Radio Sources. I Declination Zone $\mathbf{- 2 0}{ }^{\circ}$

J. G. Robertson
School of Physics, University of Sydney, N.S.W. 2006.

Abstract

Results of a deep survey made at 408 MHz with the Molonglo cross are given. The catalogue lists positions and flux densities for a total of 373 radio sources, most of which have not previously been catalogued, in a solid angle of $0 \cdot 0201 \mathrm{sr}$. This covers (with some excluded areas) right ascensions $01^{\mathrm{h}} 00^{\mathrm{m}}-06^{\mathrm{h}} 44^{\mathrm{m}}$ and $13^{\mathrm{h}} 45^{\mathrm{m}}-17^{\mathrm{h}} 19^{\mathrm{m}}$, with a range in declination of 41^{\prime}. Eighteen contour maps are given of sources that are extended or have very close companions. A thorough error analysis is given, as well as new operational definitions of completeness and reliability. The lower limit of flux density is 88 mJy , which is five times the r.m.s. error. An upper limit of 1000 mJy has also been imposed. Typical errors in positions are $15^{\prime \prime}$ at 100 mJy and $6^{\prime \prime}$ at 250 mJy .

1. Introduction

Four catalogues based on the general survey made with the Molonglo cross-type radio telescope have so far been completed (MCl: Davies et al. 1973; MC2 and MC3: Sutton et al. 1974; MC4: Clarke et al. 1976). These catalogues included sources with flux densities as low as $0 \cdot 2-0 \cdot 3 \mathrm{Jy}$. The present deep survey is not a continuation of this series, but an attempt to reach significantly fainter sources in a small solid angle of sky, partly overlapping the $\mathrm{MC1}$ region. A second instalment, at declination zone -62°, is presented in Part II (Robertson 1977a, present issue pp. 231-9). The number-flux density counts (and their corrections) are given in Part III (Robertson 1977b present issue pp. 241-9). The associated optical identifications are currently being carried out by H. S. Murdoch and G. L. White.

2. Observations

A short description of the Molonglo 1.6 km telescope and references to more detailed accounts have been given by Davies et al. (1973). Only a brief summary is given here. The telescope is a meridian transit instrument, providing a comb of 11 simultaneous pencil beams along the meridian, separated by half the beamwidth and spanning about $\frac{1}{4}^{\circ}$ of declination in all. For the present survey, the beamwidth of an individual pencil beam was $2^{\prime} \cdot 66$ in right ascension and $2^{\prime} \cdot 97$ in declination, and the usual tapered aperture distribution was used. There are about 800 declinations to which the centre beam of the comb can be pointed (ranging from $\delta=+20^{\circ}$ to the south celestial pole), each setting being known as a declination number. These are spaced to give a 50% overlap between adjacent declination numbers, with the result that all sources surveyed may be received on two adjacent settings. The output signal from each of the beams is integrated in 3 s intervals; the results are recorded on magnetic tape and are also displayed in analogue form on a facsimile recorder.

The sensitivity of the telescope varies in a periodic way with declination (Munro 1971). Both declination zones for the deep survey program were selected to lie at local maxima of the sensitivity. The deep surveys have the advantage of low noise preamplifiers on the north-south antenna and the availability of 3 combs of 11 beams, separated in right ascension by half the beamwidth. These facilities were not available at the time of the MC1, MC2 and MC3 surveys, and they provide a considerable improvement in sensitivity.

The observations were made in September 1973 over a period of 16 days, and consist of drift scans with the telescope set to one declination number during the transit of the right ascension range of the survey, and thus scanning a long narrow strip of sky. Seven adjacent declination numbers were observed in order to extend the declination coverage, each being observed twice to improve the sensitivity. The survey was made in two sections: $01^{\mathrm{h}}-06^{\mathrm{h}}$ and $13^{\mathrm{h}}-17^{\mathrm{h}}$ (the exact starting and ending right ascensions ($1950 \cdot 0$) being $01^{\mathrm{h}} 00^{\mathrm{m}} 45^{\mathrm{s}}-06^{\mathrm{h}} 44^{\mathrm{m}} 00^{\mathrm{s}}$ and $13^{\mathrm{h}} 45^{\mathrm{m}} 40^{\mathrm{s}}-17^{\mathrm{h}} 19^{\mathrm{m}} 15^{\mathrm{s}}$). The gain of the telescope was monitored regularly by injecting a signal from a noise diode into the preamplifiers of the centre module of the telescope. This calibration procedure lasted about one minute, and obscured any source which transited during that period. For the survey observations, the calibration was inserted automatically once every sidereal hour. In addition, 16 calibration sources were observed every day to provide overall flux density and position calibration (see Section 4 below).

3. Analysis

(a) Computer Reduction

The recorded survey data contained multiple observations of each source owing to the 3 sets of 11 beams, the repeated observations of each declination number and the overlap of adjacent declination numbers. The data were averaged with respect to each of these redundancies, producing a set of 11 beam scans with the best possible signal to noise ratio for the available data. The computing was carried out on the KDF9 and Cyber 72 computers of the University of Sydney. In performing the above data averaging, there was a possibility of distortion of the final response if the individual responses occurred at significantly different positions. This could arise, for instance, as a result of position shifts due to electron density gradients in the ionosphere (Hunstead 1972). A check of the effects of such displacements showed that the resulting errors in flux density or position were negligible. Further details of this and other aspects of the data reduction have been given by Robertson (1976).

Source finding and fitting was performed using essentially the same computer program as for the MC1-MC4 catalogues. For each response that was stronger than a predetermined discrimination level, the program fitted a point source model and also calculated an integrated flux density. Because of the greater freedom allowed in calculating the integrated flux density, it has a much greater r.m.s. error than the flux density obtained from fitting the point source model, particularly when background confusion is significant, as in the present survey. For this reason, the latter was used for all but considerably extended sources (see subsection (b) below). This presents the possibility of introducing flux density errors due to partial resolution of sources, but the effect on the source counts is not significant (see Part III). The 'point source' flux density is not necessarily equal to the peak flux density-in fact it is the average of the peak and integrated flux densities (for slightly extended sources).

The discrimination level used in the source fitting was 80 mJy , but sources were only accepted for the catalogue above 88 mJy .

(b) Manual Analysis

For visual analysis and checking, the fully averaged data were optimally smoothed and plotted by computer as 11 -beam line scans. Every response fitted by the source fitting program was inspected and, where necessary, flux densities were recalculated from the line scans. The scans were also inspected for sources missed by the source fitting program but which should be included in the catalogue. Seventeen such sources were found ($4 \frac{1}{2} \%$ of the total number) and all were close to the lower limit of flux density.

In preparing the catalogue, the following criteria were used to make consistent decisions in ambiguous cases (consistency is particularly important because of the use of a Monte Carlo error analysis described in Section 6 below):
(i) In deciding whether two nearby peaks were adequately separated to be catalogued independently, a method based on a generalized Rayleigh criterion was used: if the flux density ratio of the peaks was between one and two, sources separated by less than $3^{\prime} \cdot 8$ were considered unresolved, and were integrated together as one source. If the flux density ratio was between two and five, the critical separation was $4^{\prime} \cdot 4$, while the very few cases of ratios larger than five were treated individually. Blending of nearby sources was not, however, a major problem (only 13 sources in the catalogue showing two peaks were integrated together on the above criterion). Integrated flux densities for these blends, and for other significantly broadened sources, were obtained by planimetry on the line scans.
(ii) A source was classed as significantly extended, and given an integrated flux density, only if the latter exceeded the 'point source' flux density by at least 50 mJy , which is 2.5 times the r.m.s. error for the difference between integrated and point flux densities.
(iii) To avoid the possibility of including in the catalogue spurious responses of apparently significant integrated flux density but low 'point source' flux density, no source was included unless its 'point source' flux density exceeded the lower limit (88 mJy at -20°).
(iv) Sometimes, sources were not fitted well by the program; for instance, this could occur for sources close together but not blended. In such cases, a 'point source' flux density obtained from fitting by hand to the line scans was used in preference to the computed value, but only if the difference was greater than 15% for sources of less than 200 mJy , or 10% for those of over 200 mJy . The latter restriction was used to prevent the normal noise in flux density estimates from allowing unnecessary replacements of computed values. This same restriction was applied to the sources apparently missed by the program, since this could also be due to noise fluctuations. The positions fitted by the program were assessed similarly, and replaced by positions from the line scans or contour plots (described in Section 5 below) only if the coordinates differed by more than $10^{\prime \prime}$. Notes are given in the catalogue when any quantity has been replaced in this way.

The precise declination limits of the survey were applied at this stage, the edges being $\delta(1973 \cdot 8)=-19^{\circ} 51^{\prime} 38^{\prime \prime}$ and $-20^{\circ} 33^{\prime} 07^{\prime \prime}$.

Table 1. Right ascensions ($1950 \cdot 0$) excluded from catalogue

R.A. range		R.A. range		R.A. range		R.A. range	
hm s	hmos	hm s					
$01^{h}-06^{h}$ Section							
010517 to	010617	021442 t	021542	035528 to	035723	052805	052905
011147	011247	022216	022330	040622	040722	053103	053229
011356	011637	022848	023138	040947	041047	054515	054615
013929	014029	023455	023823	041226	041423	054857	054957
014155	014315	024032	024132	044459	044649	055530	055725
014523	014623	024612	024712	045007	045107	060355	060455
015203	015303	025110	025720	045243	045724	061549	061759
015502	015717	032200	032900	050751	051620	062120	062220
020210	020340	033219	033319	051900	052000	062555	062655
020739	020839	033824	033924	052210	052310	063352	063452
$13^{h}-17^{h}$ Section							
135049 to	135156	143608 to	143708	152654 to	152754	165437	165703
135337	135437	144749	144849	154731	154831	165947	170047
135914	140014	145102	145202	155510	155705	170423	170523
141017	141117	145512	145854	160200	162100	170641	170741
141324	141509	150306	150406	162250	162350	171704	171824
141631	141731	150510	150610	163122	163238		
142017	142117	151218	151318	164157	164337		
142239	142339	152149	152249	164502	164602		

Table 2. Areas $(1950 \cdot 0)$ excluded due to possible east-west sidelobes

R.A. range		Dec. range		R.A. range		Dec. range	
hm	hm	- , "	-	h m	h m	- , "	。
01 ${ }^{h}-06^{h}$ Section							
0234 to	0241	-2002 33 to	-2009 57	0443	0450	-203329	-203600^{*}
0243	0251	-201113	-201837	0449	0457	-203326	-2035 48*
0244	0250	-203159	-20 39 24*	0542	0548	-195211	-195935
0248	0259	-203611	-20 39 18*	0543	0549	-195519	-200243
0313	0319	-202730	-203455	0554	0614	-20 1752	-2025 16
0408	0418	-202600	-203324	0631	0638	-202148	-20 32 16*

$13^{h}-17^{h}$ Section

* Exclusion extends to the declination edge of the survey.

(c) Sidelobes and Excluded Areas

The sidelobes of the Molonglo cross are significant only in the north-south and east-west directions about a source. Those in the east-west direction diminish in amplitude with increasing angle from the source much more rapidly than the north-south sidelobes, which are thus the main problem. The latter have a distribution of amplitudes, but typical levels are about $2 \%-3 \%$. The method adopted to eliminate north-south sidelobes and to minimize their confusing effects on other sources was
to identify all sources in the vicinity of the survey that were strong enough to produce a sidelobe of over 67 mJy in the survey area, for an assumed sidelobe amplitude of (for safety) 4%. The list of possible sidelobe-producing sources was selected from a catalogue of all sources in the southern sky above about 1 Jy , which is being prepared by members of the Astrophysics Department, University of Sydney. For each source, a strip of sky 1^{m} wide in right ascension and extending over the whole declination range of the survey was excluded. Additional strips of various widths in right ascension were eliminated because of the hourly noise diode calibration signal, some interference pulses and transient equipment faults. The right ascensions excluded are listed in Table 1. The gap starting at $16^{\mathrm{h}} 02^{\mathrm{m}}$ was due to interference as the Sun crossed the fan beams of the north-south antenna, far from the meridian.

East-west sidelobes were easily detected on the line scans. Twenty sources were strong enough to be troublesome in this way and, for each of these, a strip of sky (including the source) was eliminated. Details of the excluded areas are given in Table 2. Because the sidelobe elimination procedures result in a loss of survey sources over 1 Jy , the catalogue has been cut off at 1.0 Jy . The small pointing corrections (see Section 4) have not been applied to the boundaries of any of the excluded regions. The solid angles surveyed, allowing for all the excluded areas, are 1.26×10^{-2} sr for the $01^{\mathrm{h}}-06^{\mathrm{h}}$ section and 7.51×10^{-3} sr for the $13^{\mathrm{h}}-17^{\mathrm{h}}$ section. About 27% of the initial area has been excluded.

4. Calibration

The flux densities in the present catalogue are given on the scale due to Wyllie (1969a, 1969b). Hunstead (1972) has established a grid of subcalibrators on this scale, and 16 of these were used as calibration sources for the observing session. All were over 4 Jy , so noise and confusion errors were negligible even for a single observation. The sources were $0023-26,0035-02,0049-43,0859-25,0909-56$, 0920-39, 0941-08, 1005+07, 1018-42, 1036-69, 1309-22, 1327-21, 1335-06, $1730-13,1754-59$ and 1814-63. The flux densities were given by Hunstead (1972).

The source 1730-13 gave a discrepant gain estimate, and was rejected for flux density calibration (this affected the calibration by only 1%). On some days, certain sources were not observed. The final flux density calibration was derived from 210 scans of 15 sources, and has a formal uncertainty of about $1 \frac{1}{2} \%$. However, this must be increased by up to 5% to allow for uncertainties in the form of the curve relating gain to declination (Hunstead 1972).

The observations of calibration sources were also used to establish the necessary pointing corrections for both position coordinates. Optical positions were available for 1335-06, 0035-02 and 0941-08 from Hunstead (1971), and 0909-56 from Hunstead et al. (1971). Radio positions (Hunstead 1972) were used for the remainder. The source 0049-43 gave results inconsistent with the other calibrators, and was rejected for position calibration.

The functional form adopted for the right ascension calibration correction was as described by Hunstead (1972). However, the declination correction did not follow the form given by Hunstead; a linear fit to the correction as a function of declination was found to be adequate (Robertson 1976). Since the present survey covers such a small range in declination and there is no right ascension dependence in the corrections, the derived pointing corrections and flux density calibration were constant for the whole catalogue.

5. Source Catalogue

The catalogues for the $01^{\mathrm{h}}-06^{\mathrm{h}}$ and $13^{\mathrm{h}}-17^{\mathrm{h}}$ sections are given in Tables 3 and 4 respectively. The Molonglo catalogue number (column 1) is formed from the 1950 coordinates by truncating the minutes of right ascension and the tenths of degrees of declination. When two sources have the same catalogue number they are given suffixes A and B in decreasing order of catalogued flux density. An asterisk in column 2 indicates that the source is listed in the MC1 catalogue (Davies et al. 1973), while the letter U following the asterisk indicates that the identification is not certain. The MC1 list ceases at $16^{\mathrm{h}} 48^{\mathrm{m}}$.

Columns 3-6 list the coordinates and their r.m.s. errors calculated from

$$
\sigma_{\alpha}=\left\{(93 \cdot 8 / F)^{2}+0 \cdot 21^{2}\right\}^{\frac{1}{2}} \quad \text { sec. time, } \quad \sigma_{\delta}=\left\{(1540 / F)^{2}+3^{2}\right\}^{\frac{1}{2}} \quad \text { sec. arc }
$$

where F is the catalogued flux density in mJy (see Section 8). In some cases the errors are followed by a plus sign, indicating that the error should be increased (in a few cases substantially) because of extension of the source or for some other reason. In these cases, further information is given in the notes to Tables 3 and 4.

Columns 7 and 8 give the flux density in mJy, and its r.m.s. error σ calculated from the formula (see Section 6 below)

$$
\sigma=\left\{18 \cdot 20^{2}+(F / 25)^{2}\right\}^{\frac{1}{2}} \quad \mathrm{mJy} .
$$

Again a plus sign indicates that the likely error is larger than the tabulated value.
Column 9 contains references to numbered notes which may be found at the end of Table 4. It may also contain one or more of the following short comments: Integ., which indicates that an integrated flux density is given (see Section 3b); Fig. N, which signifies that the source is shown on a contour map in Fig. N; Missed by program, which indicates those sources which were not found by the source fitting program, and have been fitted manually on the line scans (see Section $3 b$). Four of the sources appear in the Bologna B1 catalogue (Braccesi et al. 1965) and are indicated in column 9 with the prefix B1. These references have been taken from the MC1 list. Three of the sources are included in the Parkes 2700 MHz survey (Bolton et al. 1975; Wall et al. 1976) and are distinguished simply by the note PKS.

Table 3. Molonglo deep sky survey at $-\mathbf{2 0}^{\circ}$: $01^{\mathrm{h}}-06^{\mathrm{h}}$ Section

(1) Molonglo catalogue number	(2)	(3)			(4)	(5)			(6)	(7)	(8)	(9)
		Position (1950.0)										
		R.A.			RMS	Dec.			RMS	S_{408}	RMS	Notes
			m			-	,	"				
0104-204			04	07•1	0.9	-20	26		14	110	19	
0108-204	*		08	$56 \cdot 9$	$0 \cdot 3$	-20	26		4	633	31	
0109-204	*		09	$35 \cdot 5$	$0 \cdot 4$	-20	24	03	6	286	21	
0110-203	*		10	$14 \cdot 7$	$0 \cdot 3$	-20	20		4	524	28	
0113-201			13	$05 \cdot 5$	$0 \cdot 5$	-20	07	22	8	206	20	
0113-202			13	21.4	$0 \cdot 9$	-20	17	00	14	111	19	
0117-202			17	$20 \cdot 0$	$0 \cdot 4$	-20	14	17	7	255	21	
0118-206	*		18	$43 \cdot 3$	$0 \cdot 3$	-20	40	53	4	580	29	
0118-202			18	$56 \cdot 4$	0.4	-20	14		7	242	21	
0120-204	*	01		$20 \cdot 6$	$0 \cdot 6$	-20		11	10	162	19	

Table 3 (Continued)

Table 3 (Continued)

(1) Molonglo catalogue number	(2)	(3)		(4)	(5)	(6)	(7)	(8)	(9)
				Position (1950.0)					
		R.A.		RMS error	Dec.	RMS error	$\begin{gathered} S_{408} \\ (\mathrm{mJy}) \end{gathered}$	RMS error	Notes
			m s		- " "				
0232-202	*		$3214 \cdot 8$	$0 \cdot 4$	-20 1432	6	305	22	
0232-204	*		$\begin{array}{ll}32 & 57 \cdot 7\end{array}$	$0 \cdot 4$	-20 2403	7	245	21	
0233-205			$3324 \cdot 3$	$0 \cdot 9$	-20 3017	15	102	19	
0239-202A	*		$3933 \cdot 7$	$0 \cdot 4$	-20 1757	6	310	22	
0239-202B	*		$3949 \cdot 0$	$0 \cdot 4$	-20 1215	7	258	21	
0244-204			$4444 \cdot 7$	$0 \cdot 8$	-20 2536	12	129	19	
0245-201			$4514 \cdot 0$	$0 \cdot 7$	-20 0754	11	142	19	
0247-204			$4729 \cdot 6$	$0 \cdot 6$	-20 2754	9	173	19	
0250-203			$5036 \cdot 6$	$1 \cdot 0$	-20 2142	17	94	19	
0257-205		02	57 37-4	$0 \cdot 5$	-20 3439	8	199	20	
0258-203			$5827 \cdot 7$	0.9	-202315	15	103	19	
0259-203		02	$5934 \cdot 5$	$0 \cdot 8$	-20 2329	13	119	19	
0300-205	*		$0031 \cdot 9$	$0 \cdot 6$	-20 3443	9	182	20	
0300-203		03	$0059 \cdot 4$	$0 \cdot 6$	-20 1819	11	153	19	
0303-205	*	03	$0306 \cdot 0$	$0 \cdot 2$	-20 3541	4	738	35	
0308-199	*		$0817 \cdot 6$	$0 \cdot 4$	-195956	7	265	21	
0310-201		03	$1034 \cdot 1$	1.0	-20 0915	16+	95	$19+$	Notes 3, 4
0310-204		03	$1042 \cdot 9$	$0 \cdot 8$	-20 2747	13	122	19	
0311-203			$1149 \cdot 9$	0.9	-201822	14	110	19	
0315-204		03	$15 \quad 27 \cdot 7$	$0 \cdot 6$	-20 2509	9	175	19	
0315-200			1528.9	$0 \cdot 6$	-200509	10	163	19	
0315-201		03	$1550 \cdot 6$	$1 \cdot 1$	-20 0853	$17+$	90	$19+$	Notes 3, 5, 14
0316-203			$1610 \cdot 2$	$0 \cdot 5$	-202315	8	199	20	
0316-200	*		$1642 \cdot 2$	$0 \cdot 4$	-20 0443	6	327	22	
0319-203		03	$1911 \cdot 3$	$1 \cdot 0+$	-20 2207	17	93	19	Missed by program
0319-201	*		$1919 \cdot 6$	$0 \cdot 3$	-20 0938	5	399	24	B1 0319-20
0319-199	*		$1949 \cdot 2$	$0 \cdot 6$	-195822	10	166	19	
0320-202		03	$2038 \cdot 8$	1.0	-201205	17	93	19	
0321-203	*	03	$2141 \cdot 4$	$0 \cdot 5$	-202032	8	219	20	
0321-204		03	$2149 \cdot 7$	$1 \cdot 0$	-20 2932	17	94	19	
0330-204			$3001 \cdot 3$	$1 \cdot 0$	-20 2623	16	98	19	
0333-201	*	03	$3325 \cdot 5$	$0 \cdot 4$	-200729	6+	319	$22+$	Integ., Note 3
0333-202	*	03	$3345 \cdot 6$	$0 \cdot 6$	-201333	9	181	20	
0334-200	*	03	$3439 \cdot 9$	$0 \cdot 3$	-20 0555	4	517	28	
0334-203		03	$3449 \cdot 2$	$0 \cdot 7$	-201852	11	148	19	
0337-202		03	$3745 \cdot 7$	$0 \cdot 5+$	-201711	$8+$	198	$20+$	Fig. 4, Notes 5, 13, 15
0337-203			$3755 \cdot 6$	$0 \cdot 6+$	-20 2021	$9+$	176	$20+$	Fig. 4, Notes 5, 13, 15
0340-201		03	$4017 \cdot 4$	$1 \cdot 0+$	-20 0933	17	93	$19+$	Fig. 5, Note 4
0341-200	*	03	$41 \quad 50 \cdot 4$	$0 \cdot 3$	-200154	4+	484	$27+$	Integ., Note 3
0342-201	*	03	$42 \quad 27 \cdot 8$	$0 \cdot 4$	-20 1024	7	263	21	
0343-200		03	43 50•1	$1 \cdot 0$	-200200	16	99	19	
0344-204	* U	03	$4413 \cdot 8$	$0 \cdot 4$	-20 2803	6	303	22	
0345-200		03	$4506 \cdot 7$	0.7	-200025	11	139	19	
0345-199		03	$4531 \cdot 4$	$0 \cdot 6$	-19 5804	10	168	19	
0345-206	*	03	$4541 \cdot 6$	$0 \cdot 2$	-20 3644	3	994	44	
0346-205			$4629 \cdot 8$	$1 \cdot 0+$	-20 3404	17	94	19	Missed by program
0348-199			$48 \quad 38 \cdot 9$	$0 \cdot 4+$	-19 5823	$6+$	329	$22+$	Integ., Fig. 6, Note 6
0349-201	*	03	$4928 \cdot 5$	$0 \cdot 4$	-20 0715	7	252	21	
0349-202		03	49 50.2	$0 \cdot 4$	-20 1234	7	257	21	
0351-200		03	$5159 \cdot 4$	$1 \cdot 0$	-200119	16	95	19	
0353-203		03	$5301 \cdot 9$	0.7	-20 2003	11	149	19	
0353-204	*	03	53 05•3	$0 \cdot 3$	-20 2822	5	418	25	
0354-202	*	03	$5422 \cdot 6$	$0 \cdot 4$	-20 1457	6	315	22	
0354-200	*	03	$5445 \cdot 7$	0.4	-20 0555	6	281	21	
0359-199	*	03	$5933 \cdot 8$	$0 \cdot 4$	-19 5619	7	238	21	

Table 3 (Continued)

(1) Molonglo catalogue number	(2)		(3)	3)	(4)	(5)		(6)	(7)	(8)	(9)
	Position (1950.0)										
		R.A.			RMS error	Dec.		RMS error	$\begin{gathered} S_{408} \\ (\mathrm{mJy}) \end{gathered}$	RMS error	Notes
			m	s		\bigcirc,	"				
0400-199			00	$46 \cdot 6$	$1 \cdot 0+$	-19 56	48	16	98	19	Missed by program
0403-202			03	02-3	$0 \cdot 5$	-20 13		$8+$	218	20	Notes 3, 14
0403-206			03	$29 \cdot 5$	$0 \cdot 9$	-20 36		15	102	19	
0407-199			07	$28 \cdot 1$	$0 \cdot 4$	-19 55		7	252	21	
0411-201			11	$15 \cdot 1$	$0 \cdot 6$	-20 09	14	10	154	19	
0415-200			15	07-0	$0 \cdot 9$	-20 02	10	14	109	19	
0418-202	*		18	08.2	$1 \cdot 1$	-20 14		17	90	19	
0420-203			20	$22 \cdot 9$	0.5+	-20 21		$8+$	220	$20+$	Integ., Fig. 7, Note 13
0420-200			20	$46 \cdot 0$	$1 \cdot 1$	-20 04		17	90	19	
0421-203			21	$51 \cdot 4$	$0 \cdot 6$	-20 19		10	169	19	
0422-199	*		22	34.0	$0 \cdot 3$	-19 56		5	455	26	
0422-202			22	$37 \cdot 6$	$1 \cdot 0$	-20 15		16	96	19	
0423-200	*		23	$18 \cdot 6$	$0 \cdot 7$	-20 04		12	132	19	
0423-199	*		23	32.6	$0 \cdot 2$	-19 57		4	834	38	
0424-203	*		24	$20 \cdot 6$	$0 \cdot 3$	-20 22	52	4	678	33	B1 0424-20
0424-202			24	$50 \cdot 4$	$0 \cdot 4+$	-20 16	39	6+	281	$21+$	Integ., Fig. 8, Note 6
0427-205A			27	$17 \cdot 0$	0.7	-20 32		11	148	19	
0427-205B			27	$42 \cdot 1$	$0 \cdot 8$	-20 35	07	14	114	19	
0427-199			27	54•6	$0 \cdot 8$	-19 57		13	121	19	
0431-200	*		31	$21 \cdot 9$	$0 \cdot 6$	-20 05	58	9	183	20	
0431-204			31	$23 \cdot 4$	$0 \cdot 5$	-20 27	19	9	189	20	
0431-199	*		31	52.0	$0 \cdot 5$	-19 58	54	8	194	20	Note 5
0431-202			31	$53 \cdot 6$	$0 \cdot 7$	-20 12		11	139	19	
0431-203	*		31	57-4	$0 \cdot 4$	-20 21	38	7	240	21	
0433-202			33	$44 \cdot 7$	$0 \cdot 6$	-20 16		10	167	19	
0435-202			35	$00 \cdot 0$	$0 \cdot 6$	-20 17	44	10	155	19	
0435-205	*		35	01.2	$0 \cdot 3$	-20 33		4	657	32	
0436-199			36	37-4	0.7+	-19 55	58	$12+$	133	19	Note 4
0436-203	*		36	$39 \cdot 7$	0.2	-20 18		3	874	39	PKS
0436-201	*		36	47•8	$0 \cdot 5$	-20 09	17	8	216	20	
0440-204			40	00.0	$1 \cdot 0+$	-20 26	35	16	95	19	Missed by program
0441-204			41	07-2	$0 \cdot 5$	-20 25		9	189	20	
0442-200			42	06.2	$0 \cdot 6$	-20 04		10	157	19	
0442-202			42	$17 \cdot 6$	0.7	-20 15	57	12	132	19	
0442-201			42	$41 \cdot 1$	$0 \cdot 8$	-20 06	50	13	118	19	
0444-204			44	$29 \cdot 0$	$0 \cdot 5$	-20 25	21	9	187	20	
0444-199			44	$46 \cdot 6$	$0 \cdot 8$	-19 56		13	119	19	
0449-200			49	$02 \cdot 5$	0.9	-20 05	26	15	108	19	
0449-199	*		49	06•8	$0 \cdot 4$	-19 59	55	7	239	21	
0452-199			52	$33 \cdot 0$	$1 \cdot 0$	-19 57		16	96	19	
0457-203			57	$35 \cdot 8$	0.6	-20 22	57	10	169	19	
0457-205	*		57	53.2	$0 \cdot 2$	-20 34		4	737	35	
0500-202			00	41-3	$0 \cdot 8$	-20 13	37	13	126	19	
0503-200			03	$28 \cdot 4$	$1 \cdot 1$	-20 03		17	90	19	
0505-201			05	37-2	$0 \cdot 6$	-20 11		10	169	19	
0506-199	*		06	07-0	$0 \cdot 3$	-19 59		4	462	26	
0507-201			07	$28 \cdot 5$	0.9	-20 11		14	109	19	
0507-204	*		07	$29 \cdot 8$	$0 \cdot 5$	-20 28		8	197	20	
0516-200			16	$38 \cdot 5$	1.0	-20 00		16	96	19	
0516-199			16	$59 \cdot 4$	$1 \cdot 1$	-1958		17	91	19	Note 5
0517-200			17	44-2	0.4	-20 03		7	266	21	
0520-203			20	$42 \cdot 5$	$0 \cdot 7$	-20 19		12	138	19	
0520-205	*		20	47-6	$0 \cdot 4$	-20 34		6	293	22	
0521-204	*		21	$28 \cdot 3$	$0 \cdot 4$	-20 24	50	6	312	22	
0523-202	*		23	$17 \cdot 0$	$0 \cdot 2+$	-20 13	45	$4+$	840	$38+$	Integ., Fig. 9, Note 6

Table 3 (Continued)

Molonglo catalogue number	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Position (1950.0)								
			R.A.	RMS	Dec.	RMS	S_{408}	RMS	Notes
			m s		- , "				
0523-205			$2320 \cdot 4$	$0 \cdot 8$	-20 3229	13	124	19	
0526-203	*		$2652 \cdot 7$	$0 \cdot 3$	-20 2305	4	512	27	
0527-200			$2702 \cdot 5$	$0 \cdot 5+$	-20 0304	$9+$	187	20	Note 4
0529-201			$2913 \cdot 2$	0.9	-20 0738	14	111	19	
0530-203		05	$30 \quad 07 \cdot 8$	0.7	-20 1813	11	151	19	
0530-199	*		3019.4	0.4	-19 5916	6	295	22	
0530-205	*		3058.9	$0 \cdot 4$	-20 3243	6	280	21	
0534-201	*		$3413 \cdot 7$	$0 \cdot 5$	-20 0719	8	207	20	
0535-201			$3513 \cdot 3$	1.0	-20 0914	16	100	19	
0536-202			36 25-2	$0 \cdot 8$	-201310	12	128	19	
0536-205			$3632 \cdot 1$	0.7	-20 3344	11	146	19	Note 5
0537-205			$3716 \cdot 5$	$0 \cdot 9$	-20 3038	14	113	19	
0537-201			37 22.2	$1 \cdot 1$	-200853	17	90	19	
0540-199			$4056 \cdot 9$	$0 \cdot 9+$	-19 5707	15	108	19	Missed by program
0541-202			$4141 \cdot 0$	$0 \cdot 7$	-20 1554	12	137	19	
0542-205			$4236 \cdot 2$	0.7	-20 3033	12	134	19	
0544-202			$4417 \cdot 6$	$0 \cdot 8$	-20 1302	14	115	19	
0546-202	*		$4617 \cdot 0$	0.4	-20 1213	6	323	22	
0546-205	*		$4620 \cdot 7$	$0 \cdot 3$	-20 3306	5	411	25	
0547-203			$4744 \cdot 7$	$1 \cdot 0$	-20 1927	16	100	19	
0548-203			$4830 \cdot 1$	$1 \cdot 1$	-20 1938	17	90	19	
0550-204			$5047 \cdot 4$	$0 \cdot 5$	-20 2809	8	206	20	
0553-205			$5310 \cdot 1$	$0 \cdot 3$	-20 3017	5	340	23	
0553-203			$\begin{array}{llll}53 & 15 \cdot 5\end{array}$	0.9	-20 2158	15	107	19	
0558-200			$5857 \cdot 6$	$0 \cdot 8$	-20 0438	12	128	19	
0559-202			59 02-0	$1 \cdot 0+$	-20 1517	16	95	19	Missed by program
0559-200			$5944 \cdot 9$	0.9	-20 0516	14	109	19	
0602-202			$0247 \cdot 0$	$0 \cdot 6+$	-20 1545	9	177	$20+$	Notes 2, 4
0603-204			$0327 \cdot 4$	$0 \cdot 5$	-20 2926	9	190	20	
0605-202			$0517 \cdot 3$	$0 \cdot 5$	-20 1310	8	200	20	
0606-201			$06 \quad 04 \cdot 9$	$0 \cdot 5$	-20 0640	9	193	20	
0606-198	*		$0628 \cdot 8$	$0 \cdot 3$	-195211	4	601	30	B1 0606-20
0607-205	*		$0721 \cdot 8$	$0 \cdot 3$	-20 3233	4	672	32	
0609-202			$0925 \cdot 2$	0.7	-20 1608	11	147	19	
0611-201			$1118 \cdot 1$	0.7	-20 1134	12	137	19	
0612-200			$1212 \cdot 1$	$0 \cdot 6$	-2004 35	9	173	19	
0615-201	*		$15 \quad 02 \cdot 4$	$0 \cdot 4+$	-200610	6+	321	$22+$	Integ., Note 6
0618-199			$1822 \cdot 2$	$1 \cdot 0+$	-195420	17	93	19	Missed by program
0618-200			$1858 \cdot 8$	$0 \cdot 9+$	-200140	$14+$	110	$19+$	Notes 5, 14, 15
0619-200			19 17•3	$0 \cdot 9+$	-20 0138	$15+$	104	$19+$	Notes 4, 15
0621-203			$2110 \cdot 1$	$0 \cdot 8$	-20 2256	13	120	19	Note 5
0624-203	*		$2409 \cdot 4$	0.3+	-20 1952	$5+$	424	$25+$	Integ., Note 3
0625-201			25 51.8	$0 \cdot 5$	-20 1023	8	206	20	
0627-199	*		$2714 \cdot 0$	$0 \cdot 3$	-19 5716	4	516	28	B1 0627 - 19, PKS
0627-202			$2714 \cdot 6$	$1 \cdot 0$	-20 1217	16	95	19	
0627-201	*		$2751 \cdot 6$	$0 \cdot 3+$	-200747	$4+$	477	$26+$	Integ., Fig. 10, Note 6
0628-200	*		$2833 \cdot 3$	$0 \cdot 3$	-2003 04	5	401	24	
0628-202			$2838 \cdot 8$	$1 \cdot 1+$	-201550	17	90	19	Missed by program
0628-201	*		28 55.9	$0 \cdot 3$	-20 0750	5	345	23	
0629-202			$2949 \cdot 2$	$0 \cdot 7$	-20 1628	12	134	19	
0629-205	*		$2951 \cdot 8$	$0 \cdot 3$	-20 3102	5	353	$23+$	Note 5
0630-203			$\begin{array}{llll}30 & 34 \cdot 9\end{array}$	$1 \cdot 0+$	-20 2249	16	96	19	Missed by program
0631-199			$\begin{array}{lll}31 & 32 \cdot 7\end{array}$	0.7	-1957 33	11	140	19	
0632-201		06	$3201 \cdot 0$	0.8	-20 0647	13	119	19.	
0635-203		06	$3512 \cdot 3$	1.0	-201808	16	101	19	
0636-198		06	$3605 \cdot 3$	$0 \cdot 9$	-195108	14	110	19	
0638-199	*	06	$3826 \cdot 0$	$0 \cdot 3$	-19 5720	4	472	26	

Table 4. Molonglo deep sky survey at $-20^{\circ}: 13^{\mathrm{h}}-17^{\mathrm{h}}$ Section

Table 4 (Continued)

Table 4 (Continued)

(1) Molonglo catalogue number	(2)	(3)			(4)	(5)			(6)	(7)	(8)	(9)
		Position (1950.0)									RMS error	Notes
		R.A.			RMS error	Dec.			RMS error	$\begin{gathered} S_{408} \\ (\mathrm{mJy}) \end{gathered}$		
			m	s		-	,	"				
1639-200	*	16	39	04•6	0.2+	-20		00	$3+$	896	$40+$	Integ., Fig. 16, Note 8
1639-202		16		$04 \cdot 6$	0.9	-20		40	14	110	19	
1641-204		16	41	$34 \cdot 8$	$0 \cdot 8$	-20	29	53	13	119	19	
1643-200		16	43	$40 \cdot 8$	0.4	-20	03	05	7	248	21	
1646-201		16	46	$42 \cdot 5$	$0 \cdot 8+$	-20		26	$13+$	124	$19+$	Note 10
1647-200	*			$13 \cdot 6$	$0 \cdot 3+$	-20		00	$5+$	427	$25+$	Note 10
1647-202	*	16		$36 \cdot 4$	$0 \cdot 3$	-20		46	5	363	23	
1648-198B		16	48	$18 \cdot 4$	$0 \cdot 4+$	-19	51	32	$6+$	300	$22+$	Integ., Fig. 17
1648-198A		16		$51 \cdot 4$	$0 \cdot 3$	-19		58	4	689	33	
1649-200		16		$11 \cdot 5$	$0 \cdot 2$	-20		40	4	744	35	
1651-205		16	51	$30 \cdot 7$	$0 \cdot 5$	-20		14	8	201	20	
1652-202		16		08.0	$0 \cdot 7$	-20		41	11	144	19	
1652-204		16		$43 \cdot 7$	$1.0+$	-20		14	16	100	19	Missed by program
1652-199		16		50.2	$0 \cdot 8$	-19	56	01	13	124	19	
1652-198		16		$52 \cdot 0$	$0 \cdot 2$	-19		01	4	730	34	
1654-200		16	54	$36 \cdot 1$	$0 \cdot 4$	-20		07	6	303	22	
1657-203		16		$23 \cdot 5$	$0 \cdot 2$	-20	20	39	3	865	39	
1658-200		16		$37 \cdot 9$	$0 \cdot 3$	-20		40	4	533	28	
1701-200		17		$27 \cdot 7$	$0 \cdot 7$	-20	00	21	11	146	19	
1701-203		17		$33 \cdot 1$	$0 \cdot 5$	-20		07	8	204	20	
1703-201		17	03	07-2	0.7	-20		48	11	143	19	
1703-203		17		$28 \cdot 8$	$0 \cdot 4$	-20		50	6	322	22	
1705-198		17	05	$49 \cdot 4$	$0 \cdot 9+$	-19		19	15	108	19	Missed by program
1707-199		17	07	59.6	$0 \cdot 8$	-19	59	02	12	128	19	
1711-200		17		$40 \cdot 3$	0.7	-20		40	12	133	19	Fig. 18
1712-201		17	12	03.4	$1 \cdot 0$	-20	07	23	17	92	19	
1712-200		17	12	$23 \cdot 9$	$0 \cdot 4+$	-20	01	23	$7+$	248	$21+$	Integ., Fig. 18, Note 6
1712-198		17	12	53.9	$0 \cdot 4+$	-19		28	$7+$	244	$21+$	Note 4
1713-204		17		47-3	$0 \cdot 7$	-20			11	152	19	
1713-199		17	13	$50 \cdot 3$	$0 \cdot 5$	-19	56	27	8	198	20	
1719-205		17		$10 \cdot 5$	$0 \cdot 5$	-20	30	47	8	214	20	

Notes to Tables 3 and 4

1, Extended in both right ascension and declination
2, Extension primarily in right ascension
3, Extension primarily in declination
4, Probably extended, but integrated flux density not used (see Section $3 b$ (ii))
5, Flux density obtained manually from the line scans (see Section $3 b$ (iv))
6, Position given is an approximate centroid for two close peaks which are not resolved, by the criterion of Section $3 b$ (i)
7, Position obtained manually from the line scans
8, Integrated flux density includes a small unresolved source
9, Uncertainties in position and flux density increased due to variation in background level
10. Sources 1646-201 and 1647-200 appear to be connected by a low level bridge, or to have a third source between them

11, Declination obtained manually from the line scans
12, Integrated flux density includes a small unresolved source. The position given is that of the stronger component
13, Position obtained manually from contour map
14, Possibly extended, but integrated flux density not used. (Extension less significant than for Note 4)
15, Very close to another catalogued source, but still resolved (see Section $3 b(\mathrm{i})$)

Table 5. Details of contour maps

Fig. No.	Sources contained	Contour interval (mJy)	Comments
1	0132-204	15	zero level contour omitted
2	0153-201	20	zero level contour omitted
3	$\begin{aligned} & 0210-206 \\ & 0211-206 \mathrm{~A} \\ & 0211-206 \mathrm{~B} \end{aligned}$	30	
4	$\begin{aligned} & 0337-202 \\ & 0337-203 \end{aligned}$	30	zero level contour omitted
5	0340-201	20	first plotted contour at 40 mJy
6	0348-199	20	zero level contour omitted
7	0420-203	15	zero level contour omitted
8	0424-202	20	hatched area due to stronger source 0424-203
9	0523-202	40	first plotted contour at 20 mJy ; alternate contours omitted above fourth plotted
10	0627-201	30	zero level contour omitted; alternate contours omitted above fourth plotted
11	$\begin{aligned} & 1421-200 \\ & 1422-200 \end{aligned}$	20	third source present from an excluded area (but not a sidelobe); zero level contour omitted
12	1433-201	60	
13	1537-200	30	
14	1554-203	30	
15	$\begin{aligned} & 1636-200 \\ & 1636-201 \end{aligned}$	15	zero level contour omitted
16	1639-200	60	
17	1648-198B	25	zero level contour omitted
18	$\begin{aligned} & 1711-200 \\ & 1712-200 \end{aligned}$	30	zero level contour omitted

Contour maps for some of the sources are given in Figs 1-18, and details of the maps are listed in Table 5. The sources selected for mapping were those showing extension on the line scans, or regions where several peaks occurred close together. (The distinction between these two cases is only a matter of degree, and no implications are made as to whether components of a source are physically associated or not.) Maps were obtained for the majority of suitable sources. Contour intervals are given (in Table 5) in units of peak flux density. In some cases a small contour interval has been used to show clearly the extension of the sources-this may result in several of the lowest contours being dominated by noise. The effective half-power beamshape is shown by the ellipse in the insert to each map. Integrated flux densities cannot be reliably obtained from the contour maps because of uncertainties in the background levels assessed by the contouring program.

6. Error Analysis for Flux Densities

The importance of a careful error analysis for flux densities is now well established (e.g. Murdoch et al. 1973; Jauncey 1975). In particular, the compilation of reliable number-flux density counts requires a knowledge of the error distribution.

The principal method used to find the distribution of errors in flux density was the insertion of synthetic (Monte Carlo) sources into the averaged data records, with subsequent source fitting by the same computer program as was used to analyse the actual survey records. It was important that the Monte Carlo sources be treated in a manner as similar as possible to the catalogue sources; e.g. criterion (i) of Section $3 b$ was used to decide if a Monte Carlo source was obscured. Since the Monte Carlo sources were inserted with a known amplitude, one can obtain the distribution of errors from the fitted flux densities. This includes the effects of noise, confusion and any mean bias introduced by the source fitting program, but cannot show any calibration error. The method of using the Monte Carlo sources followed the recommendation of Murdoch et al. (1973), in which a large number of sources are inserted at each of several chosen flux densities. For the present survey, 486 sources were inserted at $100 \mathrm{mJy}, 726$ at 200 mJy and 419 at 300 mJy .

Following the terminology of Murdoch et al. (1973), let S represent the true flux density of a source and F its observed flux density. The errors are described by the function $P(F \mid S)$, the probability that a source of true flux density S will be observed as F. Where confusion is significant, we require also that the specified source is the strongest one contributing to the observed flux density. If it is not, the source is classed as obscured, and does not contribute to $P(F \mid S)$. For this reason, the integral of $P(F \mid S)$ over all values of F is less than unity. The histograms of Monte Carlo results, when appropriately normalized, represent (within statistical fluctuations) the $P(F \mid S)$ distributions for three fixed values of S. The results are shown in Fig. 19 (further details are given by Robertson 1976). The error distributions show in each case a peak (due to noise and small confusion errors) and a small tail due to occasional larger confusion errors. A least squares procedure was used to fit a gaussian function to each peak region, with the fitting process truncated where the tail became appreciable in order to avoid introducing any bias. Ideally the peak of each distribution would be located at an observed flux density equal to the true flux density; any displacement of the peak from this location represents a flux density bias. The values of bias found ranged from 1 to 3 mJy with an uncertainty of 1 mJy . They are too small to require alteration of the catalogued flux densities, but they do have a marginally significant effect on the count corrections. Because the values were small, it was adequate to use a single average bias, independent of true flux density, when analysing the distributions. This bias corresponded to an underestimation of $2 \cdot 1 \mathrm{mJy}$.

Independent standard deviations were fitted (with the constraint of the common bias), because the standard deviation can be expected to vary somewhat with true

Fig. 19 (opposite). Distributions of noise and confusion errors as obtained by analysis of Monte Carlo sources for true flux densities of (a) 100, (b) 200 and (c) 300 mJy . The standard deviations for the gaussian parts of the distributions are (a) $17 \cdot 6 \pm 0 \cdot 6$, (b) $18 \cdot 8 \pm 0 \cdot 7$ and (c) $17 \cdot 0 \pm 0 \cdot 8 \mathrm{mJy}$. In the tail regions, a smooth fit to the observed points has been made. In (b) and (c) a few sources were observed with flux densities higher than shown, and are included in a low-level tail of constant height extending to $F=360$ and 580 mJy respectively.
flux density through its confusion component. The average standard deviation was 18 mJy . Fig. $19 a$ shows that the confusion tail is not significant at $S=100 \mathrm{mJy}$, and thus the standard deviation of the fitted gaussian curve can be used to examine the signal to noise ratio of the catalogued sources, which was $5 \cdot 0$ at the lower limit of 88 mJy .

Information about the relative contributions of noise and confusion was obtained by analysing a further 356 Monte Carlo sources added to records that were formed by subtraction of the independent scans, thus removing the effects of confusion. The r.m.s. error due to noise alone was $14 \cdot 6 \pm 0 \cdot 6 \mathrm{mJy}$, and that due to confusion alone was $10 \cdot 9 \pm 1 \cdot 3 \mathrm{mJy}$ (for sources in the vicinity of $100-200 \mathrm{mJy}$). The latter value refers only to the gaussian part of the error distribution, and shows that confusion effects broaden this as well as producing the tail. These results show that the confusion limit of the telescope is approached but not reached by the present survey. The number of beam solid angles per source is 74 , where integration of the normalized power pattern over the main beam only has been used to calculate the beam solid angle.

It is also interesting to compare the confusion contributed by the main beam with that from the sidelobes, which are expected to make an increasing contribution at lower flux densities due to the flattening of the source count curve. A calculation based on the observed percentage amplitudes of sidelobes in the excluded areas of the survey showed that sidelobes contribute about half of the total confusion near the lower limit of the catalogue.

Noise errors can also be evaluated by comparing the flux densities obtained by two independent observations of each source, as was done for the MC1-MC4 catalogues. This method does not include the effects of confusion, but does partially include random calibration errors. It was used here to provide a check on the Monte Carlo analysis and an estimate of the calibration errors. The result for the r.m.s. error due to noise alone, scaled to apply to fully averaged data, was $11.9 \pm 1.7 \mathrm{mJy}$, in reasonable agreement with the value of $14.6 \pm 0.6 \mathrm{mJy}$ obtained from the Monte Carlo analysis. The estimate of random calibration error obtained was an r.m.s. value of $4 \cdot 0 \% \pm 1 \cdot 2 \%$, which applies only to gain variations on a time scale of a few days or less. It is similar to the values obtained in the previous surveys made with this instrument.

The expected reduction in the noise level relative to the MC1 survey has been achieved, provided one allows for the significant confusion error in the deep survey, which is not reduced by averaging records, and for a noise correlation between the three beams in right ascension, which reduces the improvement in signal to noise ratio from $\sqrt{ } 3$ to close to $\sqrt{ } 2$ (see Robertson 1976).

7. Completeness and Reliability of Catalogue

The definition of completeness given by Dixon and Kraus (1968) has been used by a number of authors, but it is unsatisfactory for calculating completeness above the lower limit of a survey because some sources not in the catalogue (but which should be, based on their true flux densities) are still counted towards the completeness. Sources lost because of finite angular resolution (i.e. obscured) are also counted towards the completeness.

The definition adopted here is that the completeness above a flux density limit l is equal to the number of sources having both $F \geqslant l$ and $S \geqslant l$ divided by the number
of sources with $S \geqslant l$. That is, the number of sources that both are in the catalogue above the limit and should be so, based on their true flux densities, divided by the number that should be above this limit. This definition gives lower but more meaningful values of completeness. Since the true flux densities of catalogued sources are unknown, the completeness must be estimated using the error distributions to relate F and S. The calculation is given by Robertson (1976).

For the flux density limit of 88 mJy , the completeness is $87.6 \% \pm 0.7 \%$, allowing for noise, confusion and obscuration; and $92.2 \% \pm 0 \cdot 2 \%$ allowing for noise and confusion only. For a flux density limit of 125 mJy , the values are $91 \cdot 2 \% \pm 0 \cdot 5 \%$ and $94 \cdot 1 \% \pm 0 \cdot 2 \%$ respectively. These values do not allow for the possible loss of a few considerably broadened weak sources. For comparison, the completeness of a catalogue subject to pure gaussian noise, with no obscuration, and from a source population obeying a Euclidean source count law was calculated. It is 92% for a lower limit at 5 times the r.m.s. noise and 95.5% at 10 times the r.m.s. noise.

A second important property of a catalogue is its reliability, i.e. the fraction of sources included that are real. A definition of reliability is given by Dixon and Kraus (1968) but it is not sufficiently restrictive for, in the case of their (approximate) total reliability, sources with observed flux densities many times larger than their true flux density can still be counted towards the reliability. The definition used in the present paper is that a source is real if its observed flux density F is no greater than twice its true flux density S. This is arbitrary but reasonable. The reliability of a catalogue above a limit l is then defined as the number of sources having both $F \geqslant l$ and $S \geqslant \frac{1}{2} F$ divided by the number of sources with $F \geqslant l$. It is not possible to calculate precise values for the reliability. However, the discussion by Robertson (1976) shows that the catalogue is highly reliable, especially above about 100 mJy .

A commonly used rule of thumb is that the lower limit of a survey should be at least five times the r.m.s. error. It should be noted, however, that the important quantities such as completeness and reliability also depend on the underlying source count curve, even for noise-limited observations. Since surveys are now reaching values of flux density where the source count slope is significantly flatter than before, it may be desirable to set the lower limit by using quantities such as completeness and reliability. This has the additional advantage that the quality of confusionlimited surveys can be directly compared with that of noise-limited surveys, in spite of the skew nature of the confusion error distribution which renders r.m.s. errors less meaningful.

8. Estimation of Errors in Source Positions

The formula for position uncertainty in either coordinate was assumed to be of the form

$$
\sigma^{2}=A^{2} / F^{2}+B^{2},
$$

where the first term includes the effects of noise and confusion, and the second term is due to random calibration errors. Studies using the Monte Carlo and reobservation methods showed that the noise and confusion term alone gives $\sigma_{\alpha}=13^{\prime \prime} \cdot 2 \pm 1^{\prime \prime}$ and $\sigma_{\delta}=15^{\prime \prime} \cdot 4 \pm 1^{\prime \prime}$ at 100 mJy , while the r.m.s. calibration errors can be taken as $3^{\prime \prime}$ in both coordinates. The uncertainty due to confusion is comparable with that from noise, as for the flux density errors. In using these r.m.s. errors, it must be borne in mind that the distribution is not strictly gaussian, and there is a somewhat enhanced probability of occasional large errors due to large ionospheric effects or confusion.

Acknowledgments

I am grateful to Professor B. Y. Mills for advice during all stages of this work and to Dr D. F. Crawford, Dr H. S. Murdoch, Dr J. N. Clarke and Dr D. L. Jauncey for helpful discussions. The work was supported by the Australian Research Grants Committee, the Sydney University Research Grants Committee and the Science Foundation for Physics within the University of Sydney. I acknowledge the receipt of a Commonwealth Postgraduate Studentship (1971-74) and a Tutorship within the University of Sydney (1975-76).

References

Bolton, J. G., Shimmins, A. J., and Wall, J. V. (1975). Aust. J. Phys. Astrophys. Suppl. No. 34. Braccesi, A., et al. (1965). Nuovo Cimento B 40, 267.
Clarke, J. N., Little, A. G., and Mills, B. Y. (1976). Aust. J. Phys. Astrophys. Suppl. No. 40.
Davies, I. M., Little, A. G., and Mills, B. Y. (1973). Aust. J. Phys. Astrophys. Suppl. No. 28.
Dixon, R. S., and Kraus, J. D. (1968). Astron. J. 73, 381.
Hunstead, R. W. (1971). Mon. Not. R. Astron. Soc. 152, 277.
Hunstead, R. W. (1972). Mon. Not. R. Astron. Soc. 157, 367.
Hunstead, R. W., Lasker, B. M., Mintz, Betty, and Smith, M. G. (1971). Aust. J. Phys. 24, 601. Jauncey, D. L. (1975). Annu. Rev. Astron. Astrophys. 13, 23.
Munro, R. E. B. (1971). Aust. J. Phys. 24, 263.
Murdoch, H. S., Crawford, D. F., and Jauncey, D. L. (1973). Astrophys. J. 183, 1.
Robertson, J. G. (1976). Ph.D. Thesis, University of Sydney.
Robertson, J. G. (1977a). Aust. J. Phys. 30, 231.
Robertson, J. G. (1977b). Aust. J. Phys. 30, 241.
Sutton, J. M., Davies, I. M., Little, A. G., and Murdoch, H. S. (1974). Aust. J. Phys. Astrophys. Suppl. No. 33.
Wall, J. V., Wright, A. E., and Bolton, J. G. (1976). Aust. J. Phys. Astrophys. Suppl. No. 39.
Wyllie, D. V. (1969a). Mon. Not. R. Astron. Soc. 142, 229.
Wyllie, D. V. (1969b). Proc. Astron. Soc. Aust. 1, 234.

