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Abstract 

The exceptional Lie groups playa significant role in elementary particle models involving octonionic 
coloured quark fields. Simple methods for calculating the basic properties of these groups are 
outlined here. Among the properties computed are the dimensions and Dynkin index eigenvalues 
of irreps and branching rules for the most important group-subgroup structures. Kronecker 
products and symmetrized Kronecker powers of irreps of the exceptional groups are resolved. 
The concepts of elementary multiplets and Schur functions (S-functions) are used to greatly simplify 
the calculations, making possible manual calculations that are well beyond the capabilities of modem 
computer algorithms based on the enumeration of weights. 

1. Introduction 

The classification of the complex semisimple Lie algebras was undertaken by 
Elie Cartan in his thesis of 1894 (Cartan 1894). Four great classes of Lie algebras 
were identified and designated by Cartan as An' Bn> en and Dn- These Lie algebras, 
often referred to as the classical Lie algebras, may be associated with infinitesimal 
forms of the semisimple Lie groups SUn+1, S02n+1, SP2n and S02n respectively. 
These Lie algebras and their associated Lie groups exist for every positive integer n. 
In addition to the four classical Lie algebras, Cartan identified five exceptional Lie 
algebras which he designated as G2 , F4 , E6 , E7 and E8 , where the subscripted integers 
are the ranks of the respective algebras. An alternative classification of the Lie 
algebras in terms of their root systems was given by van der Waerden (1933), while a 
more elegant formulation in terms of simple roots was developed by Dynkin (1952a, 
1952b). A modern description of the exceptional Lie algebras has been given by 
Jacobson (1962, 1971) and many others (e.g. Bourbaki 1968; Freudenthal and de 
Vries 1968; Hausner and Schwartz 1968; Wan 1975). 

The exceptional group G2 was introduced to physics by Racah (1949) in his 
classification of the states of electrons in the atomic f-shell and later by Flowers 
(1952) in his analogous treatment of the nuclear f-shell. In these cases G2 was used 
simply as a mathematical device to simplify otherwise complex calculations-no 
physical significance was attached to the use of G2 (Wybourne 1965). 

The introduction of SU3 into particle physics via a quark model has stimulated 
the study of higher groups that contain SU3 as a subgroup. It has been suggested 
at various times that octonionic Hilbert spaces (Pais 1961; Giinaydin and Giirsey 
1973) could play an important role in the description of quarks and their associated 
colour gauge bosons. It is well known that it is possible to generate the exceptional 
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groups starting with octonions (Schafer 1966; Jacobson 1971). Giirsey and his 
associates (Gtinaydin and Gtirsey 1973; Gtirsey et al. 1975, 1976; Gtirseyand Sikivie 
1976) have introduced the concept of octonionic quark fields and have attempted to 
develop unified theories of strong, electromagnetic and weak interactions based on 
maximal subgroups of the five exceptional groups, i.e. 

G2 SU~, 

F4 SU3 X SU~, 

E6 SU3 X SU3 X SU~, 

E7 SU6 X SU~, 

Es E6 X SU~, 

where SU~ is interpreted as the unbroken SU3 of colour. 
These new applications of the exceptional groups have stimulated attempts to 

establish properties of the groups and their relevant subgroups (Patera and Sankoff 
1973; McKay et al. 1976a, 1976b; Patera et al. 1976). The exceptional groups, apart 
from G2 , are characterized by a predominance of representations of very high dimen
sions. Thus in F4 there are only four nontrivial irreducible representations (irreps) of 
dimension < 103 , while for Es there is only one, and even that has a dimension of 248. 
There are already applications in particle physics requiring a detailed knowledge 
of the properties of high dimension irreps of the exceptional groups (Ramond 1976). 

The current algorithms used to compute branching rules and to resolve Kronecker 
products for the irreps of the exceptional groups and their subgroups make use of 
projection onto the one-dimensional weight subspaces of the irreps (Navon and 
Patera 1967; Beck 1972; Beck and Kolman 1972; Kolman and Beck 1973). These 
methods have the great advantage of universality: the same algorithm may be used 
for all group structures once the root systems and embeddings are specified. Given 
the high dimension of many irreps it has been essential to resort to large sophisticated 
computer programs, and even then calculations have been limited to those few irreps 
of dimension < 104 • 

It is well known (Littlewood 1950) that the characters of the classical Lie groups 
can be expressed as series of Schur functions (S-functions) and that these S-functions 
can be multiplied via the standard Young tableaux or the Littlewood-Richardson 
rule. An exposition of these methods for handling the properties of the classical Lie 
groups together with many relevant tabulations has been given elsewhere (Wybourne 
1970). 

The techniques outlined in this paper basically involve projection onto the irreps 
of the largest maximal classical Lie subgroup followed by the use of S-functions 
to systematically compute Kronecker products and branching rules for all the 
exceptional groups and various relevant subgroups. The approach used is amenable 
to simple calculation and can readily yield results well beyond the capabilities of the 
computer algorithms alluded to above. For example, it has been possible to decompose 
a 31702671 dimensional irrep of F4 into irreps of S09 by hand in a matter of minutes 
with the result being checked on a hand calculator using a list of computed 
dimensions. 
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Our aim in this paper is to outline the basic methods for computing branching 
rules and resolving Kronecker products for all the exceptional groups and to collect 
together these properties in tabular form for later applications. These results are 
essential for the calculation of the 3jm and 6j symbols involving the exceptional groups 
(Butler 1975; Butler and Wybourne 1976). These symbols playa vital role, via the 
Wigner-Eckart theorem (Wybourne 1974), in making quantitative calculations of 
physical properties of systems involving various group structures. 

We start by briefly describing the irreps of the special unitary groups and then 
develop a systematic notation for labelling the irreps of the exceptional groups. 
The classification of the irreps of the exceptional groups is reviewed and the dimen
sions and Dynkin index eigenvalues of the irreps are discussed and tabulated. The 
concept of elementary multiplets is developed and applied especially to the exceptional 
groups G2 and F4 • Methods of computing branching rules and resolving Kronecker 
products are outlined and applied to the exceptional groups and their relevant subgroup 
structures. Attention is also given to the use of S-function plethysm to resolve the 
Kronecker powers of irreps. 

2. Irreps of SU" 

The special unitary groups SUn occur as important subgroups or covering groups 
of the exceptional groups. The irreps of SUn will here be labelled by ordered parti
tions of integers. The appropriate partitions are enclosed in braces { ... }. The irreps 
of SUn involving n nonzero parts are equivalent to irreps involving <n nonzero 
parts via 

(1) 

Thus in practice we need only consider partitions into just n - 1 parts. The familiar 
quark and antiquark irreps of SU3 are in our notation designated as {1} and {12} 
respectively. 

The partitions 

and (2) 

label irreps of SUn that are said to be contragredient to one another. Partitions where 

(3) 

are said to label irreps of SU" that are self-contragredient and will be distinguished 
here by attaching an asterisk as a right superscript, e.g. {A}*. Numerous useful 
theorems concerning contragredient irreps have been given by Mal'cev (1944), and 
we shall exploit some of these in Section 4 below. 

The irreps of all the groups discussed here involve sets of integers or half 
integers, and distinctive brackets are used to enclose these sets: braces { ... } for 
special unitary group (SUn) irreps; square brackets [ ... J for special orthogonal group 
(SO,,) irreps; angular brackets ( ... ) for symplectic group (Sp,,) irreps; and 
parentheses ( ... ) for exceptional group irreps. Sets involving half-integers will be desig
nated by enclosing just their numerators in the appropriate brackets and attaching a 
prime as a right superscript, e.g. (3111)' == (B··B)' We shall often use numerical 
superscripts to indicate the number of times a given part is repeated, e.g. 
(21 6) == (2111111). 
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The dimensions and Kronecker products for many of the relevant irreps of the 
classical Lie groups, and of G2 , have been given elsewhere (Wybourne 1970) and 
will find frequent use here. 

ES 

~ 
Fig. 1. Dynkin diagrams associated with the exceptional groups. 

3. Labelling of Exceptional Group Irreps 

Dynkin (1952a, 1952b) has shown that the irreps of a compact semisimple Lie 
group of rank 1 may be uniquely labelled by exploiting the properties of the 1 simple 
roots O(i (i = 1,2, ... , 1) of its associated Lie algebra. The properties of the simple 
roots are displayed in the form of simple diagrams. The Dynkin diagrams appro
priate to the five exceptional groups are shown in Fig. 1. The irreps of a semisimple 
Lie group of rank 1 are then uniquely labelled by associating 1 non-negative integers 
(al a2 ... a,) with the circles of its Dynkin diagram (Wybourne 1974). The integers 
{ll ... In-l} we have introduced for SUn are related to the Dynkin integers 
(al a2 ... an - 1) by n-1 

/; = I aj. (4) 
j=i 

The irreps of a compact semisimple Lie group of rank 1 may also be uniquely 
labelled in terms of the highest weights M(i) of the 1 basic irreps after the manner 
of Cartan (1913). Unfortunately Cartan's prescription often leads to cumbersome 
fractional weights which we wish to avoid. The weights M(i) may be written in terms 
of the simple roots to give, for the exceptional groups (apart from E6 which we will 
treat seplJ-rately), the following results 

F 4 : M(l) = 0(1 +20(2+30(3+20(4, 

M(2) = 20(1 +30(2 +40(3 +20(4, 

M(3) = 20(1 +40(2 +60(3 +30(4, 

M(4) = 30(1 +60(2 +80(3 +40(4 ; 

E7: M(l) = 20(1 +30(2 +40(3 +30(4 +20(s +0(6 +20(7' 

MW=~+~+~+~+~+~+~, 

M(3) = 40(1 +80(2 + 120(3 +90(4 +60(s +30(6 +60(7' 

M(4) = 1-(60(1 + 120(2 + 180(3 + 150(4 + 1OO(s +50(6 +90(7)' 

M(S) = 20(1 +40(2 +60(3 +50(4 +4ocs +20(6 +30(7' 

M(6) = -!-(20(1 +40(2 +60(3 +50(4 +4ocs +30(6 +30(7)' 

M(7) = -!-(40(1 +80(2 + 120(3 +90(4 +60(s +30(6 + 70(7) ; 

(5) 

(6a) 

(6b) 

(6c) 

(6d) 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

(7f) 

(7g) 
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Es: M(l) = 2al +3a2 +4a3 +5a4 +6as +4a6 +2a7 +3as , (Sa) 

M(2) = 3a1 +6a2 +Sa3 + lOa4 + 12as +Sa6 +4a7 +6as, (Sb) 

M(3) = 4al +Sa2+12a3+15a4+1Sas+12a6+6a7+9as, (Sc) 

M(4) = 5a1 + lOa2 + 15a3 +20a4 +24as + 16a'6 +Sa7 + 12as , (Sd) 

M(S) = 6a1+ 12a2 + lSa3 + 24a4 +30as +20a6 + lOa7 + 15as , (Se) 

M(6) = 4a1 +Sa2 + 12a3 + 16a4 +20as + 14a6 + 7a7 + lOas, (Sf) 

M(7) = 2al +4a2 +6a3 +Sa4 + lOas + 7a6 +4a7 +5as, (Sg) 

M(S) = 3a1 +6a2 +9a3 + 12a4 + 15as + lOa6 +5a7 +Sas. (Sh) 

The simple roots ai may be realized in terms of a set of orthogonal unit vectors 
ek (k = 1,2, ... ,1). We make the following choices 

G2: a1 = (1 -2), a2 = (01); (9) 

F4 : a1 = (01 - 10), a2 = (001-1), a3 = (0001), a4 = (t-t-t-t); (10) 

E7: ai = ei- ei+l (i = 1,2, ... , 6), a7 = e4 +e6 +e7 ; (11) 

Es: ai = ei- e i+l (i = 1,2, ... , 7), as = e6 +e7 +es . (12) 

Use of the realizations in equations (5)-(9) gives the highest weights of the basic 
irreps as 

G2: M(l) = (10), M(2) = (2-1); (13) 

F4: M(l) = (1000), M(2) = (1100), M(3) = (3111)" M(4) = (2110) ; (14) 

E7: M(l) = (21 6), M(2) = (3225), M(3) = (4334), M(4) = (3423), (15a) 

M(S) = (2512), M(6) = (16), M(7) = (27); (15b) 

Es: M(l) = (217), M(2) = (3 226), M(3) = (4335), M(4) = (5444), (16a) 

M(5) = (6553), M(6) = (4632), M(7) = (271), M(S) = (3 S). (16b) 

The appearance of negative integers for G2 may be avoided by writing 

(17) 

thus reproducing the standard labelling adopted by Racah (1949). 
An arbitrary irrep of a rank 1 semisimple Lie group may be characterized by its 

highest weight A and written as a linear combination of the highest weights M(i) 

of the 1 basic irreps: 
I 

A = '" a.M(i) L., , (1S) 
i=l 

where the ai are non-negative integers and have been chosen here to be exactly 
equivalent to Dynkin integers. The components Ai of A satisfy the general condition 

(i = 1,2, ... ,1-1). (19) 
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In addition there are the specific conditions 

(20) 

(21) 

(22) 

The conditions (l9)-{22) permit every irrep of the exceptional groups G2 , F4 , E7 
and E8 to be uniquely labelled by appropriate partitions. These partitions may be 
related to the usual Dynkin integers by inversion of equation (18). 

We adopt a somewhat different approach for labelling the irreps of E6 • The 
Lie algebra E6 has a maximal subalgebra As+Al. The weights of the elementary 
irrep of As are designated as Ai' A2, ... , A6 and those of Ai as ± A. The simple roots 
may then be expressed in terms of these weights by writing 

(23) 

An arbitrary irrep A of E6 may then be represented as a linear combination of the 
weights of As +Al by writing 

6 6 

A = I liAi +IA, where I Ii = 0, (24) 
i=l i=l 

leading to (Wybourne 1974) 

Ii = 16+ L ak' (2Sa) 
k=i 

S 

16 = - I iia i , (2Sb) 
i=l 

(2Sc) 

While it is quite feasible to label the irreps of E6 with the seven numbers (Ii' 1), the Ii 
will normally involve fractions of integers. To obtain a system of labels involving 
just integers we need only recall how the irreps of SUn may be related to ordered 
partitions. To this end we introduce five integers mi, where 

4 

m i = I as- k , 
k=i 

and a sixth integer m = I. It is readily seen that 

(i = 1, ... ,4) 
and 

The set of six integers (ml m2 m3 m4 ms: m) uniquely label the irreps of E6. 

(26) 

(27) 

(28) 

The method we have developed for labelling the irreps of the exceptional groups 
has several advantages over the usual Dynkin labels, and these will become apparent 
later in this paper. 
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4. Classification of Exceptional Group Irreps 

The classification of the irreps of a group as real (orthogonal), pseudo-real 
(symplectic) or complex plays an important role in the determination of the phases 
associated with the calculation of the nj and njm symbols of the group (Butler and 
King 1974; Butler and Wybourne 1976). It also plays an essential part in deter
mining branching rules and in resolving Kronecker products. If the representation 
is equivalent to a real representation we shall term it orthogonal while if the character 
is real but the representation is not equivalent to a real representation we shall term 
it symplectic. However, if the character is complex then the representation will be 
termed complex. 

The classification of the representations (A) of a group proceeds by first noting 
that the given irrep (A) will be orthogonal, symplectic or complex respectively 
according as 

(A) ® {2} =:> (0), (A) ® {12} =:> (0) or (A)2:p (0) (29) 

(Butler and King 1974). The Kronecker product of two symplectic or two orthogonal 
irreps is necessarily orthogonal while the Kronecker product of an orthogonal irrep 
with a symplectic irrep is necessarily symplectic (Mal'cev 1944). The representations 
of a group may be fully classified once the classification is found for the basic irreps 
of the group (Mehta 1966; Mehta and Srivastava 1966). 

The irreps of the exceptional groups G2 , F4 and Es are all orthogonal. The irreps 
of E6 are self-contragredient if 

If the equivalence does not hold then the two irreps are contragredient and complex. 
The self-contragredient irreps of E6 are all real and orthogonal (Mal'cev 1944). 
The irreps of E7 are orthogonal or symplectic according as 

(31) 

is positive or negative. 
We note that the irreps [A1 ... J of S02n+1 are orthogonal or symplectic according as 

¢ = (_l)ill(n+1)Al (32) 

is positive or negative. Thus the irreps of S09' which is a maximal subgroup of F4 , 

are all orthogonal. 
The self-contragredient irreps of SUn will be orthogonal if n is even. If 

n = l(mod4) the self-contragredient irreps with A1 even are orthogonal while those 
with Ai odd are symplectic. All other irreps of SUn are complex (Mal'cev 1944). 

The classification of the irreps has important consequences in determining 
branching rules. For example, we have just stated that the irreps of E7 are all orthog
onal or symplectic and the self-contragredient irreps of SUs are all orthogonal. 
Thus we can be assured that if an irrep of E7 is symplectic then the decomposition 
E7 --+ SUs will yield no self-contragredient irreps of SUs. Likewise we may also 
conclude that SUs irreps will always occur as contragredient pairs under E7 --+ SUs. 
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5. Dimensions of Irreps 

A knowledge of the dimensions of irreps of the compact semisimple Lie groups 
plays an important part in our methods and as a procedural check. The dimensions 
are calculated using the standard Weyl (1925) formula. An extensive tabulation for 
many of the groups has been given by P. H. Butler (Wybourne 1970). Additional 
tables for all the exceptional groups and for the spin irreps of S09 were generated 
using Butler's interactive S-function program. 

The tables of dimensions give a simple check on branching rules and Kronecker 
products. Thus if under G --+ H we have the decomposition of the (A) irrep of G into 

(A) --+ L k(w)(w) , (33) 

where k( w) is the multiplicity index for the (w) irrep of H, then we have the dimensional 
check 

N(A) = L k(w)N(w). 

Likewise, for the Kronecker product 

we have 
(A) (X) = L k(A") (A") 

N(A)N(X) = L k(A")N(A"). 

(34) 

(35) 

(36) 

It is important to note that dimensional checks do not provide a complete 
verification since often different irreps of a group may be of the same dimensions. This 
is certainly the case for contragredient irreps but the equality of irrep dimensions 
also occurs for other cases, e.g. in S09 the irreps [2211], [2222] and [4100] are all of 
dimension 2772. In other cases several irreps may sum to give the dimension of 
another irrep of the group. For precisely for these reasons we consider that the 
prevalent practice of specifying irreps by their dimensions is an unfortunate and 
ambiguous notation. 

6. Dynkin Indexes 

The dimensional problem, just alluded to, can in many cases be overcome by use 
of the Dynkin index (Dynkin 1952a, 1952b; Patera et al. 1976) 

(37) 

where r is the order of the group, R is half the sum of the positive weights of the 
adjoint representation and 

K(A) = M(A) +R. (38) 

The quantity K2(A)_R2 is essentially the second-order Casimir invariant. The 
calculation of the eigenvalues of the second-order Casimir invariants has been out
lined elsewhere (Wybourne 1974). A more practical index having smaller integer 
eigenvalues is obtained by defining 

l1(A) = j(A)jj(l) , (39) 
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Table 1. Dimensions and Dynkin index eigenvalues for irreps of exceptional groups 

Irrep Dynkin Dimen- Dynkin index Irrep Dinkyn Dimen- Dynkin index 
(A) label sions eigenvalues (A) label sions eigenvalues 

(a) G2 irreps 
(00) (00) 1 0 (30) (03) 77 44 
(10) (01) 7 1 (31) (12) 189 144 
(11) (10) 14 4 (32) (21) 286 286 
(20) (02) 27 9 (33) (30) 273 351 
(21) (11) 64 32 (40) (04) 182 156 
(22) (20) 77 55 

(b) F4 irreps 
(0000) (0000) 0 (3100) (1002) 10829 1666 
(1000) (0001) 26 1 (3110) (0101) 19278 3213 
(1100) (1000) 52 3 (3111) (0020) 19448 3366 
(3111), (0010) 273 21 (3200) (2001) 17901 3213 
(2000) (0002) 324 27 (3210) (1100) 29172 5610 
(2100) (1001) 1053 108 (3300) (3000) 12376 2618 
(2110) (0100) 1274 147 (7111), (0012) 34749 6237 
(2200) (2000) 1053 135 (7311), (1011) 106496 21504 
(5111)' (0011) 4096 512 (7331), (0110) 107406 23409 
(5311), (1010) 8424 1242 (7511), (2010) 119119 27489 
(3000) (0003) 2652 357 (4000) (0004) 16302 3135 

(c) E6 irreps 
(0: 0)· (000000) 1 0 (12: 4) (000101) 17550 2300 
(1: 1) (000010) 27 1 (2:4) (000021) 19305 2695 
(0:2)· (000001) 78 4 (212:4) (001010) 51975 7700 
(12:2) (000100) 351 25 (214:4). (100011) 34749 4752 
(2:2) (000020) 351 28 (22:4) (000200) 34398 5390 
(214:2). (100010) 650 50 (2212:4). (010100) 70070 10780 
(1: 3) (000011) 1728 160 (31:4) (000120) 54054 8932 
(1': 3)· (001000) 2925 300 (31':4) (010020) 78975 12825 
(21: 3) (000110) 5824 672 (3213: 4) (100110) 112320 18080 
(21':3) (010010) 7371 840 (4:4) (000040) 19305 3520 
(3: 3) (000030) 3003 385 (414:4) (100030) 61425 10675 
(314: 3) (100020) 7722 946 (424: 4)· (200020) 85293 14580 
(0:4)· (000002) 2430 270 

(d) E7 irreps 
(0) (0000000) 1 0 (43422) (1000100) 152152 9152 
(16) (0000010) 56 1 (43'1) (1000020) 150822 9450 
(21 6) (1000000) 133 3 (436) (1000001) 86184 4995 
(2'12) (0000100) 1539 54 (42342) (0100010) 362880 23760 
(26) (0000020) 1463 55 (4334) (OOlOOoCJ) 365750 24750 
(27) (0000001) 912 30 (44322) (0001010) 980343 71253 
(32'1) (1000010) 6480 270 (4'22) (0000200) 617253 46410 
(322') (0100000) 8645 390 (4'31) (0000120) 915705 71200 
(3423) (0001000) 27664 1430 (4'32) (0000101) 861840 61830 
(3'21) (0000110) 51072 2832 (46) (0000040) 293930 24255 
(36) (0000030) 24320 1440 (462) (0000011) 885248 65728 
(362) (0000011) 40755 2145 (47) (0000002) 253935 17820 
(426) (2000000) 7371 351 

(e) E8 irreps 
(21') (10000000) 248 (547) (10000001) 26411 008 372736 
(271) (00000010) 3875 25 (5444) (00010000) 146325270 2360085 
(3226) (01000000) 30380 245 (574) (00000011) 301694976 5068800 
(38) (00000001) 147250 1425 (637) (30000000) 1763125 22750 
(427) (20000000) 27000 225 (65'4') (10100000) 344452500 5740875 
(4362) (10000010) 779247 8379 (65'42) (10000100) 1094951000 19426550 
(433') (00100000) 2450240 29640 (6256) (01000001) 2275896000 42214200 
(4632) (00000100) 6696000 88200 (63544) (00100010) 4825673125 93400125 
(472) (00000020) 4881384 65610 (6'53) (00001000) 6899079264 139094340 
(5436) (11000000) 4096000 51200 (6654) (00000110) 8634368000 177561600 
(524'1) (01000010) 76272625 1148175 

• Self -contragredient. 
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where (1) is the vector irrep of the group. The analogue of equation (34) then 
becomes 

B(A) = L k(ro)B(ro) (40) 
and of equation (36) 

B(A)N(A') +B(A')N(A) = Lk(ro)B(ro). (41) 

The eigenvalues of the modified Dynkin index are integers and are computed from 
products of the dimension N(A) and the eigenvalues of the second-order Casimir 
invariant. Patera et al. (1976) have also introduced higher order indexes but the index 
of equation (39) suffices for our purposes. It is interesting to note that the modified 
Dynkin index distinguishes the irreps of the same dimension in S09 and thus equations 
(40) and (41) tend to provide more powerful checks than the customary dimensional 
checks. The Dynkin index eigenvalues will be the same for pairs of contragredient 
irreps; however, this will rarely cause difficulty if the classification of the irreps into 
orthogonal, symplectic or complex is known, as indicated in Section 4. 

The dimensions and Dynkin index eigenvalues for irreps of each of the exceptional 
groups are given in Tables 1. 

7. Elementary Multiplets 
In the method of elementary multiplets (Bargmann and Moshinsky 1961; Devi 

and Venkatarayudu 1968; Sharp and Lam 1969; Sharp 1970) one seeks to define a 
minimal set of elementary multiplets for a given group-subgroup combination such 
that all other multiplets of the combination can be represented as stretched products 
of members of the set. The stretched product gives the multiplet containing the 
maximal weight in the Kronecker product. Normally, this multiplet is found by simply 
adding the weights of the multiplets making up the product. 

The elementary multiplets of a given group-subgroup combination are found 
by first determining the decomposition of the vector representation of the group 
into the irreps of the subgroup. This decomposition will be defined by the manner 
in which the subgroup is embedded in the group. If the group has spinorial irreps, 
the decomposition of the basic spinor irreps must also be determined. These multi
plets are necessarily members of the set of elementary multiplets but usually will not 
suffice to yield the complete set. Stretched products of the elementary multiplets 
just found are formed with the powers of the products chosen to yield multiplets 
associated with the decomposition of the irrep of the group having the next highest 
weight. The dimension of this irrep of the group is compared with the sum of the 
dimensions of the irreps of the subgroup obtained in the stretching process. If the 
dimensions agree, no new multiplets need be added to the set while, if there is a 
deficiency in the subgroup, additional elementary multiplets must be added to the set; 
alternatively, if there is an excess in the subgroup, some of the stretched products must 
be regarded as redundant and be so specified. In most cases it is obvious from simple 
dimensional considerations which multiplets must be added to the set or which products 
must be declared redundant. If there is doubt the modified Dynkin index provides a 
resolution of the problem. 

8. Connection with State-labelling Problem 
The problem of determining the set of elementary multiplets of a group-subgroup 

combination, say G :;) H, is closely associated with the problem of finding the 
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corresponding integrity basis (Weyl 1946; Judd et al. 1974; McLellan 1974; 
Bickerstaff and Wybourne 1976), which in turn is related to the state-labelling 
problem. The exponents of the elementary multiplets can be regarded as supplying 
a complete set of labels (Sharp 1976). Some combinations of the exponents will be 
ruled out by subsidiary conditions required to remove redundant states. In the 
group-subgroup labelling problem one wishes to construct a set of basis functions 
that are common eigenstates of a complete set of Hermitian opertators. Racah 
(1965) has shown that, besides the Casimir operators of the G and H groups and the 
appropriate internal subgroup operators, a number 

(42) 

of additional operators must be found, where rG,IG, and rH,IH are the rank and order 
of the group and subgroup. The number of missing labels will be a minimum if H 
is the largest possible subgroup of G. For G2 ::::> SU3 we have p = 1 while for 
F4 ::::> S09 we have p = 4. This result would lead us to expect that the G2 ::::> SU3 

elementary multiplets will be fewer, and the conditions on their exponents simpler, 
than those for F4 ::::> S09' as is indeed the case. 

9. Elementary Multiplets for G2 ::::> SUl and F4 ::::> S09 

The elementary multiplets for the maximal subgroup SU3 of G2 may be readily 
found using the methods outlined above to give 

(lOHO}, (lOH1}, (lOHI2}, (llHl}, (llHI2}, (llH21}, (43) 

which apart from a notational difference is equivalent to those found by Sharp and 
Lam (1969). Stretched states associated with a given irrep (U1 U2) of G2 and an SU3 

irrep {Afl} may be formed from the product of the elementary multiplets, as 

where 
U1 = a+b+c+d+e+ f, (45a) 

A = b+c+d+e+2f, fl = c+e+ f· (45b) 

In applying the result (44) certain states are excluded by the subsidiary condition 

af= O. (46) 

The elementary multiplets (43) taken with the subsidiary conditions (45) give a simple 
method of determining the branching rules for G2 --t SU3 ; a convenient tabulation 
of these rules is given in Table 2. It is a trivial matter to extend the table as 
required. The highest weight irrep of SU3 arising from an irrep (U1 U2) of G2 is 
readily seen to be {U1 + U2' u1}. 

We note for later use that the elementary multiplets for obtaining the branching 
rules for S07 --t G2 have been given elsewhere (Wybourne 1972). In that case, seven 
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Table 2. G2 ..... SU3 brancbing rules 

(Ul U2) Branching to SU3 

(00) {O} 
(10) {PH {IH {O} 
(11) {2l} + {P H {l} 
(20) {22 H {2 H {21 H {P H {I H {O} 
(21) {32H {31 H {22H {20H2{21 H WH {l} 
(22) {42 H {32 H {31 H {22 H {2 H {2l} 
(30) {32H {3H {32H {3l}+ {22H {2H {2l}+ {PH {l}+ {O} 
(31) {43 H {41 H {42H2{32H2{31 H {32 H {3 H {22H {2H2{21 H {P H {I} 
(32) {53H {52H {43 H {41 H2{42H WH {3 H2{32H2{31 H {22H {2H {21} 
(33) {63 H {52 H {53 H {43 H {41 H {42 H {32 H {3 H {32 H {31 } 
(40) WH {4H {43H {41H {42H WH {3H {32H {31H {22} 

+ {2H {21 H {PH {I H {O} 

Table 3. F4 => S09 elementary multiplets 

ml Multiplet Subsidiary conditions 

ml (1000) [0000] ml mlO = ml m18 = m3 m lS 

m2 [1000] 
m3 [1111], = m3 m 20 = m4 m 19 

m4 (1100) [1100] 
ms [1111]' = m6 m 19 = m7 m lS 

m6 (3111)'[1000] 
m7 [1100] = m7 m 20 = mSm20 

ms [1110] 
m9 [1111]' = m9 m ll = m9 m 19 

mlO [3111]' 
mll (2100) [1110] = m9 m 20 = mlOm13 

m12 (2110) [1100] 
m13 [1110] = mlOm17 = mlOm19 

m14 [2110] 
mlS [3111]' = mlO m20 = mlS m20 

m16 [3311], 
m17 (5311),[1110] = m16 m17 = m16 mlS 
mlS [2110] 
m19 (3110) [2210] = m19m20 = mlSm16mll = 0 
m20 (3210) [2110] 

elementary multiplets were required and there was one subsidiary condition. Here 
we again have p = 1 and the situation is simple. 

The largest subgroup of F4 is S09. A few branching rules for low-dimension 
irreps of F4 under F4 -+ S09 have been given by Wadzinski (1969). Vastly more can 
be easily found using the method of elementary multiplets. Since p = 4 we would 
anticipate a larger set of elementary multiplets and subsidiary conditions than for 
the p = 1 cases just treated. The required elementary multiplets are given in 
Table 3. The entries in this table were used to calculate the F4 -+ S09 branching rules 
for all irreps of F4 up to (9711)' inclusive. It was found to be a comparatively easy 
task to obtain the correct decomposition of the 31 702671-dimensional irrep (6320) 
of F4 by a hand calculation. 

The list of subsidiary conditions is only established up to the limits just 
indicated; undoubtedly additional conditions will arise for higher irreps of F4 but 
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there would appear to be no difficulty in obtaining these as, or if, they are required. 
A list of F4 -+ S09 branching rules for all irreps of F4 up to (4000) is given in 
Table 4. 

Table 4. F4 -> S09 branching rules 

D(u) (uJ U2 U3 U4) Branching to S09 

1 (0000) [0000] 
26 (1000) [0000]+ [1000] + [1111]' 
52 (1100) [11 00]+ [1111], 

273 (3111), [1000]+ [1100] +[1110]+ [1111], + [3111], 
324 (2000) [0000]+ [1000]+ [1111] + [2000]+ [1111]' + [3111], 

1053 (2100) [1100]+ [1110]+ [1111] + [2100]+ [1111]' + [3111], + [3311]' 
1274 (2110) [1100]+ [1110]+ [2110] + [3111], + [3311], 
1053 (2200) [1111]+ [2200]+ [3311], 
4096 (5111)' [1000]+ [1100]+ [1110] + [1111]+ [2000]+ [2100]+ [2110]+ [2111]+ [1111]' 

+ 2[3111]' + [3311]' + [3331]' + [5111]' 
8424 (5311)' [1110]+ [1111]+ [2100]+ [2110]+ [2111]+ [2200]+ [2210]+ [3111]' + 2[3311]' 

+ [3331]' + [5311], 
2652 (3000) [0000]+ [1000]+ [1111] + [2000] + [2110]+ [3000]+ [1111]' + [3111]' + [3333]' 

+ [5111], 
10829 (3100) [1100]+ [1110]+ [1111] + [2100]+ [2110]+ [2111]+ [2211] + [3100]+ [Il11]' 

+ [3111], + [3311]' + [3331], + [3333]' + [5111]' + [5311]' 
19278 (3110) [1100] + [1110] + [2100] + 2[2110] + [2111] + [2210] + [2211] + [31 J 0] + [3111], 

+ 2[3311], + [3331]' + [5111]' + [5311]' + [5331]' 
19448 (3111) [1111]+[2000]+ [2100]+ [2110]+ [2111]+ [2200]+ [2210]+ [2220]+ [3111] 

+ [3111]' + [3311]' + [3331]' + [5111], + [5311]' + [5331]' 
17901 (3200) [1111]+ [2111]+ [2200]+ [2210]+ [2211] + [3200]+ [3311], + [3331]' + [3333]' 

+ [5311]' + (5511]' 
29172 (3210) [2110] + [2111]+ [2200] + [2210] + [2211]+ [3210]+ [3311]' + [3331]' + [5311], 

+ [5331], + [5511], 
12376 (3300) [2211] + [3300] + [3333]' + [5511], 
34749 (7111)' [1000]+ [1100]+ [1110]+ [1111]+ [2000]+ [2100]+ [2110]+ 2[2111]+ [2211] 

+ [2221]+ [3000]+ [3100]+ [3110]+ [1111]' + 2[3111], + [3311], 
+ [3331], + [3333]' + 2[5111]' + [5311]' + [5331]' + [5333]' + [7111], 

106496 (7311), [1110] + [1111] + [2100] + 2[2110] + 2[2111] + [2200] + 2[2210] + 2[2211] 
+ [2220]+ [2221]+ [3100]+ [3110]+ [3111]+ [3200]+ [3210]+ [3211] 
+ [3111]' + 2[3311]' + 2[3331], + [3333]' + [5111], + 3[5311], + 2[5331], 
+ [5333]' + [5511], + [5531], + [7311], 

107406 (7331), [2100]+ [2110] + [2111]+ [2200]+ 2[2210]+ [2211] + [2220]+ [3110]+ [3111] 
+ [3210]+ [3211]+ [3220] + [3311]' + [3331], + [5111]' + 2[5311]' 
+ 2[5331]' + [5511], + [5531], + [7331]' 

119119 (7511)' [2111] + [2210]+ 2[2211]+ [2221]+ [3200] + [3210]+ [3211]+ [3300] + [3310] 
+ [3331]' + [3333]' + [5311], + [5331]' + [5333]' + 2[5511], + [5531]' 
+[7511]' 

16302 (4000) [0000]+ [1000]+ [1111] + [2000]+ [2111]+ [2222]+ [3111]+ [4000]+ [1111]' 
+ [3111], + [3333]' + [5111]' + [5333]' + [7111], 

10. Elementary Multiplets for S026 :J F4 

It is well known (Oynkin 1952a, 1952b; Wadzinski 1969) that F4 can be embedded 
in the group S026' a situation analogous to the S07 :J G2 embedding (Racah 1949; 
Judd 1962). A few branching rules for S026 -+ F4 have been given by Wadzinski 
(1969). In the case of S026 :J F4 we have from equation (42) that p = 128 so that 
the missing-label problem assumes colossal proportions; however, some progress is 
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possible. The elementary multiplets associated with one-part irreps of S026 may be 
readily and completely determined. The number of elementary multiplets for 
partitions into two or more parts grows dramatically. The branching rules for the 
true irreps of S026 involving partitions of weight four or less were determined by use 
of elementary multiplets and a knowledge of some F4. Kronecker products~ The 
elementary multiplets and the result.ing S026 -+ F4 branching rules are given in 
Table 5. There are no inherent difficulties in extending these listings as required. 
An alternative approach to the determination of S026 -+ F4 branching rules is 
given in Section 15. 

Du.] 

1 
26 

325 
350 

3250 
5824 
2600 

23400 
60750 

37674 

52325 

14950 

Table S. S026::> F4 elementary multiplets and S026 .... F4 branching rules 

(a) Elementary multiplets 

[A] 

[0] 
[1] 
[11] 
[2] 
[3] 
[21] 
[111] 
[4] 
[31] 

[22] 

[211] 

[1111] 

[1](1000) 
[2](1000) 
[3](0000)(3111 )' 

[11] (1100)(3111), 
[21] (1000)(1100)(2000)(3111), 
[31] (1000)(1100)(2110)2(3111)' 
[22] (0000)(1000)2(2000)(2100)(3000)(3111),(5111), 

[111] (2100)(211 0)(3111)' 
[211] (1000)(1100)(2000)2(2100)2(211O)2(3111)'(5i 11),(5311), 

[1111] (2000)(2100)(2200)(5111),(5311), 

(b) S026 -> F4 branching rules 

Branching to £4 

(0000) 
(1000) 
(1100)+(3111), 
(1000)+(2000) 
(0000)+ (2000)+ (3000)+ (3111)' 
(1000)+ (1100)+ (2000)+ (2100)+ (3111)' + (5111)' 
(2100)+ (2110)+ (3111)' 
(1000) + (2000) + (3000) + (4000) + (5111)' 
(1000)+ (1100)+(2000)+ 2(2100)+ (2110)+ (3000)+ (3100)+ 2(3111)' + 2(5111)' 

+(7111), 
(0000) + (1000) + 2(2000) + (2100)+ (2200) + (3000) + (3111) + (3111)' + (5111), 

+(5311), 
(1000)+ (1100)+ (2000)+ 2(2100)+ 2(2110)+ (3100)+ (3110)+ 2(3111)' + 2(5111)' 

+(5311), 
(2000)+(2100)+ (2200)+(5111)' +(5311), 

11. Highest Weight Irreps and Branching Rules 

The irreps of a compact semisimple Lie group are uniquely labelled, to within 
an equivalence, by their highest weight (Wybourne 1974). Our choice of labelling 
for the irreps of F4 , E6 , E7 and E8 is such that we necessarily have under 

CA'l A2 A3 A4) ::> [Ai A2 A3 A4] , 

(Ai A2 A3 A4AS: A) ::> {Ai A2 A3 A4 AS}{A}, 

(Ai A2 A3A4AS A6 A7) ::> {A1A2A3A4AsA6A7}' 

(47) 

(48) 

(49) 
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(50) 

where in each case the subgroup irrep given is the highest weight irrep of the 
subgroup contained in the 4ecomposition. The situation is slightly different for 
O2 ::::> SU3 due to our adoptiop of Racah's (1949) scheme via equation (17). The 
results (47)-(50) playa key role in our subsequent determination of branching rules 
and Kronecker product resolutions. 

12. Kronecker Products for F4 

The evaluation of the Kronecker products of the irreps of O2 may be readily 
made (Smith and Wybourne 1967) by expressing the characters of O2 as linear com
binations of those of S07' thus forming the Kronecker products for the S07 irreps 
and then decomposing the S07 irreps into those of O2 • An extensive tabulation has 
been given elsewhere (Wybourne 1970) . .Judd and Wadzinski (1967) have given the 
resolution of the Kronecker squares of some O2 irreps into their symmetric and 
anti symmetric terms. 

The Kronecker products of the irreps of F4 may be determined by exploiting our 
knowledge of the F4 --> S09 decompositions. The two F4 irreps appearing in the 
Kronecker product are each expanded into S09 irreps using the results of Table 4, 
and the Kronecker products of the S09 irreps are then resolved using standard 
S-function theory (Wybourne 1970). The procedure is best illustrated by a simple 
example. 

To evaluate (1000) x (1100) we have from Table 4 

and 

and hence 

(1000) ---> [0000]+[1000]+[1111]' 

(1100) ---> [1100] +[1111]', 

(1000) x (1100) ---> [[0000] +[1000] +[1111],] x [[1100]+[1111]'] 

= [0000] +2[1000] +2[1100] +2[1110] +[1111] +[2100] 

+3[1111]' +2[311 i], +[3311]'. (51) 

Since under F4 ---> S09 we necessarily have 0.1 A2 A3 A4) ::::> [J'l A2 A3 )'4] we pick out 
of equation (51) the highest weight irrep of S09' in this case [2100]. Thus the 
Kronecker product (1000) x (1100) ::::> (2100). Now remove from the right-hand 
side of (51) all S09 irreps contained in (2100) to give 

(1000) x (1100) ::::> (2100) +[0000] +2[1000] +[1100] +[1110] 

+2[1111]' +[3111]'. 

The highest weight irrep of S09 in the residue is [3111]' and hence 

(1000) x (1100) ::::> (2100) +(3111)' +[0000] +[1000] +[1111]' . 

Inspection of the new S09 residue leads immediately to the conclusion that 

(1000) x (1100) = (1000) +(2100) +(3111)'. 
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The only difficult part in the calculation is the evaluation of the S09 Kronecker 
products. Tables for the true irreps exist (Wybourne 1970). The products involving 
spin irreps may be evaluated using the methods outlined elsewhere. In our case we 
were able to get the necessary results from P. H. Butler's interactive program that 
readily evaluates all the S-function procedures. A sample list of Kronecker products 
of F4 irreps is given in Table 6. In the case of Kronecker squares the irreps contained 
in the symmetric part are enclosed in braces { ... } and those of the antisymmetric 
part in square brackets [ ... ]. 

Product 

(0000) x (0000) 
(1000) x (0000) 
(1000) x (1000) 
(1100) x (1000) 
(1100) x (1100) 
(3111)' x (1000) 
(3111)' x (1100) 
(3111)' x (3111)' 

(2000) x (1000) 
(2000) x (1100) 
(2000) x (3111)' 

(2000) x (2000) 

(0000) 
(1000) 

Table 6. F4 Kronecker products 

Evaluation 

{(OOOO)+ (1000)+ (2000)}+ [(1100)+ (3111)'] 
(1000)+ (2100)+ (3111)' 
{(OOOO)+ (2000)+ (2200)}+ [(1100)+ (2110)] 
(1000)+ (1100)+ (2000)+ (2100)+ (2110)+ (3111)' + (5111)' 
(1000)+ (2000)+ (2100)+ (3111)' + (5111)' + (5311)' 
{(OOOO)+ (1000)+ 2(2000)+ (2100)+ (2200)+ (2200)+ (3000)+ (3111)' 

+(5111), + (5311)'} 
+ [(1100)+ (2100)+ (2110)+ (3100)+ (3110)+ 2(3111)' + (5111)'] 

(1000)+ (2000)+ (2100)+ (3000)+ (3111), + (5111)' 
(1100)+ (2000)+ (2110)+ (3100)+ (3111), + (5111)' 
(1000)+ (11 00) + (2000) + 2(2100)+ (211 0)+ (3000)+ (3100)+ (311 0) + 2(3111)' 

+2(5111), +(5311), +(7111), 
{(OOOO)+ (1000) + 2(2000)+ (2200)+ (3000)+ (3111)+ (4000)+ (5111), + (5311 n 

+ [(1100)+ (2100)+ (2110)+ (3100)+ (3111), + (5111)' + (7111),] 

13. Kronecker Products and Branching Rules 

The method just used for the resolution of the Kronecker products of F4 irreps 
can be readily extended to the remaining exceptional groups E6, E7 and Es and used 
as the basis for a building-up principle that simultaneously yields branching rules for 
the maximal subgroup embeddings E6 :::) SU6 X SU2 , E7 :::) SUs and Es ::> SU9 • 

In this method we exploit the fact that we can resolve products and symmetrized 
powers of SUn irreps by the standard S-function calculus (Wybourne 1970). 

The method is best demonstrated by the example of E7 • We first make the 
E7 ~ SUs decomposition for the elementary irrep (1 6). It follows from the result 
(49) that 

(52) 

and, since (16) is a symplectic irrep, the irreps of SUs can only occur as contragredient 
partners and hence {12} must be added to (52). A dimensional check then assures 
us that we have the complete branching rule as 

(53) 

We now resolve the Kronecker square of (1 6) into its symmetric terms. Consider 
the symmetric part. From the rule (53) 

(1 6) 0 {2} = ({16} +{12}) 0 {2} 

= {16} 0{2} +{12} 0{2} +{16}{12}. (54) 
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Noting that the plethysms {16} ® {2} and {12} ® {2} will yield irreps of SUs that are 
contragredient to one another, we obtain 

(The relevant plethysms may be evaluated directly (Wybourne 1970) or read off exist
ing tables (Butler and Wybourne 1971).) Remembering the result (49), we deduce 
that (26) necessarily occurs in (16) ® {2}. Inspection of the SUs irreps in equation 
(55) shows that the only other irreps of E7 that could arise would be (21 6) and 
possibly (0). Dimensional considerations, or the fact that (1 6) is symplectic, rule 
out the possibility of (0) and hence 

It follows from stretching the SUs irreps of rule (53) that 

and necessarily 
(26) :::> {26} +{22} +{2214} 

(21 6) :::> {216}. 

(56) 

Simple dimensional arguments and comparison of equation (55) with (56) lead 
immediately to the results 

(26) ~ {26} + {22} +{2214} + {14} +{O}, 

(21 6) ~ {21 6}+{14}. 

Exactly the same analysis can be made for 

(16) ® {12} = (2512) +(0) 
and then trivially 

(2512) ~ {2512}+{212}+{2214}+{216}. 

Thus at the same time as resolving Kronecker products we have been able to establish 
new branching rules. 

Having obtained the first few branching rules it then becomes possible to resolve 
further Kronecker products and hence to establish further branching rules. At 
each step the calculations are checked using dimensions and the Dynkin index 
eigenvalues. The resulting branching rules for E6 ~ SU6 X SU2 , E7 ~ SUs and 
Es ~ SU9 are given in Tables 7a, 7b and 7c respectively. Contragredient irreps are 
grouped together in pairs and self-contragredient irreps are indicated by an asterisk. 

The Kronecker products evaluated for the groups E6, E7 and Es are given in 
Tables 8. In the case of E6 (Table 8a) the list is shortened by noting that if the 
Kronecker product of two irreps (m 1) and (m2 ) is given as 

(57) 

then for the contragredient irreps (m1)C and (m2)C we have 

(58) 
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(..1.) 

(0:0) 
(1 : 1) 
(0: 2)* 
(P:2) 
(2:2) 
(214 : 2)* 
(1: 3) 

(1 3 : 3)* 

(21 : 3) 

(2P: 3) 

(3: 3) 
(314 :3) 

(0: 4)* 

(P :4) 

(2 :4) 

(2P :4) 

(214 : 4)* 

(22 : 4) 

(31 : 4) 

B. G. Wybourne and.M .. J. Bowick 

Table 7. En group branching rules 
Asterisks indicate self-contragredient irreps throughout 

Branching 

(a) E6 --+ SU6 X SU2 branching rules 
{O}{O} 
{1}{1 H WHO} 
{0}*{2H {P}*{IH {214}*{0} 
{1 2 }{2} + ({21 3 H {l' }){1} +( {2312 H {2}) to} 
{2}{2H {2P}{l} +'({24H {iZ}){O} 
{214}* {2} +( {241 H {21 H {P }*){l} + ({214}*+{22P }*+ {O}*){O} 
{I H3} + (WH {2P }){2} +( {314H {231 H {22P}+ {1}){1} 

+({3231H {2PH W}){O} 
{p}* {3} + ({22P}* + {214}* + {O }*){2} + ({322P}* + {241 H {21 H {P }*){l} 

+(W23H {3PH {23}*+ {214}*){0} 
{21 H3} +( {3P H {22P }*+ {214}*){2} 

+ ( {322P}* + {323 H {3 H {241 H {21 H {P }){I } 
+({332l}+ {3PH {22P}*+ {214}*){0} 

{2PH3} +({32PH {24H {2H {23J2H {P}){2} 
+(W22IH {324H {3PH2{2PH {22IH {l'}){l} 
+(W2H {3221H {32PH {23PH {2H W}){O} 

{3}{3 H {3P}{2} + ({323 H {21 }){I } + ( W H {22P }*){O} 
{314 H3} + ( {3231 H {31 H {2P }){2} 

+ (Wl}+ {32P H {314}+ {231 H {22P H {1}) {l} 
+ (W2 2 H {3231 H {22 H {2P H W }){O} 

{0}*{4H {P}*{3} +({23}*+ {214}*){2} 
+ ({322P}* + {p }*){1 } + ( {424}* + {22P}* + {O }*){O} 

W}{4} + ({221 H {2P H {I"}) {3} + ({322l}+ {32P H 2 {23P H {2 H {P }){2} 
+({4231H WPH {32221H {324H {3PH {22IH2{2PH {l'}){l} 
+ ({43222 H {414H {3221 H {32P H {24H {23P H W}){O} 

{2}{4} + ({3P H {2P}) {3} + ({414H {322I}+ {32P H {24H {2 H W}){2} 
+({4231H W2H W22IH {3PH {22IH2{2P}){1} 
+({433l}+ {322l}+ {32PH {24H {23PH {2}){0} 

{2P}{4} + ({32P H {314H {231 H {22P H {I }){3} 
+( {422J2 H {3222}+ {322P H2{3231 H {31}+ {22 H 2{2P H 2Wn {2} 
+( {43221 H {4323 H {4P H Wl}+ {3322 H {322 H2{32P}+ 2{314} 
+2{231H2{22PH {l}){l} 
+'(W322H {423H {422PH {321H W2PH2{323l}+.{31H {2"} 
+2{2P}){0} 

{214}* {4} +( {322J.2}* + {24I}+ {2I}+ {1 3 }*){3} +( {424}* + {332I}+ {321}+ W23} 
+ {3PH {23}*+2{22P}*+2{214}*+ {0}){2} +({4332H {42PH W2l}* 
+ {32P H {323 H 3 {322P}* + 2 {241 H2 {21 H2{P }*){l} 
-+- ({43221}*+ {424}* + W21 H {321 H W23 H {3P H {23 }*+ 2{22P}* 
+ {214}*){0} 

{22}{4} + ({32P H {22P }){3} + ({423 H W2P' H {3231 H {31 H {2" H {2P }){2} 
+ ({43221 H {4P H {3322 H {32P H {314H {231 H {~2P }){l} 
+(W22H {422PH {4}+ {3 222H {3231H {22H W}){O} 

{22P}* {4} + (WP H {323 H {322P}* + {241 H {2l} + {P }*){3} 
+ ({4322l}* + {3321 H {32l} + 2 W1 3 H 2 {3P H {23}* + 2 {22J2}* 
+2{214}*){2} +( W322 }+ {4221 H {4332H {42P H WH {3 H W21}* 
+ {32P H {323 H 3 {322P}* + {241 H {21 H {P }*){l} 
+ ( W3 2 H {4P H {432P}* + {43221 }* + {424}* + W21 H {321 } 
+ {3 223 H {3P H 2 {2212}* + {214}* + {O }*){O} 

{31}{4} +({4J3H {32PH {314}){3} 
+ ({423 H {422P H {4 H W22 H {3231 H {3i H {22 H {2P }){2} 
+( {433H {4J3H WI H2{32P H {314H {231 H {22J3}){l} 
+ W31 H {423 H W2 2 H W21 2 H {3231 H {31 H {2P }){O} 
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Table 7 (Continued) 

(..1.) Branching 

(a) E6 --+ SU6 X SU2 (Continued) 

(31': 4) {31'}{4} + ({421' H {323 H {322P}* + {3 H {21}) {3} 
+ ({43221 }*+ {424}* + {412 H WH {3321 H {32l} + 2{31' H 2{22P}* 
+ {214}*){2} +( W3 2 1 H {4221 H {43 32H {42l'H Wl'H W21} 
+ 2 {323 H 2 {322 12}* + {3 H {241 H 2 {21} + W}*){l} + ( W2 H {4322} 
+ {43221}* + {3 3 21 H {321 H p223 H 2{31' H {23}* + {22P }*+ {21 4}*){0} 

(321' : 4) {321'}{4} + ({4231 H W2 2 1 H {324 H {32 H {3P H {221 H {2l' }){3} 
+({4331H {43222H {4212H {414H W2H p2PH2{3221H3{32l'} 
+ {24H2{23P H {2H {P }){2} +( W32H {4322H {432PH2{4231} 
+ {41 H W12H W2H3 {32221 H2{3P H {32H2{221 H 3 {2l'} 
+ {P}){l} +( W321} + {4331 H {43222H {42P H {414H W2} 
+ {32PH2{3221H2{32l'H {24H2{23PH {2H {P}){O} 

(4: 4) {4}{4 H {4l'}{3} + ({423 H {31}) {2} + ({43 3 H {3212 }){l} 
+(WH {3222H {22}){0} 

(414 :4) {414}{4} +({4231H {41H {3P}){3} 
+ ({43 31 H {4212 H {414H {3221 H {321'}+ {2}) {2} 
+( WI H {4322 H {4231 H W2H {32221 H {32H {3P H {221 H {2l'}){1} 
+(W33H {43 31H W12H {3221H {32l'H {24H {P}){O} 

(424 : 4)* {424}* {4} + ({43 32 H {42l' H {322 12 }*){3} + (W2 H {42H {43221}* 

(0) 

W) 
(21 6 ) 

(2512 ) 

(26 ) 

(27) 

(3251) 
(3225) 

(34 23) 

(3521) 

(43 5 1) 

{O}* 

+ {424}* + W21 H {321 H {3223 H {3l' H {23}* + {214}*){2} 
+( {42321 H {4312 H {4332 H {421' H {3221 }*+ {321' H {323} 
+ 2{32212}* + {241 H {21 H {P}*){I} + ({4222}* + {43221}*+ {424}* 
+ WH {32 H {3321 H {321}+2{22P}*+ {214}*+{0}*){0} 

(b) E7 --+ SUB branching rules 

{16}+ {Il} 

{216}*+ {14}* 
{25PH {2P}+ {2214}*+ {216}* 
{26H {22H {2214}*+ {14}*+ {O}* 
{27 H {2H {2314H {214} 
{3251H {321'H {24PH {2212H {2314H {214H {1 6H {12} 
{3 225H {315H {3231'}*+ {25PH {2PH {23P}*+ {216}* 
{3423 H {3l'H {3223PH {3221'H {3251}+ {321'H {2'H {2} 

+ {25 H {23H {2314H {214} 
{3521H {321H {3224H {3214H {3223PH {3221'H {3251} 

+ {321'H {24PH {22PH {2314H {214H WH {P} 
{36H {32 H {3224H {3 214H {24PH {22PH {1 6H {12} 
W2 H {31 H {33231 H {321' H {3225 H {31' H {32214H {324l} 

+ {3231'}*+ {2512H {2PH {23P}*+ {2214}*+ {21 6}*+ {14}* 
{426}*+ {3231'}*+ {24}*+ {2214}*+ {14}*+ {O}* 

{43422H {42214H {43241}*+ {426}*+ {342PH {3221 H {33231 H {321'} 
+ {3225 H {315 H {322212 }*+ {3 2214H {3241 H 2 {3231' }*+ {26 H {22} 
+ {25PH {2PH {23P}*+2{2214}*+ {216}*+ {14}* 

{4351 H {431' H {43241}*+ {3422 H {32P H {33231 H {321' H {3222P}* 
+ {32214H {3241 H {3231'}*+ {26H {22H {25PH {2P} 
+ {24}*+ {23P}*+2{2214}*+ {216}*+ {14}* 

{43 6 H {41 6H {43224H {424PH {3423H {31'H {3321'H {323l} 
+ {322 3P H {3221' H {3251 H {3215 H {24PH {22P H {2314H {214H {16} 
+ {12} 
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Table 7 (Continued) 

Branching 

(b) E7 -> SUs (Continued) 

{41 342H {4214H {41 25 H {425 H {433221}+ {4321 PH {431 24H{42411 } 

+ {3521 H {321 H {3423 H {3P. H {33221 H{312P H {3321 3 H {3231} 
+2{3223 1 H2{322P H2{3251}+2{3215 H {27 H {2H {25 H {23} 
+ {24]2H {22 PH2{2314H2{214 } 

{4334H {414H W3223H {423PH {43422H {42214H {43222P}* 
+ {43241}" + {426 }" + {362 H {31 H {342P H {32J2 H {33231} + {32P} 
+ {33P H {3223 H {3225 H {315 H {32214H {324 1 H2{323 P}* 
+ {25 PH {2PH {23P}"+ {2214}*+ {216}* 

{44322H {42P H {423321 H {432P H {423223 H {423P H {4223 P} 
+ {43223 H {43 S1 H {431' H {43422 H {42214H {43222 12 }*+2{43241}* 
+ {362H {31 H {3 5 1 H {322H {342P H {3221 H2{3 323 1 H2{32P H {33 P} 
+ {3223 H2{3225 H2{31' H {3222P }*+2{32214H2{3241 H 2{323 P}* 
+2{25]2H2{2PH2{23]2}*+ {2214}*+ {21 6}* 

{4522 H {422 H {423321 H {432P H {4224}*+ {43422 H {42214H {43222P}* 
+ {43241 }*+ {3422 H {3212 H {3323 1 H {32P H {3222P }*+ {32214} 
+ {3241H {323P}*+2{261H2{21H {24}*+2{2214}*+ {14}*+ {O}* 

{45 31 H {431} + W34H W14H W3 321 H {432PH W24}*+ {4351} 
+ {431 S H {43241}* + {3422}+ {32P H {34212 H {3221 H {3323 1} 
+ {32J3 H {32241 H {3214H2{3222]2J* + {26 H {22 H {25 P H {212} 
+ {23 P}*+2{22 14}*+ {216}*+ {14}* 

W3 2 H {4PH {433222 H {422P H W342H {4214H {423231 H {43231} 
+ {436H {41 6 H {434]2H {43214H {433221}+ {4322J3H2{43224} 
+ 2 {424]2 H {43214H {434P H {3521 H {321 H {3423 H {3J3} 
+ {33221 H {322]2 H {3321 3 H {3231 H {3224 H {3214 H 2 {3223]2} 
+2{322P H 2{32S1 H2{321 5 H 2 {24P H 2{22P H {2314} 
+ {214H WH {P} 

{46 H {42 H {4234 H {4214 H {4224}* + {3422 H {32P H {3222]2}* 
+ {26H {22H {24}*+ {2214}*+ {14}*+ {O}* 

W2H {42H W3 3 1 H {43J3 H W342H {4214 H W32 3 1 H {4323 1} 
+ W2s H {42'H W214H {4342H {433221}+ {4322PH {3 s21} 
+ {321 H W23 H {31 3 H {3 3221 H W2PH {332J3H {323 1 H2W23P} 
+2{322J3 H {3214H {324H {325 1 H {3215 H {27 H {2 H {2S } 

+ {23H {24PH {22]2H2{2314H2{214} 

{47H {4H {43 34H {414H {4324H {424H {43422H {42214H {43222P}* 
+ {426}*+ {3 3231H {32PH {3222P}*+ {323P}*+ {26H {22H {24}* 
+ {2214}*+ W}*+ {O}* 

(c) Es -> SUg branching rules 

(21') . {21'}*+ {1 6 }+ {P} 

(271) {271H {21H {2215 }*+ {2414H {214H {21'}* 

(3 226) W26 H {31 6 H {325 P H {32 2 1S H {271 H {21}+ {2S P H {22]2} 
+ {22]S}*+ {2414H {214H {23 P}*+ {21'}*+ {1 6H {PH {O} 

(427) {427}*+ {325]2H {3221'H {23 J3}*+ {26 H {23}+{2414H {214} 
+ {22 15}*+ {21'}*+ WH {PH {O} 
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Product 

(1 : 1) x (1 : 1) 
(1 : 1) x OS : 1) 

(0: 2)* x (1 : 1) 
(0: 2)* x (0: 2)* 
(J2 :2)x (1: 1) 
(P: 2) x (JS : 1) 
(12 : 2) x (0 : 2)* 
(P : 2) x (P : 2) 

W : 2) x (14 : 2) 

(2 : 2) x (1 : 1) 
(2:2)xW:l) 
(2 : 2) x (0: 2)* 
(2 : 2) x (J2 : 2) 
(2 : 2) x (14 : 2) 
(2: 2) x (2: 2) 
(2: 2) x (25 : 2) 

(21 4 :2)* x(l: 1) 
(214 : 2)* x (214 : 2)* 

(1 : 3) x (1: 1) 
(1:3)x(JS:l) 

(}3 : 3)* x (1: 1) 
(21: 3) x (1 : 1) 
(21:3)xOS:l) 

(3 : 3) x (1 : 1) 
(3 : 3) x (15 : 1) 

(1 6) X (16) 

(21 6) X (1 6) 

(21 6) X (21 6) 

(25 P) X (16) 
(251 2) X (21 6) 

(2512) X (2512 ) 

(26) X (16) 
(26) X (21 6) 

(26) X (2512) 

(26) X (26 ) 

(27) X (1 6) 

(27) X (21 6) 

(27) X (2512 ) 

(27) X (26) 
(27) X (27) 

(3251) X (1 6) 
(3 225) X (1 6) 

(3423) X (1 6 ) 

Table 8. £ group Kronecker products 

Evaluation 

(a) Kronecker products for £6 

{(2:2)+W: I)} +[W:2)] 
(214 : 2)*+(0: 2)*+ (0: 0)* 
(1 :3)+W:2)+(1: 1) 
{(o: 4)* + (214 : 2)*+(0: O)*} + [(P: 3)*+(0: 2)·] 
(21: 3)+(13: 3)*+(214 : 2)*+(0: 2)* 
(2213:3)+(1 :3)+(14:2)+(1 :1) 
(1 2 : 4)+(21 3: 3)+(JS: 3)+(2: 2)+(1 2: 2)+(15: 1) 
{(22 : 4)+(14: 4)+(314 : 3)+(1: 3)+(25: 2)+ (1 : I)} 

+ [(2P : 4)+ (22P : 3)+ (1: 3)+ (14: 2)] 
(2212: 4)*+(214 : 4)* +(0: 4)*+(241: 3)+{21 : 3)+(1 3 : 3)* 

+2(214 : 2)*+(0: 2)*+(0: 0)* 
(3: 3)+ (21 : 3)+ (214 : 2)* 
(31 4 :3)+(1 :3)+W:l) 
(2: 4)+(21 3: 3)+(2: 2)+(1 2: 2) 
(31: 4)+(21 2: 4)+(314 : 3)+(1: 3)+ (22P: 3)+(14: 2) 
(31 3 :4)+(214: 4)*+(21: 3)+ (1 3 : 3)*+(214 : 2)*+(0: 2)* 
{(4: 4)+(22: 4)+(314 : 3)+(25 : 2)} +[(31 : 4)+(2213: 3)] 
(424 : 4)* + (214 : 4)* + (0: 4)* + (214: 2)* + (0: 2)* + (0: 0)* 
(314 : 3)+ (2213 : 3)+(1: 3)+(25 :2)+(14: 2)+(1 : 1) 
{(424 : 4)* + (22}2 : 4)* +(214 :4)*+(0: 4)*+(35 : 3)+ (3: 3)+(241: 3) 

+(21: 3)+2(214 : 2)*+(0: 2)*+(0: O)*} 
+ [(3223 : 4)+ (31 3 : 4)+ (214 : 4)* + (241 : 3) + (21 : 3)+ 2(1 3 : 3)* 
+(214 : 2)*+(0: 2)*] 

(2: 4)+(12: 4)+(21 3: 3)+W: 3)+(2: 2)+ (1 2 : 2) 
(214 :4)*+(0: 4)*+(21: 3)+(1 3 : 3)* +(214 : 2)* +(0: 2)* 
(212: 4)+(14 :4)+(2213: 3)+ (1: 3)+W: 2) 
(31: 4)+(22 : 4)+(2P: 4)+(314 : 3)+ (22}3 : 3)+(1 : 3) 
(321 3 : 4)+(2: 4)+(1 2 : 4)+(21 3: 3)+(2: 2)+(1 2: 2) 
(4:4)+(31 :4)+(314 :3) 
(414 : 4)+(2: 4)+(2: 2) 

(b) Kronecker products for £7 

{(26)+ (21 6)} +[(25 P)+ (0)] 
(3251)+ (27)+ (16) 
{(426)+ (2512)+ (O)} + [(3(25) +(21 6)] 
(3521)+ (3423)+ (3251)+(27)+ (1 6) 
(43422)+ (362) + (3225) + (26)+ (2512)+ (21 6) 
{(4522)+(4l34)+ (4351)+ (426)+ (362)+ 2(2512)+ (O)} 

+ [(44322)+ (43422)+ (362)+ (3225)+ (26)+ (21 6)] 
(36)+ (3521)+ (3251)+ (16) 
(4351)+ (362)+(2512)+ (26) 
(4531)+ (44322) + (4351) + (43422)+ (362)+ (3(25)+ (26)+ (251 2)+ (21 6) 
{W)+ (4522)+ (4351)+ (426)+ (2512)+ (O)} 

+ [(4531)+ (43422)+ (26)+ (21 6 )] 

(362) + (3225) + (2512) + (21 6) 
(436)+ (3423)+ (3251)+ (27)+ (16) 
(4532)+ (42342)+ (436)+ (3521)+ (3423)+ 2(3251)+ (27)+ (1 6) 
W2)+ (42342)+ (3521)+ (3423)+ (3251)+ (27) 
{(47) + (43422)+ (3225)+ (26)+ (21 6)}+ [(4l34)+ (426)+ (362) + (2512)+ (0)] 
(4351)+ (43422)+ (426)+(362)+ (3225)+ (26)+ (2512)+ (21 6) 
(4234 2)+ (436)+ (3423)+ (3251)+ (27) 
(44322) + (4l34 ) + (43422) + (362)+ (3'25)+ (2512) 
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Product 

(3521) X (1 6) 
(36) X (16) 

(362) X (1 6) 

TableS (Continued) 

Evaluation 

(4531)+ (4522)+ (44322) + (43 51)+ (434 22)+ (362)+ (251 2) 
(46)+ (4531)+(43 51)+(26 ) 

(462)+ (4532)+ (4234 2)+ (436)+ (3 521)+ (325 1)+ (27) 

(c) Kronecker products for E8 

{(427)+ (271)+ (O)} +[(3226) + (2P)] 
(4362)+(38)+(3226)+ (271)+ (217) 

(217) X (217) 
(271) x (2P) 
(27 1) x (27 1) 

(3226) x (217) 
(427) X (217) 

{(472)+ W3 5)+ (427)+ (38)+ (271)+ (O)} + [(4632)+ (4362)+ (3226)+(21 7)] 
(543 6 )+ W3 5)+ (4362)+ (427) + (38)+ (3226)+(271) + (217) 
(63 7) + (543 6 ) + (4362)+ (427)+ (3226)+ (217) 

14. Symmetrized Kronecker Powers for E6, E7and Es 

A knowledge of the resolution of the symmetrized Kronecker powers of the 
irreps of a group is essential to the correct determination of the phase properties of 
the various nj and njm symbols of the group and its subgroups (Butler 1975; 
Butler and Wybourne 1976). These resolutions can also play an important role in the 
analysis of the invariants of ·groups. . . . 

The plethysm of S-functions supplies a natural tool for resolving the Kronecker 
powers of an irrep of a group into their different symmetry terms. The terms arising 
in the nth Kronecker power of an irrep (A) of a group G are just the terms arising in 
the plethysm (Wybourne 1970) 

(59) 

where k;.: is the multiplicity of the irrep (A') occur~irig in the resolution· and {J.l} 
is a partition of n appropriate to the symmetry terms being considered. The evaluation 
of equation (59) proceeds by first expressing (A) as a series ofS-functions and then 
evaluating the S-function plethysms (Wybourne 1970; Butler and Wybourne 1971). 
The resulting S-functions are then re-expressed as the characters of irreps of G. 

The plethysms arising in equation (59) are simplest for the cases where {/.t} 
corresponds to the partitions {n} or {1 n}. The other symmetry terms can usually be 
derived most simply from these by noting that 

A @ (BC) = (A @ B)(A @ C) . 

Thus to evaluate (16) @ {21} for E7 , we note that 

But 

(16) @ ({2}{1}) = «(16) @ {2})( {16}@ {I}) 

= [(26) +(21 6)](16) 

= (36 ) + (3521) + 2(325 1) + (27) + 2(16) . 

(60) 

(61) 

(62) 

Comparison of equation (62) with (61) and the ·result for (1 6) @ {3} leads immediately 
to the result fo~ (1 6 ) @{21}. These results can be checked dimensionally by noting 
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that the partitions {.u} to the right of theplethys symbol ® equivalently label the 
irreps of US6 • 

The symmetrized powers of the fundamental irreps for E6 and E7 were evaluated 
up to the fourth power and the results are given in Tables 9a and 9b respectively. 
In view of the special significance of E7 we give'the resolution of the second and third 
powers of the adjoint irreps (21 6) in 'fable 9c. 

Plethysm 

(1: 1)129 {2} 
(1: 1)129 {P} 
(1: 1)®{3} 
0: 1)129 {21} 
(1:l)®{P} 
(1:1)®{4} 
(1: 1)129 {31} 
(1: 1)129 {22} 
(1: 1)129 {2I2} 
(1:1)®W} 

(1 6)®{2} 
(1 6)129 {J2} 
(1 6)129 {3} 
(16)®{21 } 
(16)129 {P} 
(16)129 {4} 

W)®{31} 
(16)129 {22} 
(1 6)129 {212} 
(16)129 W} 

(21 6)129 {2} 
(21 6 )129 W} 
(21 6)129 {3} 
(21 6)129 {21} 
(21 6)129 {l'} 

Table 9. Kronecker powers for E6 aDd E7 

Evaluation 

(a) Symmetrized powers of fundamental irrep of E6 
(2:2)+(1 5 : 1) 
(P: 2) 
(3: 3)+(214: 2)+(0: 0) 
(21: 3)+(214 : 2)+(0: 2) 
(J3: 3) 
(4: 4)+ (314 : 3)+(2': 2)+ (1: 1) 
(31: 4)+ (314 :3)+(221 j: 3)+(1 : 3)+ W: 2)+ (1 : 1) 
(22 : 4)+ (314 : 3)+(1: 3)+ (25 : 2)+ (1 : 1) 
(21' :4)+ (2'P: 3)+ (1 : 3) +W: 2) 
W:4) 

(b) Symmetrized powers 0/ fundamental irrep of E7 . . 

(26)+ (21 6) 

(25 P)+(0) 
(3 6)+ (32~1)+ (1")' 
(3521)+(32'1)+ WH (1 6) 
(3423 ) + (16) 
(46)+ (435 1)+(426)+ (25 12) + (26)+ (0) 
(4531)+ (43 51)+ (43422)+ (362)+ (322')+ 2(26)+ (2512)+2(21 6) 
(4522)+ (43'1) + (426H (362)+ 2(2512)+ (0) 
(44322)+ (43422)+ (362)+ (3225)+ (26)+ (25 P)+ (21 6 ) 

(43 34)+ (25 P)+ (0) 

(c) Kronecker powers of adjoint irrep of E7 

(426)+ (25 J2)+{0) 
(322') + (21 6) 
(636) + (43422) + (322')+ (26)+ (21 6) 
(543 5)+ (43422)+ (4"2)+ (362) + (322')+ (2'1 2)+ 2(21 6) 
(4334)+ (426)+ (3225)+ (2512)+ (0) 

15 .. A Branching Rule Theorem . 

So far our discussion of branching rujes has' befm limited to the largest maximaJ 
subgroups of the exceptional groups and we have used elementary multiplets and' the 
building-up principle to construct them. To pro~eed to other subgroup structures 
we use a theorem giveri elsewhere (Butler and WY60urne 1969;Wybollrne1970) 
wl).ich may be stated as: If, under the restriction G --+ H, 'the character oj the ve(:t6r 
ifl:ep of G, say fll, decomposes as . . . , . ',. 

then the character [A] of G decomposes into the characters ip) of H according to the 
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characters of H contained in the plethysm 

(63) 

Thus in the case of S026 --+ F4 we have 

[1] --+ (1000), 

while for F4 --+ S09 we have 

(1000) --+ [0000]+[1000]+[1111]', 

and hence under S026 --+ S09 we have 

[1] --+ [0000]+[1000]+[1111],. 

Thus by (63) the [.?c] irrep of S026 decomposes into the irreps of S09 contained in 
the plethysm 

([0000] +[1000] +[1111]') @ [.?c]. 

These plethysms may be readily evaluated using the properties of S-functions and 
existing tabulations of S-function plethysms (Butler and Wybourne 1971). If the 
resulting series of S09 characters are expressed in terms of F4 characters using the 
result (47) and Table 4, we obtain the S026 --+ F4 branching rules given in Table 5b. 

(0000) 
(1000) 
(1100) 
(3111), 

(2000) 

Table 10. F4 -> SU3 x SU3 branching rules 

Branching to SU3 x SU, 

{O}{O } 
W}{P}+ {I HI }+ {21 HO} 
{O H21 }+ {21 HO}+ {22 HI }+ {2 HP } 
{O}{O}+ W}{P}+ {l HI }+ {21 HO}+ {21 }{21 }+ W H2} 

+ {l H22}+ {2 HP}+ {22 Hl}+ {32 HP}+ {3I HI} 
+ W}{O}+ {3}{0} 

{O HO}+ {F HP}+ {I HI }+ {O H21 }+ {21 HO}+ {21 }{2I } 
+ {22 HI }+ {2}{P}+ {22 }{22}+ {2}{2}+ {32}{P} 
+ {31 HI}+ {42}{0} 

16. Further Branching Rules 

Once a table of Kronecker products is available there is little difficulty in building 
up branching rules of any group structure involving the exceptional groups. We 
start with the smallest nontrivial irrep and then build up to higher dimensional irreps. 
Here we have restricted our attention to group structures of significance in theories 
of elementary particles that involve the exceptional groups, though other group 
structures present no special difficulties. 

Results for F4 --+ SU3 X SU3 are given in Table 10 while those for E6 --+ F4, 
E6 --+ SU3 X SU3 X SU3 , E7 --+ E6, E7 --+ SU6 X SU3 , E8 --+ SU2 X E7, E8 --+ SU3 X E6 
appear in Tables 11a-llf respectively. There is no difficulty in extending these 
tables as required. 



Exceptional Lie Groups 

(J..) 

(0:0) 

(1: 1) 

(0:2) 

OZ:2) 
(2:2) 

(214 : 2) 

(1: 3) 

«3:3) 
(21: 3) 

(2(3: 3) 

(3: 3) 

(314 : 3) 

(0:4) 

(0000) 

(1000)+ (0000) 

(1100)+ (1000) 

Table 11. Further En group branching rules 

Branching 

(a) E6 -> F4 branching rules 

(3111)' + (1100)+ (1000) 

(2000)+ (1000)+ (0000) 

(2000) + (3111)' + 2(1000) + (0000) 

(2100)+ (2000)+ (3111)' + (1100)+ (1000) 

(2110)+(2100)+2(3111)' +(1100) 

(5111)' + (2100)+(2000)+(3111)' + (1100)+ (1000) 

(5111)' + (2110)+ (2100)+ (2000)+ 2(3111), + (1100)+ (1000) 

(3000) + (2000) + (1000) + (0000) 

(3000)+(5111)' +2(2000)+ (3111)' + 2(1000)+(0000) 

(2200) + (2100) + (2000) 

(b) E6 -> SU3 X SU3 X SU3 branching rules 

(0:0) {OHO}{O} 

(1 : I) {P HO}{l}+ {I HI HO}+ {O}{F}{F} 

(0: 2)* {21 }{O}{O}+ {O }{21 HO}+ {O HO H21 }+ {J2}{1 }{P}+ {I }{F HI} 

OZ : 2) {22 HO}{F}+ {21 }{1 }{1 }+ {2}{F HO}+ {F HF }{21 }+ {12 H2}{0}+ {F}{P HO} 
+ {1 H21}{F}+ {I }{OH2}+ {I HO}{F}+ {OH22 H1}+ {O}{I }{22} 
+ {0}{1 HI} 

(2: 2) {22}{0}{2}+ {21 }{l}{I }+ {2}{2 HO}+ {P}{P }{2I }+ {P HP HO}+ {I H21 HP} 
+ {I }{O HF}+ {O }{22 H22}+ {O HI }{I} 
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(214 : 2)* {22} W HI }+ {2 HI HP}+ {21 HO H2I }+ {21 H21 HO}+ {O }{21 H21 }+ {21 }{O}{O} 
+ {O} {21 } {O}+ {O}{O H21 }+ {12} {22} {12}+ {I H2} {1 }+ {12}{1 } {2} 
+ {I }{12 }{22 }+2{12} {I} {12}+ 2{1 H12 HI }+2{0}{0} {OJ 

(1: 3) {32HOHI}+ {0}{32}{F}+ {O}{P H32}+ {31}{1 }{O}+ {I H31 HO}+ {P}{OH31} 
+ {22}{1 HO}+ {I H22 HO}+ {P}{O H22}+ {22 HI }{21 }+ {I }{22 H21 } 
+ {1 2 H21 }{22}+ {21 HI2 H2}+ {21 } {2}{12}+ {2} {21} {I }+ 2{21 HI2}{1,z} 
+2W}{21 HI }+2{1 HI H21}+ {2HOH1}+ {0}{2HP}+ {OHPH2} 
+ 2W} {OJ {1 }+2{0} {12} {1 2 }+2{1} {1} {OJ 

«3: 3)* WHO}{O}+ {3 HOHO}+ {OH32HO}+ {OH3 HO}+ {OHO}W}+ {0}{0}{3} 

(0) (0:0) 

+ {32}{1 }{P}+ {31 }{P}{I} + {I }{32 HI }+ {P }{31}{P}+ W}{l }{32} 
+ {I }{F }{31 }+ {22 HP H22}+ {2}{1 HI }+ {P }{22}{2}+ {I }{2 }{22} 
+ {2 }{22 }{1 2 }+ {22}{2}{1 }+ {I HP }{22}+ {P}{1 }{2}+ {p }{22 HP} 
+ {I }{2} {I }+ {22 }{12}{1 }+ {2} {1 } {12}+ {21 }{21 } {21 }+ 2 {21 } {21 HO} 
+ 2 {21 } {O} {21 } + 2 {O} {21 } {21 } + {21 } {O} {O} + {O} {21 } {O} + {O} {O} {21 } 
+ 3 W}{l }{12}+ 3 {I} {12} {I}+ {O}{O}{O} 

(c) E7 -> E6 branching rules 

(1 6 ) (1: 1)+ (IS : 1)+2(0:0) 

(21 6 ) (0:2)+(1:1)+W:1) 

(2SP) (214 :2)+(12: 2)+(1: 2)+(0: 2)+2(1: 1)+2W: 1)+(0:0) 

(26) (25 : 2)+ (2: 2)+ (214 : 2)+ 2(1: 1)+ 2W : 1)+ 3(0: 0) 

(27) OZ: 2)+(14 :2)+2(0:2)+(1: l)+W: 1) 
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Table 11 (Continued) 

Branching 

(d) E7 -+ SU6 X SU3 branching rules 
(0) {O} {O y* 
(16) {I }{I }' + {l'}{F}, + {P}{O y* 
(21 6 ) W HI' }' + W }{I}' + {O }{21 }'* + {214}{0 y* 
(251') {O}{O}*+ W}{Fy+ W}{l}'+ W}{2Y+ WH22}'+ {2}{P}'+ {2 5 }{IY 

+ {O }{21 }'* + {2P}{1 }' + {23 P}{P}' + {2I4}{0 y* +' {214 }{21 y* 
+ {22 F}{0},* 

(26 ) {O}{O}'*+ W}{P},+ W}{l}'+ {2}{2}'+ {25}{22}'+ {23}{O}'*+ {214}{0}'* 
+ {214}{21}'*+ {2P}{l}'+ {23P}{P}, 

(27) {I HI }' + {l'} W}' + {l'}{2}' + {1 }{22 }' + {21 }{O}, + {241 }{O}, + {l' }{21 }'* 
+ {213}{F}' + {221'}{1}' 

(e) E8 -+ SU2 X E7 branching rules 
(0) {O }(O) 

(2F) {2 }(O)+ {I }(16)+ {O }(216) 
(271) {2 }(21 6) + {I }[(27) + (16)] + {O }[(25]2)+ (0)] 

(J226) {3 }(J6) + {2 }[(2512) + (21 6) + (0)] + {I }[(3251) + (27) + (1 6)] 

+ {O }[(25 ) + (21 6 ) + (26 )] 

(427) {4 }(O) + {3 }(I6) + {2 }[(26)+ (21 6 )]+ {I}[(3251)+ (1 6)] 

+ {0}[(426)+ (25P)+ (0)] 

(I) E8 -+ SU3 X E6 branching rules 
(0) {O }(O : 0) 

(21') {21 }(O: 0)+ W}(1 : 1)+ {I }(15 : 1) + {O }(O: 2) 
(271) {22 }(15: 1)+ {2 }(1 : 1) + {21 }[(O: 2)+ (0: 0)] + {1 2 }[W: 2)+ (1 : 1)] 

+ {I }[(12 : 2) + (15: 1)] + {O }[(214 : 2) + (0: 0)] 
(J226 ) W }(O: 0)+ {3}(0: 0)+ {32 }(1 : 1)+ {3I }(I 5: 1) + {22 }[W: 2)+ (1': 1)] 

+ {2 }[W : 2)+ (1 : 1)]+ {21 }[(214 : 2)+ 2(0: 2)+ (0: 0)] 
+ W}[(l : 3)+(25: 2)+ W: 2)+ 2(1: 1)]+ {1}[(1': 3)+ (2: 2)+ (F: 2)+ 2(15: 1)] 
+ {O}[(l': 3)+ (21 4 : 2)+ (0: 2)+ (0: 0)] 

(427) {42}(O:0)+ {32}(1: 1)+ {3I }(15 : 1) + {22}[(2:2)+(1': 1)] 
+ {2}[(25 :2)+(1: 1)] + {21 }[(214 :2)+(0 :2)+(0:0)] 
+ W}[(1 : 3)+ W: 2) +(1 : 1)]+ {1}[(1': 3)+W: 2)+(1': 1)] 
+ {O }[(O: 4)+ (21 4 : 2)+ (0: 2) + (0: 0)] 

17. Concluding Remarks 

We have established simple labelling schemes for the irreps of the exceptional 
groups and then shown that it is possible to enumerate many properties using 
relatively simple techniques and a minimum of computation. The work reported here 
is a prerequisite for the calculation of the nj and njm symbols of the exceptional 
groups and their subgroup structures-a necessary step in making detailed 
applications. We note that there is basically little difficulty in extending the 
tabulations as required. Much of the material presented has been remarkably simple 
to obtain, which we believe demonstrates the superiority of methods based on the 
S-function calculus. 

With the basic properties of the exceptional groups enumerated it should now 
be possible to start to examine the relevance of these groups in particle physics in a 
quantitative manner. 
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