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Abstract 

Allowing for important doorway state effects in analyses of proton elastic scattering from the light 
nuclei 14N and 160 enables an average geometry optical model potential to be determined, the 
strength parameters of which show a smooth behaviour with projectile energy. 

1. Introduction 

Over the past 15 years, optical model analyses of proton elastic scattering from 
heavy nuclei (e.g. A > 40) have been very successful in fitting the differential cross
section data up to 60 MeV projectile energy. Furthermore, such success has been 
obtained using potential geometries and parameter values that have systematic 
trends with target mass and projectile energy variations (Buck 1963; Perey 1963; 
Bechetti and Greenlees 1969). In contrast, optical model analyses of proton elastic 
scattering from light nuclei, and particularly from the very light nuclei such as 12C, 
14N and 160, have yielded rather poor quality fits to the data and have often required 
quite strange and fluctuating (with energy) parameter values. These parameter 
fluctuations were especially obvious in the early analyses of low energy scattering 
from 12C (Nodvik et al. 1962; Rosen et al. 1962). Subsequent analyses of these 
12C data (Craig et al. 1966; Sprickmann and Geramb 1973) correlated the irregular 
non-monotonic energy dependences of optical model parameters with resonance 
effects, as did analyses of elastic scattering data from 160 (Greaves et al. 1969; 
Karban et al. 1969). Resonance corrections to the scattering amplitudes also usually 
yielded markedly improved fits to the data, particularly at large scattering angles 
where the optical model potential scattering predictions are only a few millibarns per 
steradian in strength. 

In most previous studies of resonance corrections to optical model transitions, 
the corrections have been sought either after making 'best' optical model fits to 
all data (Lowe and Watson 1967; Girod et al. 1970) or with a fixed energy-independent 
optical potential (Tamura and Terasawa 1964). In the former method, the optical 
potential is being forced to reproduce data structures that contain significant resonance 
effects, while the inverse is true in the latter. In the present analyses, however, we 
have attempted to be more consistent. We assume that an optical potential of fixed 
geometry is valid and demand a smooth energy variation in its strength parameters. 
Such an energy variation is determined by analyses of forward angle data, namely 
for () < 100°, and these data usually exceed 8 mb sr -1 in magnitude. This scattering 
region is assumed to be essentially described by the potential scattering aspect of 
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elastic scattering; an assumption based upon the expectation, from parity and angular 
momentum considerations, that resonance contributions will be symmetric about 
90° in the centre of mass system, thereby being most important at large scattering 
angles where potential scattering is relatively weak. Hence, while resonance con
tributions should influence predictions at all angles, they will do so with a strength 
comparable with that observed in large angle data, namely a few millibarns per 
steradian. 

Once the optical potential details have been set we supplement the resultant 
potential scattering amplitudes with resonance scattering amplitudes of a Breit-Wigner 
type, as has been formally derived (Feshbach 1962; Feshbach et al. 1969), and use 
a least square search procedure to determine the resonance parameters. Alternative 
smooth variations of the potential parameters are then used and the above process is 
repeated to achieve a modicum of self-consistency. 

While all available data were analysed by the present optical model analyses, only 
subsets were chosen to seek resonance corrections. At the higher projectile energies, 
the optical model analyses by themselves were sufficient to reproduce most of the 
observed structure and no attempt was made to seek the required small modifications. 
On the other hand, at the lower projectile energies, the data probably reflect influences 
of the opening of various reaction channels (Daehnik 1964) and, as such phenomena 
are not included specifically in our analyses, we did not proceed beyond defining 
the appropriate optical potential. Hence resonance corrections were applied in 
analyses of data essentially for projectile energies in the range 20-40 MeV. Such 
an energy range is particularly interesting since we can expect that the resonance 
contributions relate dominantly to the virtual excitation of giant resonances in the 
targets (Sprickmann and Geramb 1973). 

In Section 2, the optical model analyses are described, while the effects of resonance 
corrections are discussed in Section 4. 

2. Average Optical Model Potentials 

It is now standard practice to take the nuclear optical model potential to be 
comprised of real and imaginary parts, as 

V(r) = U(r) + i W(r) , (1) 

where 

{ (r -r At)}-l 
U(r) = VC<r) - Vo 1 +exp a~ 

( h) 2 1 d { (r -rAt)}-l 
+ 0" .lY.o 2mp c r dr 1 +exp a:: (2) 

and 

( h )21 d{ (r-r At)}-l 
+0" .lW.o 2mp c r dr 1 +exp a:: (3) 

Here Vc(r) is the Coulomb potential of a uniformly charged sphere of total charge 
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Ze and radius Rc = rc At, that is, 

for 
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(4a) 

(4b) 

ze being the charge on the incident particle; Vo is the central strength of the real 
(or refracting) part of the potential whose range and diffusivity are denoted by 1'0 

and ao respectively, while Ws and Wd are the (imaginary) volume and surface 
absorptions respectively, each having the same associated radius 1'1 and diffusivity aI' 

Table 1. Average optical model parameters 

The absorption diffusivity a, was 0·30 fm for 14N, except for the two highest energies, and 0·45 fm 
for 160. Apart from these differences the fixed geometry was the same for both cases, namely: 

r 0 = 1· 14 fm, ao = O· 68 fm, r, = 1·40 fm 

E (MeV) Vo (MeV) Ws (MeV) Wd (MeV) E (MeV) Vo (MeV) Ws (MeV) Wd (MeV) 

(a) 14N 

14· 5 61·33 8·20 29·8 
18·0 57·03 8·10 31·0 
21·0 53·26 8·05 36·6 
23·0 50·93 8·00 40·0 
26·0 49·67 8·00 

(b) 160 

14·5 54'5 0·0 5·10 21·4 
14'7 54·4 0·0 5·10 22·1 
15·2 54·3 0·0 5·10 23·4 
15·6 54·2 0·0 5·10 24·3 
16·0 54·1 0·0 5·10 24·5 
16'4 54·0 0·0 5·10 25·46 
17·0 53·8 0·0 5·10 26·2 
17·4 53'7 0·0 5·10 27·3 
18'0 53·6 0·0 5·10 30·1 
18·4 53·5 0·0 5·10 30·5 
19·2 53·3 0·0 5·00 34·1 
19·8 53·2 2·40 4·60 36·8 
20·4 53·1 6·00 2·20 39·7 
20·8 53·0 7·10 1·25 

A Potential required a, = O· 68 fm, that is, equal to ao. 

48·24 
47·70 
45·55 
44·19 

52·8 
52'7 
52·5 
52'3 
52·2 
52·0 
51·8 
51·6 
51·0 
50·8 
50·0 
49·4 
48·8 

2·50 
5·20 
6·57A 

6·71 A 

8·40 
9·20 

10·05 
10·30 
10·35 
10·35 
10· 35 
10· 37 
10·40 
10·40 
10·40 
10·40 
10·40 

6·30 
3'90 

0·45 
0·10 
0·0 
0·0 
0·0 
0·0 
0·0 
0·0 
0·0 
0·0 
0'0 
0·0 
0·0 

In this work, the Coulomb radius rc was set to the fixed value of 1·24 fm, not 
only because the results are not too sensitive to its exact value but also because 
this value reproduces the experimental Coulomb shift for a 1 P1/2 and j P3/2 single
particle bound state. The spin-orbit potential parameters throughout were set to 
the values 5· 4 MeV, 0 MeV, 1·20 fm and 0·6 fm for Vso' Wso,rso and aso respectively 
(although Vso = 6 MeV is perhaps better for 160). This standard set was chosen 
since only differential cross-section data were analysed and the spin-orbit potential 
has little effect on predictions of data in this form. The spin-orbit potential does 
strongly influence predictions of polarization but such measurements are scarce 
for elastic scattering on 14N and of too limited a range for elastic scattering from 160. 
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As noted in the Introduction, only the data forward of 100° were used in our 
searches (chi-square minimization) to determine the optical model potential. Our 
procedure in achieving this was to first seek the most appropriate geometries, by a 
literature survey as well as initial optical model search calculations. Once this fixed 
geometry was established, the various strength parameters as well as the type of 
absorption (pure volume Ws' pure surface Wd or a combination of both) were sought 
by further optical model search calculations. The results were then studied as a 
function of projectile energy and, after repeat runs allowing slight modifications to 
the geometry, a smooth energy-dependent potential was deduced. The optimum 
values are shown in Tables 1 for 14N and 160. 
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Figs la and lb. Comparisons of predicted differential cross sections from the 
optical model (OM) with experimental data for the elastic scattering of (a) 
40·0 MeV and (b) 14·6-36·6 MeV protons from 14N. Resonance-corrected (R) 
fits are shown by solid curves in (b). 

It is to be noted that at the higher energies for 14N, where purely volume absorption 
is optimum, the required associated diffusivity was equal to that of the real part 
of the optical model potential (our computer code did not allow separate variation 
of the volume and surface absorption geometries). Such a change was not essential 
in the 160 analyses. An explanation of this distinction or of the differences in the 
values of the parameter aI for 14N and 160 has not been pursued here. 
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(a) Optical Model Results for 14N 

Measurements of the differential cross sections for proton elastic scattering from 
14N have been made for projectile energies in the range 14-40 MeV at approximately 
4 MeV intervals (Kim et al. 1964; Curtis et al. 1971; Lutz et al. 1972; Hansen et al. 
1973; Fox 1974). This reaction is unusual in that the ground state spin-parity 
assignment of 14N is 1 + ,a fact which could influence potential scattering if a spin-spin 
term in the optical potential were necessary and significant. The effects of a spin-spin 
potential have been sought in analyses of the elastic scattering of polarized nucleons 
from oriented targets by Davies and Satchler (1964) but, as their work deemed such 
a term to be insignificant, we have not included it in the present studies. 

Using the procedure described above, our optical model analyses gave an energy 
variation in Vo that was smooth and monotonic but not completely linear. In fact 
the simplest representation (of the rather sparse data, it must be noted) was a linear 
decrease of Vo with E until about 21 MeV whence a change in gradient and a further 
linear decrease with energy. Smooth variations with energy of the absorptive potential 
strengths are also apparent from Table la, albeit that, since the diffusivity of the 
volume absorption was allowed to increase for the 36·6 and 40 MeV data analyses, 
it is the volume integral leWd)' given by 

leW) = ~{4nRl Wd(l n2af)} 
d oR 3 + R2 ' 

I I 

with 

that varies smoothly. 
The differential cross sections resulting from these optical model calculations 

are compared with the experimental data in Figs 1a and lb. In Fig. 1a the 40 MeV 
results are shown to be in excellent agreement with the data, while in Fig. 1b the 
14·6-36· 6 MeV results shown by the dashed curves reveal a systematic disparity 
with the data at large scattering angles. 

(b) Optical Model Results for 160 

There are considerably more results for the elastic scattering of protons from 
160 in the projectile energy range 14-40 MeV than from 14N. The data exist in 
about 1 MeV steps (Kobayashi 1960; Daehnik 1964; Cameron et al. 1968; Karban 
et al: 1969) thus providing a better test for an average field specification than the 
14N data. Nevertheless, the geometry of the 14N potential was used as the first 
guess for the 160 analyses and, except that the absorption diffusivity had to be 
altered to a value of 0·45 fm, it was found to be completely adequate. 

Again by limiting the data to which fits were sought to those forward of 100°, 
smooth variations in the potential strengths were found in general. The real potential 
strength varied smoothly and linearly with energy over the entire range (Table 1b). 
The absorptive potential strengths also show a smooth variation with energy and, 
as in the 14N case, a transition from pure swface to pure volume type occurs but 
now in the region of 19-22 MeV projectile energy. However, in the energy range 
14-18 MeV, strong fluctuations in Wd are required to fit the data; this requirement 
was also noted in the analyses of Daehnik (1964) as well as that of Duke (1963) 
and was attributed to the several reaction thresholds existing in this energy region. 
In fact, Daehnik observed strong fluctuations in data at 13·35, 14·85 and 16· 9 MeV 
and 12 other lesser fluctuations in the 13-19 MeV range. 
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The optical model predictions obtained here are compared with the experimental 
data in Figs 2a-2d (dashed curves). In the 14·5-18·0 MeV results (Fig. 2a) there is a 
rapid fluctuation of data about the average potential results at large scattering angles, 
which is characteristic of the opening of reaction channels. The disparities between 
the data and the optical potential results for 18·4-34·1 MeV (Figs 2b and 2d) are 
again most evident at the large scattering angles, but they now show a regular trend 
with projectile energy. Finally, the predictions agree well with the 36· 8 and 39·7 MeV 
data (Fig. 2d), save for the large-angle region, but the data (and predictions) here 
have very small magnitude. 

(c) Optical Parameter Comparisons 

Because of the small range of energies studied in the past by anyone author, 
it is not possible to satisfactorily compare previous energy dependences of the 14N 

absorptive potentials Ws and Wd with those obtained in the present work. However, 
one may compare the geometry deduced herein with those used in the past. . The 
previous values of aJ seem to be slightly higher than ours, particularly at low energies. 
Apart from this difference our values lie well within the limits of those obtained by 
others. Likewise the optical parameters obtained in the recent past for 160 agree 
well with the present geometry. 

There have been a number of quite extensive studies made of the energy dependence 
of the real part of the central potential. Buck (1963) analysed proton elastic and 
inelastic scattering in the energy range 10-20 MeV for medium mass targets and 
obtained the energy dependence 

Vo = 52·6 -0'28E ± 1·0 MeV. (5) 

Perey (1963) added an extra term to account for the decrease in the kinetic energy 
of the proton inside the nucleus caused by the Coulomb potential, and obtained 

Vo = 53·3 -0·55E +{0·4(Z/A1")+27(N-Z)/A} MeV. (6) 

Later surveys determined other variations: notably an analysis of 30-40 MeV 
data by Fricke et al. (1967) resulted in the variation 

Vo = 49·9 -0'22E +0'4Z/At +26'4(N-Z)/A, 

while that for A > 40 by Bechetti and Greenlees (l969) yielded 

Vo = 55·2 -0'32E +0'27 Z/At +24(N-Z)/A. 

(7) 

(8) 

If each of the above variations (6), (7) and (8) are extrapolated to the 160 case then 
the expected variations of Vo with energy are 

Vo = 54·6 -0·55E, Vo = 51·2 -0'22E or Vo = 56·0 -0·32E. (9) 

The results of our analyses yield 

and 

Vo = 78·8 -0'22E 

= 60·0 -0'4E 

Vo = 57·8 -0'23E 

for the 14N and 160 cases respectively. 

for E < 21 MeV, 

E> 21 MeV 

(lOa) 

(lOb) 

(11 ) 
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3. Addition of Resonance Corrections 

While the optical model calculations of elastic scattering from 14N agree well 
with the data at forward angles (0 < 100°) for all the energies analysed, there are 
discrepancies at backward angles, notably for 23· 0, 26· 0, 29·8 and 31· ° MeV 
incident proton energies, and these discrepancies are characteristic of a re'sonance 
amplitude interfering with that of potential scattering. Since the magnitude of the 
differences between the experimental data and the potential scattering predictions is 
approximately 3 mb sr -1 at back angles, where the cross section is about 10mb sr -1 , 
it should be possible theoretically to correct this discrepancy without having a large 
effect on the forward angle fit, where the cross section is typically of the order of 
hundreds of millibarns per steradian. The fits for the 160 data showed similar trends, 
with back-angle differences between the data and the predictions at most energies 
from 22·1 to 39·7 MeV, the magnitude of the differences in this case being around 
6 mb sr -1. Although the average optical model potential did not produce an 
exceptionally good fit in the 14·5-18·4 MeV energy range for 160, it was decided 
not to attempt a resonance correction at these energies because of the multiplicity 
of reactions that have their onset in this region. 

The energies of the compound systems 150 and 17F were obtained by adding the 
separation energy gained (when the proton and target nucleus temporarily amalgamate) 
to the incident proton energy in the centre of mass system. The separation energy 
gain was of a significant magnitude only for 14N, for which the value was 7· 293 MeV 
(Ajzenberg-Selove 1970); for 160 the energy gain of 0·601 MeV (Ajzenberg-Se1ove 
1971) barely offsets the centre of mass correction to the laboratory energy. Thus, 
for scattering from 14N, the obvious disparities in the data taken with projectile 
energies of 23· 0, 26· 0, 29·8 and 31 . ° MeV are associated with excitation energies 
in 150 of 28· 8, 31· 5, 35· I and 36· 2 MeV respectively whereas, for scattering from 
160, the observed large-angle disparities between the data and the optical model 
predictions for proton energies from 23·4 to 27· 3 MeV coincide with excitation 
energies in 17F between 22·6 and 26·3 MeV. 

(a) Form 01 Resonance Corrections 

The general scattering amplitudes for spin t particles scattering from a zero spin 
target have the form 

S(O) = A(O) + B(O) (J. n, (12) 

where n is the unit normal to the scattering plane. From this, the differential cross 
section can be expressed as 

da/dQ = 1 A(O) 12 + 1 B(O) 12 = a(O). (13) 

Optical model results are then energy-averaged predictions of the scattering amplitudes 
A and B with an energy-averaging interval of the order of mega-electronvolts 
(Feshbach et al. 1969), whence 

A(O) --+ <A(O)MeV = le(O) +k- 1 L exp(2ia/) Pz{O) 
/ 
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and 
B(O) -t (B(O»MeV = -ik- 1 L exp(2iul)P,(O) 

I 

(15) 

where fc(O) denotes the Coulomb scattering amplitude and the I ± subscripts indicate 
,I values of I ± t. All other quantities are in standard notation. 

Inherent in the above prescription is an inability to explain data variation over 
energy intervals less than the average. However, by using the Feshbach prescription 
and smaller energy-averaging intervals, it is possible to deduce that the average 
scattering amplitudes (A) and (B) of equations (14) and (15) should remain and be 
supplemented by energy-varying contributions that coincide with doorway-state 
participation in the transitions but yet average out rapid fluctuations of compound 
nuclear nature. Thus data variation with energy in intervals of the order of kilo
electronvolts can be interpreted by this doorway-state hypothesis, the required 
'resonance' amplitudes then being 

AR(O) = (2ik) -1 L exp(2iu,) Pz(O)[(l + I)Tk+ >Ccd t) +1 Tk- )(0( It)], (16) 
I 

BR(O) = -(2k)-1 L exp(2iu,)P,(O)[Tk+)(0(/t) - Tk-)(O(/t)], (17) 
I 

where, following the Feshbach formalism, the amplitudes 

(18) 

carry the coupling between the elastic channel 0( and any doorway state d of total 
angular momentum Jd and energy B. In order to use the detailed expansion of these 
resonance scattering amplitudes, it is necessary to have a precise spectroscopy of 
the doorway states, and since this is lacking we simply treat the amplitudes Tk±) as 
adjustable complex quantities. 

To simplify interpretation of the results we further assume that the doorway states 
are formed by capture of the projectile into an unoccupied 2s-1d shell orbit Ii' the 
target response being an excitation to a state (at high energy) of spin and parity J"; 
the most obvious of these target response states will be the giant resonances. Hence 
with targets of spin and parity assignments 1", we have the constraint 

I+J =j+J, 

as well as that of parity conservation. Given a specific giant resonance then we can 
specify which partial-wave scattering amplitudes could be affected by resonance 
corrections. 

(b) Results and Discussion 

Inclusion of resonance effects enables the optical model predictions to be modified 
to the forms shown in Figs lb, 2b and 2c (solid curves). There is a marked improve
ment in the fits to the data particularly at large angles. 

The 14N results required (I, ,I) resonance corrections to the (1,3/2) and (2,3/2) 
channels only. The magnitudes of the TR amplitudes are specified in Table 2a. 
Regrettably the data are far too scarce to draw any conclusions. However, the 
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results are consistent with a general background contribution from E I (isovector 
dipole) giant resonances and, from the Tk+)(ac2t) values, also strong isoscalar E2 
resonance effects. 

The resonance-corrected fits to the elastic scattering data from 160 required the 
TR amplitudes listed in Table 2b. The odd (I, f) corrections (in this case (I, 1/2), 
(1,3/2) and (3,7/2» within our model interpretations reflect the influence of virtual 
excitation ofisovector El and isoscalar E3 giant resonances, while the even corrections 
((2,3/2) and (2, 5/2» indicate isoscalar E2 giant resonance properties. In the associated 
excitation energy (ed) range, other studies (Geramb et al. 1973; Hanna et al. 1974; 
Breuer et al. 1975) have observed fractionated El and E2 strengths as we conjecture 
from our analyses. More finely spaced (in energy) data and complementary measure
ments of polarizations would be most useful in furthering these analyses. 

E'ab (MeV) 

23·0 
26·0 
29·8 
31·0 

23·4 
24·3 
24·5 
25·46 
26·2 
27·3 

Table 2. Magnitudes of resonance amplitudes 

T~-)(oc1t) T~-)(oc2t) T~+)(oc It) T~+)(oc2t) 

(a) 14N 

0·314 0·295 
0·392 0·175 
0·395 0·415 
0·390 0·273 

(b) 160 

0·694 0·419 0·308 0·706 
0·658 0·339 0·802 0·854 
0·976 0·508 0·205 0·522 
0·948 0·863 0·557 0·717 
1·240 0·419 0·170 0·693 
0·639 0·372 0·660 0·624 

0·686 
0·655 
0·737 
0·821 
0·632 
0·581 

Finally, the disparities at large angles between the optical model predictions 
and the data for projectile energies of 36·8 and 39·7 MeV are worth further consider
ation in view ofthe quite recent analyses of Mackintosh and Kobos (1976), who made 
a coupled reaction channel analysis of 30 MeV proton scattering from 40Ca. By 
including deuteron pickup channels specifically, they noted an influence on elastic 
scattering predictions quite similar to the large-angle data for 160 and in particular 
to the minima near 135°. Such corrections are small in comparison to the large 
variations we have sought to analyse but nevertheless should be included in future 
more sophisticated treatments of data. 

4. Conclusions 

The results presented here justify the use of an average optical potential model 
in analyses of scattering from light nuclei and reveal how strong resonance effects 
influence experimental data. In particular, the role of giant resonances as doorway 
states in non-potential scattering contributions has been demonstrated and a measure 
of the importance of their amplitudes in analyses has been obtained. 
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