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Abstract 

The effect of inelastic collisions on the ratio of the longitudinal to lateral diffusion coefficients for 
electrons in electrostatic fields in gases is investigated for several different momentum transfer cross 
sections. The effect of varying both the strength of the inelastic effects and their energy dependence 
is examined and the results are used to discuss some of the DL/f.l data of Wagner et al. (1967). 

Introduction 

The calculation of anisotropic diffusion coefficients from the Parker-Francey 
solutions of the Boltzmann equation for the case of an elastic collision cross section 
has already been described in detail in two previous papers (Francey and Jones 1975, 
1976; hereinafter referred to as Papers I and II). In the present paper we continue 
this work to include some inelastic collisions and investigate their effect on the ratio 
of the longitudinal to lateral diffusion coefficients DL/Dp The work is, to some extent, 
an extention of that of Francey and Stewart (1971), who investigated the effect of 
inelastic collisions on the mean energy and isotropic diffusion coefficient for a constant 
cross-section gas. 

We consider a model which has a cross section for momentum transfer of the form 

and which makes a series of weakly inelastic collisions with the background gas 
molecules. Each inelastic level within the molecule is labelled with the index hand 
has an excitation cross section Qh which varies with energy as 

The equation we use is 
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h 

which is the same as equation (5) in Paper II, except for the last term on the left-hand 
side, which accounts for the inelastic collisions. This equation describes a steady 
state electron stream which originates from a point source at the origin p = 0, Z = 0 
of an axially symmetric cylindrical coordinate system and then drifts and diffuses 
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through the gas under the action of a uniform electrostatic field E which is directed 
along the axis of the cylinder; 10 is the spherically symmetric part of the electron 
distribution function, e the electron energy, m and M the mass of an electron and gas 
molecule respectively, N the gas number density and S the electron source term. 

In the papers of Frost and Phelps (1962) and Hake and Phelps (1967) there is a 
further inelastic term of the form 

This accounts for collisions of the second kind, or superelastic collisions, which are 
collisions in which thermally excited molecules impart excitation energy to the electron. 
However, as we will be working in the large EIN limit, where the thermal motion of 
the gas molecules is negligible, this additional term will not be necessary. 

To solve equation (1) we have to put the inelastic term into a more manageable form, 
and to do this we follow the method used by Francey and Stewart (1971). This 
essentially consists of noting that the inelastic part of the equation can be written as 

where tfrh(e) = e/o(e) Qh(e). The assumption that the collisions are weakly inel&!>tic 
means that the energy lost by an electron in exciting an inelastic level in the molelJule 
is very much less than the electron energy at that time, that is, eh ~ e, and this all. ,ws 
us to expand tfrh(e +eh) in a Taylor series about e. The inelastic term then becoL~s 

This type of approximation is very similar to the continuous approximation of Frost 
and Phelps (1962) for rotational excitation. If we were trying to model a particular 
real gas we would need to separate the various inelastic processes, i.e. rotational, 
vibrational, electronic etc., and assign different energy dependences for each. However, 
as this is only a model calculation we will simply use one energy dependence for all 
the inelastic levels. In terms of dimensionless variables x, y and z, defined by 

x = Be, y = eEBZ, z = eEBp, 
with 

B1+ 2 = _1_ 6m(NQo)2_1_ 
1+2 M eE eo l' 

the equation we wish to solve becomes 
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where the inelastic parameter b is given by 

Solution of Boltzmann Equation and Formula for DL 

The Parker-Francey technique for· the solution of the Boltzmann equation has 
already been described in detail elsewhere (parker 1963; Francey 1969; Papers I and 
II). As the solution of equation (2) follows this method very closely there is no point 
in repeating it here, and so we simply state the result, which is 

C (e )-1 {Wp2( e )-1} fo(e;Z,p) = 4nDZ exp{ -T(e)} 1- eEZ exp - 4DZ 1- eEZ 

( g1(Be) ) 
x 1 + (1) + ..... 

eEBPo Z 
(3) 

In this equation D and Ware the (isotropic) diffusion coefficient and drift velocity 
respectively and C is the normalization constant for the energy distribution function 
exp{ - T(Be)}; g1 is related to the lowest eigenfunction of the energy eigenvalue 
equation and Pb1) to the lowest eigenvalue. Equation (3) is essentially the same as 
the corresponding expression for the elastic case (equation (17) of Paper II), except 
that the leading exponential is now exp{ - T(x)}, where 

T(x) = XI+2 + {2(l+2)b/(2s +1+2)}xt (2s+ 1+2) , 

instead of exp( _XI + 2). 

The energy eigenvalue equation results from a separation of variables in equation 
(2) and has the form 

d2A (2-/1· (1 2) 1+1 (I 2)b t(2s+l))dA - + ._- - + + x + + x -
~2 2 x ~ 

+ a(l+2)(l+4)xl +(1 +2)b(s+ 1)Xt(2s+1-2)}A - K2 A 

+ {(l+2)xl+ 1 +(/+2)bxt (2s+I)}PA = O. (4) 

Here K is a separation constant from a zero-order Bessel equation and A(x, K2) and 
P(K 2 ) are the eigenfunction and eigenvalue of equation (4). The dependences of the 
lowest eigenfunction Ao and eigenvalue Po on K are assumed to have the forms 

,."-' 

Ao(x,K2) = Coexp{ -T(x)}{1 +K2Ab1)(X) +O(K4)}, 

PO(K2) = PbO) +K2Pbl) +O(K4). 

The lowest eigenvalue Po is found by writing equation (4) as 

nCO) - 0 po - , 
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where 

1(0) = t'" (l+2)exp{-T(x)}(xtCl+4)+bxs+l)dx, 

1(1) = fo"" xt(2-1)exp{ -T(x)} dx. 

The quantity gl(X) is related to the lowest eigenvalue Ao(x,K2) by 

When only elastic collisions are considered, equation (4) is considerably easier to 
handle, as the terms containing the inelastic parameter b are absent. The equation 
can then be solved analytically by expanding in associated Laguerre polynomials, 
and this was the method employed in Paper II. The addition of the inelastic terms 
makes the equation far too difficult for analytic solution though, and it must now be 
solved numerically. 

The calculation of the longitudinal diffusion coefficient DL from equation (3) is 
straightforward and follows the method outlined in Paper II. The longitudinal flux 
r L is calculated from equation (3) using 

r = -~~ J"" ~(O!o eEBO!O) dx 
L 3(mB)2 N 0 Q oy + ox 

and the number density N from 

4n(2)t J"" N = m m 0 et !o(e,Z,p) de. 

We then require that 

By equating coefficients of powers of Z on both sides of the resulting equation we 
can find expressions for both Wand DL • The result is that W remains unchanged, 
while DL becomes 

where 

M(l) = fo"" x- t1 gl exp( - T) dx, 

1(a/2) = L"" x a/ 2 exp( - T) dx, 

(5) 

() = 1,3, 

and DT is the lateral diffusion coefficient which is equal to the isotropic diffusion 
coefficient D. 

The expression (5) for DLIDT involves integration over the gl function, and this 
in turn requires the solution of equation (4). To do this we define a new function 
U(X,K2) by 
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Fig. 1. Variation of the ratio DL/DT as a function of the inelastic parameter b for the 
indicated values of s and (a) I = 0, (b) I = 1 and (c) I = -1. 
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and the equation for u(x, K 2) is then 

d2u (2-1 1 (I 2) 1+ 1 (I 2)b -'-(2S+1»)dU - + -- - - + x - + x 2 -

dx2 2 x dx 

_K 2u+{(/+2)X1+1 +(l+2)bx~(2s+I)}f3u = O. (6) 

If we now write 

and substitute into equation (6) then, neglecting terms of order K4 or higher, the 
equation for hex) is 

d2h + (2-/! -(/+2)X1+1 _(l+2)bx+(2s+l+2 J)dh 
dx2 2 x dx 

= 1-(l+2)(XI+1 +bxH2s+I»f3~1) (7) 

and g1 is simply given by g1(X) = hex). 
Equation (7) was solved numerically using a Runge-Kutta.program and the values 

of DL/ DT were constructed by numerical integration from the resulting solutions 
using equation (5). The results are described in the next section. 

Results 

We looked at the constant cross-section model (1= 1) first. Equation (7) was solved 
numerically for s values ranging from - 0·5 to 2·5 in steps of O· 5, and for values 
of b ranging from 0·00 to 0·90 in steps of 0·05. The results are summarized in Fig. lao 

The first point to note is that when b = o· 00, i.e. inelastic effects discarded, the 
program gives a value of 0·573 for DL/ DT. This is in excellent agreement with the 
value of 0·574 that we found earlier by expanding g1(X) in Laguerre polynomials. 

For s = - O· 5 the value of Dd DT decreases from 0·573 to 0·471 as b increases 
from 0·00 to O· 90. For s = 0, DL/ DT still decreases with increasing b but less quickly, 
i.e. from 0·573 to only 0·516. The same behaviour is observed again for s = 0·5, 
still decreasing with increasing b but only very slowly. For s = 1·0, the value of 
Dd DT remains constant at 0·573 whatever the value of b, and then, for s = 1· 5, 
2·0 and 2· 5, DL/ DT begins to increase with increasing b, the larger the value of s the 
quicker the increase. 

Similar results to the above are found for the I = I model (see Fig. lb). For small 
s values Dd DT is below its elastic value and decreases very strongly with an increase 
in the strength of the inelastic collisions. At larger s values this decrease is less 
substantial until finally there is a value of s for which DL/DT remains equal to its 
elastic value even though quite strong inelastic effects may be present. For s values 
larger than this, DL/DT increases only very slowly above its elastic value for any 
increase in b. 

An interesting case to consider is the constant collision frequency model (l = - I). 
When inelastic collisions are absent this is the only interaction which continues to 
have an isotropic diffusion coefficient even in arbitrarily large electrostatic fields. 
However, the addition of even a small number of inelastic collisions destroys this 
isotropy, as our results in Fig. lc show. 



A surprising feature of the I = - 1 results, which has not been present in the 
previous data, is the appearance of a maximum in the DL/ DT values as a function of b. 
For s values larger than about 1· 0, DL/ DT first increases above its isotropic value of 
1·0 to some maximum value dependent on s, and then decreases once more with a 
further increase in b until it is again below the isotropic value. The constant collision 
frequency model appears to be the only case where this effect occurs. 

We would now like to apply these results to some real gases, in particular to explain 
some of the DL/fl data of Wagner et al. (1967), and this is discussed in the next section. 

Application to Real Gases 

Even though the present results are only applicable to model gases with very 
simple inelastic energy dependences it is still interesting to try and use them to explain 
some of the DL/fl data of Wagner et al. (1967). Hydrogen is a particularly good gas 
to consider first, as its elastic cross section is almost independent of energy. We can 
illustrate this behaviour quite clearly by examining the E/ P dependence of Wand 
DT/fl· 

When inelastic collisions are present Wand DT are given by 

'I W - 8neE X6 C [(0) 

-3m2NBQo ' 
(8a, b) 

where 

and provided the inelastic contributions to these expressions remain constant (that 
is, /(0), /(1) etc.) then their E/P dependences are 

Wex (E/p)1/(1+2) and 

So for a constant cross section gas (l = 0) we expect to find W proportional to 
(E/ P)t and DT/ fl directly proportional to E/ P, and this is indeed the behaviour dis
played by hydrogen. Fig. 2 shows the drift velocity data of Lowke (1963) plotted as 
a function of (E/P)t, while Fig. 3 shows the DT/fl data of Crompton et al. (1967). 
Both these graphs demonstrate the type of E/ P dependence we would expect from a 
constant cross-section gas. 

Fig. 3 also shows the DL/fl results of Wagner et al. (1967). When there are no 
inelastic collisions present we expect the DL/DT ratio to be 0·57; however, in Fig. 3, 
between the E/ P values of O· 5 and 1·2 V cm -1 mmHg -1 (1 mmHg ~ 133 Pa), this 
ratio has the constant value 0·48. Above 1 . 2 the DT/ fl graph begins to deviate from 
straight-line behaviour and our model becomes inadequate, whereas below 0·5 we 
start to move into the area of thermal equilibrium where our theory is no longer 
applicable. 

From Fig. la we can see that a DL/DT value of 0·48 implies s = -0'5, with b 
lying somewhere between O' 60 and 0·80. To find the correct value of b we can fit our 
theoretical expression for the drift velocity (equation 8a) to the experimental results 
in Fig. 2. If we express E/ P in units of V cm -1 mmHg -1,. W in cm s -1 and take M 
to be the mass of a hydrogen molecule, then equation (8a) becomes 

(9) 
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By using the experimental value of the gradient in Fig. 2 and the numerical values of 
1(0) and 1(1/2) appropriate to s = - O· 5 and b = 0·70 we can use equation (9) to 
find Qo = 15·2 A 2 . We can check the consistency of these values by calculating the 
gradient of the DT/p graph in Fig. 3. From the equations (8) this is 

which gives a gradient of 0·21 cm mmHg. The experimental result is 0·22 cm mmHg. 
The good agreement here suggests that we can describe the system phenomenologically 
with a cross section of 15·2 A 2 and inelastic parameters of s = - O· 5 and b = 0·70. 
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Fig. 2 (left). Drift velocity W versus (EI P)t for hydrogen. The experimental data are from Lowke 
(1963). 

Fig. 3 (right). Experimental values of DTIIl and DL/Il versus EIP for hydrogen. The DTIIl data are 
from Crompton et al. (1967) and the DL/Il data from Wagner et al. (1967). 

We can make a further test of this approach by comparing calculated and experi
mental data for DP versus E/ P. From equation (8b) we find 

and, using the appropriate values of 1(1) and 1(1/2), this becomes 

10- 3 DP = 2'66(E/P}l: kgms- 3 . (10) 



Fig. 4 shows the experimental DP data, calculated from 

DP = (Dip) x Wx (EIP)-1, 

plotted against (EIP)t. From equation (10) we would expect a straight line with 
gradient 2·66 but this is obviously not the case. The poor agreement here is due to 
the fact that the experimental DP values increase much less quickly than the expected 
(EIP)t; in fact the data appear to increase roughly as (EIP)t instead. This departure 
of the DP data from constant cross-section behaviour is probably caused by the 
inelastic effects, but why they should produce a change in the EIP dependence here 
and not in the Wor Dljl data is still not clear. 
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Fig. 4. Variation of the product 
DP versus (EIP)! for hydrogen. 
The points derived from the 
experimental data of Lowke 
(1963) and Crompton et at. 
(1967) are clearly not compatible 
with a straight line of gradient 
2·66. 

There are several conditions which need to be met if the type of approach out
lined in the previous section is to be successful. In the first place the cross section 
for momentum transfer Q must be a smoothly varying function of energy e which is 
capable of expression in the form Q = Qo(eleo)tl. The easiest way to check for this 
type of behaviour is to use the drift velocity versus EI P data. If Q is proportional to 
etl then a log-log plot of W versus EI P should yield a straight line with a gradient 
of (1+2)-1 (provided that the effect of the inelastic collisions remains constant). 
However, if we analyse the data for each of the gases used by Wagner et al. (1967) 
we find that, except for helium, argon and hydrogen, the only gases which display 
this behaviour are carbon monoxide, which corresponds to I = 1, and carbon dioxide, 
with 1= -1. 

A second condition is that the inelastic effects, expressed through the two param
eters sand b, must remain constant over the EI P range of interest, and this is only 
partly true of carbon monoxide. Fig. 5 shows a graph of W versus (EIP)1 /3 for this 
gas. In the EIP range from [·0 to 4·0 V cm- 1 mmHg- 1 , W is directly proportional 
to (EI p)1/3 and since the gradient is constant so the values of sand b should also be 
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constant. According to our model then, we expect DL/DT not to vary within this 
range. But this is not the case, as Fig. 6a shows that Dd DT decreases uniformly from 
0·474 to 0·338 in this E/P range. 
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Fig. 5. Drift velocity W versus 
(EI P)1/3 for carbon monoxide. 
The experimental data are from 
Wagner et al. (1967). 
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Fig. 6. Plots of DTIf.l and DL/f.l 
versus EI P for 
(a) carbon monoxide, and 
(b) carbon dioxide. 
The values for DTIf.l in (a) are 
from Skinker and White (1923; 
quoted after Wagner et al. 1967) 
and the remaining data are from 
from Wagner et al. 

A further restriction is that we must always work in the large E/ P limit because of 
our neglect of the term accounting for the background gas temperature in the original 
equation. This was necessary because the equation could not be separated with this 
additional term present, but it does prevent us from applying our results to gases 



whose characteristic energies are only fractionally greater than the thermal equilibrium 
value of kTle, or 0·025 Vat room temperature. A particular case of this is carbon 
dioxide, as shown by the Dill data of Wagner et al. (1967) in Fig. 6b. 

Conclusions 

We have shown that the addition of inelastic collisions can either add to or subtract 
from the anisotropy, depending on the particular energy dependence of the inelastic 
cross section. Perhaps the most interesting result we have found is that for some 
elastic cross sections there are particular variations of inelastic cross section with 
energy which do not alter the value of DLI DT even when their strength is increased 
so that they become comparable with the elastic cross section. Surprisingly though, 
the constant collision frequency model does not appear to be one of these cases. 
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