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Abstract 

The free convection flow along a semi-infinite horizontal plate oscillating in its own plane is analysed. 
The basic flow is purely buoyancy induced, while the oscillations in the plate cause a time-dependent 
boundary layer flow and heat transfer. The boundary layer equations are linearized and the first 
two approximations are considered. Two separate solutions valid for high and low frequency 
ranges are obtained by a series expansion in terms of frequency parameters. The skin friction and 
the rate of heat transfer are studied for both frequency ranges. For very high frequencies, the 
oscillatory flow pattern is of a 'shear-wave' type, unaffected by the mean flow. It is found that the 
phase of the skin friction at the plate lags that of the plate oscillations by in and the rate of heat 
transfer has a phase lag of ~n. 

Introduction 

In the study of unsteady boundary layer flows, one aspect that has received much 
attention in recent years is concerned with boundary layer responses to imposed 
oscillations. The theory of this was initiated by Lighthill (1954) to study the effect 
of free stream oscillations on flow and heat transfer along plates and cylinders. The 
extension of the theory for free convection boundary layers along a semi-infinite 
vertical plate was carried out by Nanda and Sharma (1963), Eshghy et al. (1965) 
and Kelleher and Yang (1968), but the case when the plate is horizontal was not 
considered. Recently, however, Muhuri and Maiti (1967) have studied free convection 
flow and heat transfer along a semi-infinite horizontal plate when the plate temperature 
oscillates about a constant mean, and they have obtained separate solutions for low 
and high frequency ranges. These oscillatory flow and heat transfer problems are 
important in engineering because such flows occur often in practice. To an observer 
standing on the rotating element of a turbomachine the flow appears as an oscillation 
superimposed on a mean flow. The effect of fluid or surface oscillations on the heat 
transfer from a surface to the surrounding flow is of particular interest to the 
engineer. 

The main aim of the present investigation is to study the effect of plate oscillations 
on the free convection flow and heat transfer along a semi-infinite horizontal plate. 
We consider a thin flat plate extending from the origin to infinity in the x direction, 
where x measures the distance along the plate lying horizontally in quiescent fluid 
and oscillating in its plane at right angles to its edge. The plate is heated to a uniform 
temperature Tw and placed in an ambient fluid at Too. Thus the basic flow is entirely 
due to buoyancy forces over a horizontal plate whose temperature differs from that 
of the free stream. The effect of the buoyancy forces is to induce a longitudinal 
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pressure gradient which causes flow. It is an interest~ng flow in its own right, yielding 
a steady outer streaming for the boundary layer equations as,a result offree convection 
alone; moreover, this problem should be easily amenable to experiment in a laboratory. 
The steady free convection flow over the plate is perturbed due to its harmonic 
oscillations. By assuming that the magnitude of the oscillations is small (of order 
B ~ 1) compared with the mean velocity induced by the convection, we are able 
to employ techniques of linearization for this perturbation. 

In the present treatment the basic steady flow is considered using the Karman
Pohlh~usen method, and an approximate solution to be used in the subsequent study 
of unsteady flow is obtained. Two different solutions for low and high frequency 
ranges are developed from the perturbation equations. The method of solving 
the problem is essentially the same as that developed by Lighthill (1954), except 
that it is extended to obtain series solutions for low and high frequencies. The 
matching between the two solutions is found to be quite satisfactory. For very high 
frequencies the phase of the rate of heat transfer lags behind that of the plate 
oscillations by in and the skin friction has a phase lag of tn. 

Basic Equations 

The boundary layer equations for two-dimensional free-convection incompressible 
unsteady flow past a semi-infinite horizontal plate are (Verma 1970; see also Sparrow 
and Minkowycz 1962) 

au au au a (fOO ) 02U -+u-+v- = gp- Ody +v-at ax oy ax y oy2' (Ia) 

au + ov = 0 ax oy , (Ib) 

00 00 00 02 0 
at +u ax +v oy = IX oy2' (Ic) 

where 0 = T - Too, with T and Too being the temperature of the boundary layer and 
free stream respectively; u and v are the velocity components along the x and y 
directions'respectively, x being the coordinate along the plate and y normal to it; 
9 is the acceleration due to. gravity; IX is the thermal diffusivity of the fluid; and 
p and v are the coefficients of thermal expansion and kinematic viscosity respectively. 
In accordance with the usual practice for free convection flows, we restrict the effect 
of the density variations to the formation of the 'buoyant force', which is the first 
term on the right-hand side of equation (1a). . 

The boundary conditions for equations (1) are 

y = 0: u=eU(t), v=O, O=Ow (B~l); 

U --+0, 

(2a) 

(2b) 

where U(t) = Uo exp(iwt), Uo being assumed to be independent of the frequency of 
oscillations w, and Ow = Tw- Too, Tw being the plate temperature. It is assumed that 
the plate oscillation velocity is small compared with the mean horizontal velocity 
inclnc-pcl hv thp <;:tpllclv "tlltp ('()nvP('tl()n 



The solution of equations (1) with (2) are obtained in terms of complex functions, 
the real parts of which have physical significance. We take u, v and 8 each to be 
the sum of a steady component and a small oscillating component: 

U = Uo +eu1exp(iwt), v = Vo +BV1exp(iwt), 8= 80 +e8l exp(iwt), (3) 

where the components uo, Vo and 80 for the steady mean flow satisfy the equations 

OUo oUo . fJ a (fOO 8 ) 02uo Uo-+Vo- = g - ody +V--, aX oy ax y oy2 

oUo + ~Vo = 0 
ax oy , 

080 080 0280 
Uo- +Vo-- = IX--aX oy oy2 ' 

with the boundary conditions 

y = 0: Uo = 0, Vo = 0, 80 = 8w ; 

Uo --> 0, 

(4a) 

(4b) 

(4c) 

(5a) 

(5b) 

Neglecting squares of e and dividing by exp(iwt), we find that Ul , V1 and 81 satisfy 
the following set of differential equations 

. OUI oU l oUo oUo fJ a ( roo 8 d) 02U1 (6 ) 
lWU l +uoax +voay +u1ax +Vlay = g ax Jy 1 Y +v oy2 ' a 

OUI + ~Vl = 0 
ax oy , (6b) 

. 8 081 oe l oeo oeo 02e l ( 
lW 1 +Uo--+VO-+Ul-+V1- = (X--, 6c) ax oy . ax oy oy2 

with the boundary conditions 

y = 0: 

Steady State Solution 

(7a) 

(7b) 

Let us consider the set of equations (4) and (5) which describe the steady free 
convection boundary layer flow along a horizontal plate. We shall employ the 
Karman-Pohlhausen method of integration to solve these equations. Integrating 
equations (4a) and (4c) over the width of the boundary layer, we obtain 

:ALOO u6 d y ) +veo~ t;o = gfJ o~(foOO Loo 80 dYdY) , (8a) 

:Afooo 
Uo 80 dy ) = - (X(~~o) y;O • (8b) 
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We assume the velocity and temperature profiles 

(9) 
where 

1'/=y/f>, 1'/0 = y/f>o, 

f> and f>o being the viscous and thermal boundary layer thicknesses. The expressions 
(9) satisfy the conditions (Sa) at y = 0, together with 

y--+oo: 000 --+ 0 
oy , 

y = 0: (0200 ) = 0 
oy2 y=O ' 

V(03 UO ) = 0 
oy3 y=O ' 

(0300 ) = 0 
oy3 y=O • 

Substituting the profiles (9) into equations (8a) and (8b) and considering only 
the similarity cases, we obtain 

where 

and 

94a- 1 = 99L12(40Ll-21)G(LI), A5 = 12375(40Ll-21)/47L1, 

a=v/rx, 

f> = AX2/5(V2/gPOw)1/5 , 

Vo(x) = 310 LlA5Xl/5(gpOw V3)2/5 , 

G(LI) = t - 452 LI- 1 + i3 LI- 4 -ll40 LI- 5 , LI ~ 1, 

_ 5 LI 5 ,12 + 2 ,14 1 Ll 5 
- TI -TILJ TI LJ -17 ' 

(10) 

It should be noted that the mean horizontal velocity induced by the steady convection 
is zero at the edge of the plate, and the analysis is invalid for small values of x. 
However, the mean velocity increases as X 1/5 and so the results are valid far down
stream. 

The results of practical interest here are the rate of heat transfer, or Nusselt 
number Nu, and the skin-friction characteristics of the problem, and these can now be 
obtained easily. The steady-state rate of heat transfer Nuo in nondimensional form 
is given by 

_ (000 ) X2/5 ( v2 ) 115 5 
Nuo - - ay y=O Ow gpOw = 3L1A' 

while the corresponding nondimensional skin friction at the wall 't"6 is 

't"6 = (g;:w)3 f/5 e:; t=o = Ll3~2 . 
Specific values of Nuo and 't"6 for three values of the ratio a are set out below. 

(1 = 0·72 

1·0 
10 

Nuo = 0·328 
0·361 
0·652 

T~ = 0·901 
0·785 
0·361 

(11) 

(12) 



It is obvious that the skin friction decreases and the heat transfer increases as (J 

increases. These results are a reliable guide to the physical situation since the 
Karman-Pohlhausen method has been proved to be a successful tool in predicting 
the effects of an increase in the Prandtl number on the physical properties of a flow 
(Lighthill 1954). 

We now proceed to investigate the nature of the flow and the temperature fields 
due to the oscillations of the plate. As noted previously, the solutions for low and 
high frequency ranges are developed separately. 

Oscillating Plate Solutions 

(a) Low Frequency Range 

We make use of the Karman-Pohlhausen method again here to solve equations 
(6) and (7). Integrating (6a) and (6c) from y = 0 to 00, we obtain the averaging 
conditions 

V(~a';,1) y=o = gp :Afo'" L'" 01 dYdY) -2 :Afo'" Uo U1 dY) 

-ico fo'" U 1 dy, (13a) 

(13b) 

Also, equations (6a) and (6c) and their first differentials at y = 0 are 

(14a) 

(14b) 

(a201 ) = 0, 
ay2 y=o 

(14c) 

ico(801) = rx(a301) _ Uo(!.!!J..) 
oy y=O oy3 y=O oxoy y=o' 

(14d) 

Consistent with the conditions (7) and (14), we assume the profiles for U1 and 01 

ull Uo = (1 - 5'14 + 4'15) + Al ('1- 4'14 + 5'15) 

+ A2('1 2 - 3'14 + 2'15)+ A3('1 3 - 2'14 +'15), (15a) 

01/0w = (Uoc52Ivx){Bl('18-4'1:+3'1~)+Bi'1i-2'1:+'1m· (15b) 

In these equations the Ai and B j are functions of co to be determined. They may 
be obtained by substituting the profiles (15) into equations (13) and (14), which 
leads to the following expressions. 
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Al = T~ 5 AS Ll 2 (lOBI +B2) -iw*(i- +tAI +-IsA2 + 610 A 3) 

-l5 AS Ll(42995 + 2~~ 2 Al + 9 i~o A2 + 34\sA3)' 

Bl = -t(jLl2h~iw*(12Bl +B2) +ioA5(BI H(Ll) +B2 G1(Ll)) +F(Ll) 

(16'1-) 

(l6b) 

+ Al E(Ll) + A2 J(Ll) + A3 J(Ll)}, (16c) 

where 

H(Ll) = -lTLl - /8 Ll 2 + l5 Ll4 - 3 ~ 5 Ll 5 , 

= 412 Ll- 1 - 3 i 5 Ll-4 +-(\7/5 Ll- 5, 

G1(Ll) = ThLl -8~Ll2 + rto Ll4 -4hLl5, 

= 2 ~ 0 Ll- 1 -ThLl - 4 + /52410 Ll- 5 , 

F(Ll) = t -i7 Ll4 + /7 Ll 5 , 
= 2 -HLl- 1 +iLl-4 -T\-Ll- 5, 

E(Ll) = 653 Ll - 1 i 5 Ll4 + /7 Ll 5 , 

= t -H-Ll- 1 +tLl - 4 ---/875 Ll- 5, 

J(Ll) =T~8Ll2_1i5Ll4+2LLl5, 

= t -tLl - 1 ++Ll- 4 -4~0 Ll- 5, 

J(Ll) = /2 Ll 3 - 1 ~ 5 Ll4 +2h Ll5 , 

= 210 -2\-Ll- 1 + /2 Ll-4 -T-ts Ll - 5, 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

Ll 

~ 1 , 

~ I . , 

~ I , 

~ 1 . , 

~ 1 , 

~ 1 . , 

~ 1 , 

~ 1 . , 

~ 1 , 

~ 1 . , 

~ 1 , 

~ 1 . , 

and the nondimensional frequency parameter w* = W(j2 Iv. 
solved by expanding the Ai and B j in series of the form 

Equations (16) may be 

00 00 

Ai = I Ain(iW*)", i = 1,2,3, B j = I Bjn(iw*)n, j = 1,2. (17) 
n=l n=1 

Substituting these expressions in equations (16) and comparing like powers of iw* 
on both sides, we get: 

for n = 0, 

BI0 = -taLl2{-foA5(BI0H(Ll) +B20 GI(Ll)) +F(Ll) +AI0E(Ll) 

+A20 J(Ll) +A30 J (Ll)}, (ISb) 



for n = 1, 

All = lsLlAs{+LI(lOBll +B21 ) -Ct~zAll +1~~4A21 +3446S A3l)} 

- (1- +tAlO + /5 Azo + 610 A30), 

Bll = -tcrLl2U4 LI(12BlO+B2o) + lo A5(Bll H(LI) +B21 Gl(LI» 

+AllE(LI) +A21I(LI) +A3l J(LI)}, 

and, for n ~ 2, 

Aln = 215 LlA5{+LI (lOB1n + B2n) - (2 t ~ 2 A 1n + 9 ~Jo A2n + 3446 5 A3n)} 

(19a) 

(19b) 

- (t +t Al,n-1 + /5 A2,n-1 + io A 3,n-1)' (20a) 

B1n = -tcrLl5U4L1(12B1,n-l +B2,n-l) + lo A5(B1n H(Lt) +B2n G1(LI» 

+A1nE(LI) +A2nI(LI) +A3n J(LI)} , (20b) 

The solution of equations (6) and (7) in the limiting case co --+,0 is the quasi-steady 
solution, to be denoted by u., v., Os. These quantities are the coefficients of ein the 
velocity and temperature field distributions for steady flow with an imposed oscillation 
eUo of the plate. Hence 

CUO 
Us = Uo cUo' (21) 

That this solves equations (6) and (7) where co = 0 can be verified by direct substitution. 
It- can also be verified easily that this quasi-steady solution cor'responds to A lO , 
A20 , A30, BlO and B20 given by equations (18). 

The profiles (15) for Ul and 01 can now be expressed as the sum of the in-phase 
and out-of-phase components as 

(22) 

The longitudinal components of the velocity and temperature fields may thus be 
written in the form 

(23) 

where 
Ru = (u;+u~)t, R8 = (0; + oDt , 
CPu = arctan(u2/ur), CP8 = at:ctan(02/0r)· 
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The rate of heat transfer for low frequency fluctuations IS finally obtained in 
dimensionless form as 

Nui = _BeXP(iwt)(08 1) xZI5(~)1/5 
ay y=o 8w gf38w 

-BAL1- 1 Re(eXP(iwt) n~o Bln(iw*t) = BNu l cos(wt+ ¢Nu) , (24) 

while the dimensionless skin friction is 

* . (OU l ) (vx )1 /5 T[ = Bexp(lwt) -a 333 
y y=o g f3 8w 

= BA -1 Re(eXP(iwt) n~o AtnCiw*t) = BTl cos(wt+¢r), (25) 

where the amplitudes NUl, 'I and phases ¢Nu, ¢r are defined by these expressions. 

(b) High Frequency Range 

For high frequencies of oscillation Lighthill (1954) has shown [hat the oscillating 
flow is to a close approximation an ordinary 'shear wave' unaffected by the mean flow. 
Following Lighthill, we have the oscillatory horizontal component U l of the velocity 
given by 

which is obtained by retaining the terms with the factor w together with the derivatives 
of highest order in equation (6a). This relation shows that for very high frequencies 
the thickness of the oscillatory boundary layer is of order (vlw}"', that is, it is small in 
comparison with the thickness of the steady boundary layer, which is of order 
(vxl Uo}"'. Thus one can expect the entire oscillatory flow to be contained within 
the steady boundary layer. Because of this, in order to solve equations (6) and (7) 
for large w, we expand Ul , VI and 81 in inverse powers of w~: 

In terms of a new variable z = yw~, equations (6) take the form 

aZUl' -l/Z( OU I auo) -l( aU l auo) v az2 -lUI = W Voaz +VI az +w UOax +U I ax 

OUI + w-t aVl = 0 
ax az ' 

(26a) 

(26b) 

(26C> 

(27a) 

(27b) 

(27c) 



Within the oscillatory boundary layer, the steady flow can be approximated (in 
terms of y = zw- t ) as 

(BUo) y2 (B2uo) Uo = uo(O) + Y -B +-21 --2 + ... 
Y y=O • By y=O 

= (Volo)zw- t -(2Vo/82)Z2W-l + ... , (28a) 

(BVo) y2 (B2vo) Vo = vo(O) +y -B +-21 -2 + .,. 
Y y=O • By y=O 

= (Vo/SoX)Z2W- 1 + ... , (28b) 

(BOo) y2 (B20o) 00 = 00(0) +y -B +-21 -2 + ... 
Y y=O • oy y=O 

= Ow -(SOw/3L1o)zw- t + .... (28c) 

Substituting equations (26) into (27) and using (28), we obtain for U10 and 010 the 
differential set 

B2010 '0 0 
1X--2 -1 10 = , 

Bz 
(29) 

with the conditions 

z = 0 : U 10 = Uo, 010 = 0 ; 

The solution of equations (29) is 

U10 = Uoexp{-(iwlv)ty}, (30) 

which is unaffected by the steady mean flow. Interaction terms, however, appear in 
the subsequent higher approximations. The first nonzero term in 01 is 013 which 
satisfies the equation 

02013 '0 SOw U 0 0 (1) {('I )t } 
IX OZ2 -1 13 = -~ Bx ~ zexp - 1 V Z , (31) 

with the boundary conditions 

z = 0 : 013 = 0 ; 

From equation (31) we get 

O _ 2UoOw{vzexp{ -(i/v)tz} 2v2(i/v)t( {-('/)t}- {-('I )t })} 
13 - -3 A ~ '(1) + exp 1 IX Z exp 1 v z . 

XIXLJU 1 -u (l-u) 
(32) 

We thus obtain the velocity component u and the temperature field 0 as 

U = Uo +eexp(iwt) Uoexp{ -(iwlv)ty} , (33a) 

0-0 (. )2UO Owu{ywt exp{ -(iwlv)ty} 
- 0 +eexp lWt W3/2L1xo i(1-u) 

+ 2(iV)\(exp{ -(iw/lX)ty} -exp{ -(iWIv)ty})}. (33b) 
(1-u) 
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We finally have then the rate of heat transfer for high frequency oscillations 
given in dimensionless form by 

* . (08 1 ) X2/5( v2 )1/5 _ 2BO'exp{i(wt--tn)} NU h = -Bexp(lwt) - -- --
OY y=o 8w gfJ8w - 3Llw*A(1+O't)2 ' 

(34) 

while the nondimensional skin friction is 

': = (00U 1 ) BeXP(iwt)( 3V~ 3)1/5 = BA -1 (w)*texp{i(wt-tn)}. (35) 
Y y=o g fJ 8w 
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Figs 1 and 2. Frequency responses of the amplitudes (a) and phases (b) of (1) the rate of heat 
transfer Nu and (2) the skin friction T. Each characteristic is shown as a function of the 
dimensionless frequency parameter w*/wi, for three values of (J. In all cases the dashed 
curves represent the high frequency solutions. 

For sufficiently large values of w* we find that the amplitude of the rate of heat 
transfer increases with frequency and its phase lags behind that of the plate 
oscillations by 90°, while the skin friction increases with frequency and has a phase 
lag of 45°. 

(c) Discussion of Results 

The frequency responses of the amplitude. and phase angle of the rate of heat 
transfer and of the skin friction as functions of m* /w~ for values of rr of 0·72. 1·0 



and 10 are shown in Figs 1 and 2 respectively. The low and high frequency solutions 
were matched on the basis of the skin-friction oscillations, taking the matching 
point as the critical frequency 0); (which depends on 0") at which the low frequency 
solution predicts a phase lag equal to that of the shear-wave solution (Fig. 2b). 
It can be seen that the amplitude and phase of the fluctuating components of the 
rate of heat transfer and the skin friction all increase initially at low frequencies. 
For higher frequencies the phase lead of Nu and T reaches a maximum and then 
decreases to become a phase lag and approaches an asymptotic value at very high 
frequencies. It is found that, while the amplitude of the rate of heat transfer changes 
significantly as (J' increases from 0·72 to 10, the amplitude of the skin friction is not 
greatly affected. 
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