Nuclear Structure of ${ }^{12} \mathbf{C}$ from an α-particle Model

S. N. Banerjee ${ }^{\text {A }}$ and S. N. Chakrabarti ${ }^{\text {B }}$
${ }^{\text {A }}$ Department of Physics, Jadavpur University, Calcutta 32, India.
${ }^{\text {B }}$ S.C. Institution, Calcutta 19, India.

Abstract

The isoscalar levels with $J^{\pi}=0^{+}$of the ${ }^{12} \mathrm{C}$ nucleus have been investigated by finite-group theoretical methods using an α-particle model. An estimate has been made of the restoring force parameter in the potential between two α particles from symmetry.

The α-particle model is particularly suitable for description of the low energy levels of nuclei which are composed of a whole number of α particles, e.g. ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ etc. Iachello and Arima (1975) have described the entire collective spectra of vibrational nuclei in terms of a few interacting elementary excitation modes, while Bergholtz (1975) has used the α-particle model of Block and Brink to study the importance of vibrations and polarizations of clusters in the low lying states of ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$. In this note, we discuss a (finite) group theoretical approach to the calculation of the vibrational frequencies of transitions between the energy levels of ${ }^{12} \mathrm{C}$.

Let us consider the ${ }^{12} \mathrm{C}$ nucleus to be composed of three elementary α particles, each of mass m placed at the vertices of an equilateral triangle. We will now investigate the different normal modes of vibration of this triangle. Representing the configuration of the system by a six-dimensional state vector ρ, we have the kinetic and potential energies of the system given by

$$
T=\frac{1}{2} m \sum_{i} \dot{\rho}_{i}^{2}, \quad V=\frac{1}{2} K \sum_{i j} V_{i j} \rho_{i} \rho_{j},
$$

where K is the constant restitutive force. The equation of motion is

$$
m \ddot{\rho}_{i}=-\partial V / \partial \rho_{i}=-K \sum_{j} V_{i j} \rho_{j}
$$

For vibration in a normal mode we have

$$
\sum_{j} V_{i j} \rho_{j}=\varepsilon \rho_{i} \quad \text { with } \quad \varepsilon=m \omega^{2} / K
$$

ω being the classical angular frequency of vibration. The normal modes are known to be the eigenvectors of the matrix \boldsymbol{V}, the eigenvalues giving the frequencies. For our symmetry group we have the six elements $I, R, R^{2}, P, P R$ and $P R^{2}$, where I is the identity matrix, R rotates the triangle by 120° in a positive sense and P reflects it about a vertical line through the centre. These elements bring about linear trans-
formations of the ρ_{i} when they act on the triangle. Thus if R operates on the system we have $\boldsymbol{\rho}^{\prime}=\boldsymbol{D}(R) \boldsymbol{\rho}$, where the matrix $\boldsymbol{D}(R)$ is

$$
\boldsymbol{D}(R)=\left[\begin{array}{lll}
0 & 0 & \beta \\
\beta & 0 & 0 \\
0 & \beta & 0
\end{array}\right] \quad \text { with } \quad \beta=\left[\begin{array}{rr}
-\frac{1}{2} & -\frac{1}{2} \sqrt{ } 3 \\
\frac{1}{2} \sqrt{3} & -\frac{1}{2}
\end{array}\right]
$$

Similarly

$$
\boldsymbol{D}(P)=\left[\begin{array}{lll}
0 & \gamma & 0 \\
\gamma & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right] \quad \text { with } \quad \gamma=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Since the symmetry group of the equilateral triangle can be decomposed into three classes of equivalent elements and the number of representations equals the number of classes, we have

$$
D=D^{1} \oplus D^{2} \oplus 2 D^{3}
$$

the characters of the corresponding classes being given by $\chi=6,0$ and 0 respectively. Therefore, in a coordinate system in which \boldsymbol{V} is diagonalized, we get

$$
V=\left[\begin{array}{llllll}
\varepsilon_{1} & & & & & \\
& \varepsilon_{2} & & & & \\
& & \varepsilon_{31} & & & \\
& & & \varepsilon_{31} & & \\
& & & & \varepsilon_{32} & \\
& & & & & \varepsilon_{32}
\end{array}\right] \quad \begin{aligned}
& D^{1} \\
& D^{2} \\
& D^{3} \\
& D^{3}
\end{aligned}
$$

Following standard procedure, we then obtain

$$
\operatorname{Tr} \boldsymbol{D}(I) \boldsymbol{V}=6, \quad \operatorname{Tr} \boldsymbol{D}(R) \boldsymbol{V}=\frac{3}{2}, \quad \operatorname{Tr} \boldsymbol{D}(P) \boldsymbol{V}=3
$$

Hence the eigenvalues obey the equations

$$
\begin{aligned}
\varepsilon_{1}+\varepsilon_{2}+2\left(\varepsilon_{31}+\varepsilon_{32}\right) & =6, \\
\varepsilon_{1}+\varepsilon_{2}-\left(\varepsilon_{31}+\varepsilon_{32}\right) & =\frac{3}{2}, \\
\varepsilon_{1}-\varepsilon_{2} & =3 .
\end{aligned}
$$

Thus $\varepsilon_{1}=3, \varepsilon_{2}=0$ and $\varepsilon_{31}+\varepsilon_{32}=\frac{3}{2}$. To calculate ε_{31} and ε_{32} explicitly, we note that there must be three degrees of freedom having a zero eigenvalue, two translational and one rotational. Therefore we have $\varepsilon_{31}=0$ and $\varepsilon_{32}=\frac{3}{2}$. It follows that the zero eigenvalues ε_{2} and ε_{31} correspond to translations and rotations of the system as a whole. The eigenvectors describing the true vibrational modes are orthogonal to these and to each other. This orthogonality dictates that in a vibrational mode the centre of mass is stationary and the angular momentum is zero.

As an alternative geometry to the equilateral triangle, we can assume a reduced symmetry in which there is a linear clustering of the three α particles in ${ }^{12} \mathrm{C}$. In this case it is easy to calculate that the two nonzero frequencies become equal to $(3 \mathrm{~K} / \mathrm{m})^{\frac{1}{2}}$.

Let us consider now an interpretation of the eigenvalues obtained for the two geometries investigated. The ground state of ${ }^{12} \mathrm{C}$ and the two excited states at 7.65 and $10 \cdot 3 \mathrm{MeV}$ have zero isospins and angular momenta, while the level at 17.77 MeV has $J^{\pi}=0^{+}$but an isospin of 1 , and it is of interest to see whether the three lowest isoscalar 0^{+}levels can be reproduced in our models. For the triangular symmetry, the nonzero eigenvalue $\varepsilon_{1}=3$ may be made to correspond to the frequency of vibrational transition or the relative spacing between the ground state and the excited state at 10.3 MeV , that is, $\hbar(3 K / m)^{\frac{1}{2}}=10.3 \mathrm{MeV}$ or $K \approx 0.02 \mathrm{fm}^{-3}$. The remaining frequency $(3 K / 2 m)^{\frac{1}{2}}$ predicts a 0^{+}state at $10 \cdot 3 / \sqrt{ } 2=7 \cdot 28 \mathrm{MeV}$, which is close to the experimental level at 7.65 MeV . Since K is the restitutive force constant in the harmonic oscillator potential between any two α particles each of mass m, it seems reasonable to assume the same value for K for both the triangular and linear configurations. Therefore the two degenerate frequencies $(3 K / m)^{\frac{1}{2}}$ in the linear geometry may be associated with a vibrational transition or an energy gap between the ground state and the level at $10 \cdot 3 \mathrm{MeV}$. That is, although we have two very different geometries that give the correct energy for the $10 \cdot 3 \mathrm{MeV}$ state, the linear model fails to reproduce the 0^{+}state at $7 \cdot 28 \mathrm{MeV}$. On the other hand, the equilateral triangle model seems to reproduce fairly well the low lying 0^{+}isoscalar levels in ${ }^{12} \mathrm{C}$.

In summary, using an α-particle model of the ${ }^{12} \mathrm{C}$ nucleus we have derived the relative values of the nonzero frequencies of vibrational transitions through pure group theoretical considerations of the geometrical symmetry. With a frequency scaling factor of $(K / m)^{\frac{1}{2}}$, determined by the dynamics of the system, we have been able to predict satisfactorily the restitutive force constant in a harmonic oscillator potential between two α particles.

References

Bergholtz, C. (1975). Nucl. Phys. A 243, 449.
Iachello, F., and Arima, A. (1975). Phys. Lett. B 53, 309.

