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Abstract 

The isoscalar levels with 1" = 0+ of the 12C nucleus have been investigated by finite-group theoretical 
methods using an a-particle model. An estimate has been made of the restoring force parameter 
in the potential between two a particles from symmetry. 

The a-particle model is particularly suitable for description of the low energy 
levels of nuclei which are composed of a whole number of a particles, e.g. 12c, 160 
etc. Iachello and Arima (1975) have described the entire collective spectra of vibrational 
nuclei in terms of a few interacting elementary excitation modes, while Bergholtz 
(1975) has used the a-particle model of Block and Brink to study the importance 
of vibrations and polarizations of clusters in the low lying states of 12C and 160. 
In this note, we discuss a (finite) group theoretical approach to the calculation of the 
vibrational frequencies of transitions between the energy levels of 12c. 

Let us consider the 12C nucleus to be composed of three elementary a particles, 
each of mass m placed at the vertices of an equilateral triangle. We will now investigate 
the different normal modes of vibration of this triangle. Representing the con
figuration of the system by a six-dimensional state vector p, we have the kinetic 
and potential energies of the system given by 

T - I ,,'2 
- 2 m 1..- Pi , 

i 
v = tKI VijPiPj, 

ij 

where K is the constant restitutive force. The equation of motion is 

mPi = -OV/OPi = -KI VijPj. 
j 

For vibration in a normal mode we have 

I VijPj = BPi 
j 

with B = mw2/K, 

w being the classical angular frequency of vibration. The normal modes are known 
to be the eigenvectors of the matrix V, the eigenvalues giving the frequencies. For 
our symmetry group we have the six elements J, R, R2, P, PR and PR2, where J is 
the identity matrix, R rotates the triangle by 120° in a positive sense and P reflects it 
about a vertical line through the centre. These elements bring about linear trans-
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formations of the Pi when they act on the triangle. Thus if R operates on the system 
we have p' = D(R) p, where the matrix D(R) is 

~~ 
0 

:J D(R) = 0 with fJ= [t~! -t~:J . 
fJ 

Similarly 

~~ 
y 

:] 
01 [-1 D(P) = 0 with Y = Ij" 0 

0 

Since the symmetry group of the equilateral triangle can be decomposed into three 
classes of equivalent elements and the number of representations equals the number 
of classes, we have 

the characters of the corresponding classes being given by X = 6, 0 and 0 respectively. 
Therefore, in a coordinate system in which V is diagonalized, we get 

r " I 
Dl 

82 D2 

V= 8 31 } D3. 

l 831 J 832 } D3 

Following standard procedure, we then obtain 

TrD(I) V = 6, TrD(R) V = 1, 

Hence the eigenvalues obey the equations 

81 +82 +2(831 +832) = 6, 

81 +82 -(831 +832) = 1, 
8 1 -82 = 3. 

TrD(P) V = 3. 

Thus 81 = 3, 82 = 0 and 8 31 +832 = l To calculate 8 31 and 832 explicitly, we note 
that there must be three degrees of freedom having a zero eigenvalue, two translational 
and one rotational. Therefore we have 8 31 = 0 and 832 = l It follows that the zero 
eigenvalues 8 2 and 8 31 correspond to translations and rotations of the system as a whole. 
The eigenvectors describing the true vibrational modes are orthogonal to these and 
to each other. This orthogonality dictates that in a vibrational mode the centre of 
mass is stationary and the angular momentum is zero. 

As an alternative geometry to the equilateral triangle, we can assume a reduced 
symmetry in which there is a linear clustering of the three rx particles in l2C. In this 
case it is easy to calculate that the two nonzero frequencies become equal to (3K/m)t. 



Let us consider now an interpretation of the eigenvalues obtained for the two 
geometries investigated. The ground state of 12e and the two excited states at 7·65 
and 10· 3 MeV have zero isospins and angular momenta, while the level at 17· 77 MeV 
has J" = 0+ but an isospin of 1, and it is of interest to see whether the three lowest 
isoscalar 0+ levels can be reproduced in our models. For the triangular symmetry, 
the nonzero eigenvalue III = 3 may be made to correspond to the frequency of 
vibrational transition or the relative spacing between the ground state and the excited 
state at 10·3 MeV, that is, h(3K/m)t = 10·3 MeV or K ~ 0·02 fm- 3 • The remaining 
frequency (3K/2m)t predicts a 0+ state at 1O·3/.J2 = 7·28 MeV, which is close to 
the experimental level at 7·65 MeV. Since K is the restitutive force constant in the 
harmonic oscillator potential between any two IX particles each of mass m, it seems 
reasonable to assume the same value for K for both the triangular and linear con
figurations. Therefore the two degenerate frequencies (3K/m)t in the linear geometry 
may be associated with a vibrational transition or an energy gap between the ground 
state and the level at 10·3 MeV. That is, although we have two very different geometries 
that give the correct energy for the 10·3 Me V state, the linear model fails to reproduce 
the 0 + state at 7· 28 MeV. On the other hand, the equilateral triangle model seems to 
reproduce fairly well the low lying 0+ isoscalar levels in 12e. 

In summary, using an IX-particle model of the 12e nucleus we have derived the 
relative values of the nonzero frequencies of vibrational transitions through pure 
group theoretical considerations of the geometrical symmetry. With a frequency 
scaling factor of (K/m)t, determined by the dynamics of the system, we have been 
able to predict satisfactorily the restitutive force constant in a harmonic oscillator 
potential between two IX particles. 
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