
Aust. J. Phys., 1977,30,369-77 

Local and Nonlocal Potentials 
for Low Energy Pion-Nucleon Scattering 

E. Clayton, J. L. Cook and E. K. Rose 

A.A.E.C. Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232. 

Abstract 

Local and nonlocal potentials have been evaluated using the reaction matrix approach to the inverse 
scattering problem for low energy pion-nucleon scattering. The nonlocal potential gave the oorrect 
position for the Pll ground state nucleon mass, but the local potential did not. Incident pion energies 
up to 700 MeV were considered. 

1. Introduction 

Scattering theory is concerned with the determination of interparticle interactions, 
mostly with the aid of potentials. The traditional approach is to assume some 
parameterized form for the potential and to vary these parameters until suitable fits 
are obtained to cross sections or phase shifts. The iliverse scattering problem is 
posed in the opposite manner. Given information about phase shifts, one tries to 
deduce directly the interparticle potential. 

In a previous paper, Cook (1972) used reaction matrix theory to show that the 
reaction matrix parameters determined a class of nonlocal potentials. Clayton (1972) 
applied this theory to pion-nucleon scattering below 700 MeV and we quote his 
results in this paper. Every nonlocal potential has an equivalent energy-dependent 
form, and these are what Clayton evaluated. In a later paper, Cook (1973) showed 
how potentials can be described by a series of step functions whose heights are fitted 
to the experiments to yield a local form for the potential. In the present paper we 
show how these heights are fitted for the seven most important states of the pion
nucleon system. 

Let us now consider the purpose behlnd calculating potentials from phase shifts. 
Firstly, it is a convenient way of summarizing the phase shift data. The phase shifts 
are determined by the asymptotic form of the radial wave function for large separa
tions of the two bodies in the scattering system. Thus, secondly, a potential may be 
a useful way of parameterizing the wavefunction at short range. In momentum 
space, the phase shifts are determined by the on-shell properties of the two-body T 
matrix, but the off-shell behaviour is arbitrary unless particular assumptions are made 
about the form of the two-body interaction. Thus, one way of distinguishing between 
phase equivalent potentials is to look to data which depend upon off-shell properties, 
such as three-body interactions. The binding energies of two-body bound states 
should be given correctly by the R matrix prescription used, but this does not remove 
the ambiguity of the potential. 
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As regards the data used, we required the following restriction: there had to be a 
high density of experimental energy points below the nonelastic threshold of 
'" 300 MeV. This was required because we used only a one-channel analysis and did 
did not try to fit absorption coefficients. With this restriction, we were forced to 
choose the obsolete data of Roper et al. (l965) and to forego later compilations 
which did not provide enough points for us to perform a least squares fit to the 
reaction matrix. For this reason, the fitting to data at -300 MeV should be viewed 
as just an academic exercise in proving our methods. Throughout this paper we use 
the Heaviside system of units. 

2. Theory and Evaluation 

A review of existing literature on the inverse scattering problem has been given 
by Cook (1972), while the standard theory relating to meson-nucleon scattering has 
been specified by Hamilton (l967). The nonspin- and spin-flip amplitudes for meson 
scattering are: 

. '" 
f(O) = q-l L {(l + 1)A1+ + lA1_ }Plcos 0), (1) 

1=0 

'" g(O) = q-l L {A1+-A1_}Pf(cosO). (2) 
1=0 

Here the AI± are partial wave amplitudes which, for each isospin state T, are given by 

Ai± = -ti{'1i±exp(2irxi±)-l}, (3) 

where q is the centre-of-mass momentum of the pion, rxi± is the phase shift and '1i± 
is the absorption coefficient. 

We investigate the low energy region where, essentially, the amplitudes for the 
reactions 

n+ +p -+ n+ +p, n- +p -+ n- +p, n- +p -+ nO +n (4) 

are respectively given by (dropping the subscripts I) 

A+ = A 3 / 2 , A- = i(A3/2+2Al/2), Ace = h/2(A3/2_Al/2) , 

where Ace is the charge-exchange amplitude and the superscripts denote the total 
isotopic spin of the state. Our discussion is concerned mainly with the Ai± amplitude. 

From reaction matrix theory (Wigner and Eisenbud 1947) we may write the S 
matrix, in the absence of absorption, for each eigenstate of orbital angular momentum 
1 and isospin T as 

S = exp(2irx) = Q{I-R(L-B}}-l {1-R(L*-B)}Q, (5) 

where L = s+iP and Q= exp( -2iw), while s is the level shift, P is the penetration 
factor, w is the hard sphere phase shift and B is the boundary condition parameter. 
It is usual (Lane and Thomas 1958) to use the so-called square well boundary 
condition 

B = -I. (6) 
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Tables of the functions seq), P(q) and w(q) can be found in Lane and Thomas (1958). 
Wigner and Eisenbud (1947) showed that R could be written as a sum of poles of the 
form 

R(q) = a- 1 L vf/(qi-q2) +Ro, (7) 

" 
where a is the hard sphere radius (taken to be the nucleon radius) and Ro is the 
constant background, while the qi are defined in the following paragraph. 

Cook (1972) considered the Schrodinger equation for the problem 

(~ +q2_'(l~1) _ V(r»)tft(q,r) = 0, 
dr2 r 

(8) 

with a potential energy V, in the light of the inverse scattering problem. In essence 
this means that, given a, one wishes to determine a corresponding V from equation 
(8). There is an infinite set of orthonormal functions V • .<r) which satisfies 

( 
d2 2 1 (I + 1) ) 
-2 +q,,- --2- - VCr) Vir) = 0, 
dr r 

(9) 

with the usual boundary condition 

(dVir») = ~Via). 
dr r;a 

(10) 

Equations (9) and (10) determine the infinite set of eigenvalues qi. Cook (1973) 
assumed an eigenvalue form for VCr) 

N 

VCr) = L V .. O(r .. -r .. + 1)O(r .. _ 1 -r .. ), 
.. ;1 

where O(x) is the Heaviside function defined by 

O(x) = 0, 

1, 

x < 0, 

x> 0, 

(11) 

and he obtained the V .. as unique eigenvalues of a matrix equation. This was done 
by using the expansions 

lJI(q, r) = L Aiq2) V,,(r) , 

" 
v lJI(q, r) = LA" L V"/l W/l(r) , 

" /l 
(12a, b) 

Vir) = L B"/l Wir) , (12c) 
/l 

where Wir) is the eigenfunction of the corresponding free-particle equation 

(~ Q2_ 1(1+1»)W = ° 
d 2 + /l 2 /l ' r r 

(13) 

in which 

( dW"(r») = ~ Wia). 
dr r;a 
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From the equations (12) we find that the matrix equation 

VTBW= WV (14) 
must be satisfied, where 

V"/t = (qi-Q~)B"/t' B"/t = f: Uir) W/t(r) dr, Sr"+l 

WI''' = Wir) dr. 
r" 

(15) 

Thus, if we specify the B"/t' the eigenvalues Va are determined. The eigenvectors W .. 
are all known. Unfortunately the B"/t are not known, so that any definition which 
satisfies can be applied from the equations (12), e.g. 

Uia) = L B"/t Wia) , Wia) = LB"/tUia), (16) 
I' .I. 

where U .. (a) and W .. (a) are known from equations (7) and (13) respectively. Thus 
there is a whole class of energy-dependent phase-equivalent potentials which reproduce 
the experimental phase shifts each defined by a different B. In general, however, the 
matrices B will not have associated eigenvectors W as appears in equation (14). 
Only the B which leads to an energy-independent V will have these eigenvectors. 
From this, it appears that there is only one such form (11) for V(r) with unique 
eigenvalues V ... We have evolved a method for finding these. 

Equation (11) for the potential necessarily means that the wavefunction in the 
region of interaction has the form applicable to a square well: 

Q; = q2_ Vp , q2 > Vp; 'Plq,r) = Apjl(Qpr) +BpnlQpr) 

= Apil(Qpr) +BpLI(Qpr) Q2 = V _q2 . q2 < V . 
p P' P' 

(17a) 

(17b) 

where jb nb i l and LI are modified Bessel functions given by Schelkunoff (1951). 
By choosing the external wavefunction to be 

'PI = jl(qa) -tan(ocl)nlqa) 

and near the origin to be 

'PI = AdlQ1 r) 

= A1 i l(Q1 r) 

r a, 

q2 > V1, 

q2 < V1 , 

(18) 

o < r < r1 ; (19a) 

o < r < r 1 ; (19b) 

we could match the wavefunctions and their derivatives for a set of {Vp}. We then 
varied the {Vp} using the search program SPIRAL (Jones 1970) until the quantity 

M 2 = .f (OCex~ - OCtheor) 2 

,= 1 0 loctheor 
(20) 

was minimized, which implies a 10 % error in the experimental values ocexp• These 
results were then checked by another program which used an 8000 step Fox-Goodwin 
(Fox 1962) central-difference approximation to integrate the wave equation (8) to 
beyond r = a, where the phase shifts were obtained by matching to the exterior 
solution. Satisfactory agreement was obtained in all cases. In this way we obtained 
a local potential. 
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The nonlocal potential was found from the expression (cf. Cook 1972) 

V(r, r') = L VA,. U ..(r') W,.(r). (21) 
A." 

Specifying B A,. as 

BA,. = OA" -(UA - WA)(U,.- W,.)/( ~ U; - ~ Up Wp), (22) 

we integrated the resulting wave equation (for details, see Clayton 1972), and the 
phase shifts were determined by the standard matching procedure. Clayton actually 
used the source term 

p(q, r) = L A..(q) VA,. W,.{r) 
A,. 

= f: V(r, r') P(q, r') dr 

in the equation 

_ +q2 _ __ P(q,r) = p(q,r) ( d2 l(l+I») 
dr2 r2 

to evaluate his phase shifts. 

Table 1. Reaction matrix parameters 

qi yi Ro 

(a) Sll 

1·2053 1·1205 0'1176 
10·072 0·8003 
26·076 1·6294 [Vo = 0·2547] 

(c) Pll 

-1'0645 0·2272 0·06361 
6·1282 0·9062 

22·790 3·6890 [VO = 10'9341 
137·40 3·1777 

(e) P31 

3·6499 0·7339 0·02305 
13·026 0·5004 
27·0 0·8419 [VO = 0'0] 

(g) D13 

2·0756 0·3142 0·09822 
6·2188 0·7072 

23 ·163 1·6452 [VO == 2'3109] 

3. Potentials 

a 

1·3 

1·0 

1·8 

1·5 

qi 

1·1362 
10·125 
21·899 

3 ·1303 
12'746 
29'154 

2·0756 
6·2188 

23·163 

yi Ro 

(b) S31 

0·9009 0·9449 
0·6809 
0'7610 [VO = 0'0] 

(d) P13 

0·6349 0·02305 
0·6492 
0·5678 [VO = 0'0] 

0·09822 
(f) P33 

0·3142 
0·7072 
1·6452 [Vo = 2'3109] 

(23) 

(24) 

a 

1·6 

1·8 

1·5 

The reaction matrix parameters calculated by Clayton (1972) are shown in Table 1. 
The experimental phase shifts used in the calculations are those of Roper et al. (1965). 
Apart from parameters already defined, Table 1 also contains the parameter 
y~ = U~(a)/a, while Vo is the effective local square well potential that determines the 
background Ro in equation (7). 
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Table 2. Phase shifts 

EK (Xexp lX.n aloe EK (Xexp lX.n CXloc 

(MeV) (") (") (") (MeV) (") (") n 
(a) Sll (b) S31 

31 5·48 5·48 5·79 31 -2'93 -2·97 -2'70 
58 6·92 6·97 7·16 58 -5,14 -5·10 -4'76 
98 8·29 8·29 8·21 98 -8'31 -8·32 -7'94 

120 .8'88 8·84 8·63 120 -10'00 -10,07 -9'69 
144 9'46 9·39 9·06 144 -11·79 -11,91 -11'56 

170 10'06 9·98 10·16 170 -13,64 -13,80 -13,49 
220 11·24 11·27 10·86 220 -16'92 -17,06 -16·87 
240 11'76 11·86 11'50 240 -18·10 -18,20 -18'07 
270 12·62 12·85 12·59 270 -19'72 -19'73 -19'70 
310 13·96 14·34 14·30 310 -21'56 -21,44 -21'53 

333 14·86 15·31 15·4 330 -22·44 -22,24 -22'41 
370 16·53 17·03 17·3 370 -23'56 -23,25 -23'52 
410 18'69 19·17 19'7 410 -24·33 -23,97 -24,31 
450 21·28 21·66 22·2 450 -24·62 -24·28 -24'62 
490 24·35 24·58 25·1 490 -24,41 -24·14 -24'44 

523 27·27 27·39 27·8 523 -23'83 -23,66 -23,89 
572 32·34 32·33 32'4 572 
581 581 -21·91 -21·89 -21'96 
600 35·65 35·61 35·4 600 -21·02 -21·01 -21'05 
650 42·37 42·19 41·3 650 -18·06 -17,95 -18'05 
698 49·88 49·14 47·4 698 -14,33 -13,89 -14·44 

(c) Pll (d) Pl3 

6 -0·15 -0,15 -0,05 6 -0,015 -0'014 -0'013 
31 -1,22 -1,16 -0,53 31 -0,168 -0,167 -0'157 
58 -2'045 -1,94 -1,08 58 -0'41 -0'42 -0,404 
98 -2,06 -1,89 -1,38 98 -0'86 -0,87 -0,88 

120 -1,458 -1,24 -1,11 120 -1'14 -1,15 -1'17 

144 -0,344 -0,0196 -0·347 144 -1'45 -1'46 -1,51 
170 1·375 1·86 1·12 170 -1,81 -1,81 -1·89 
195 3·522 4·18 3·22 195 -2,15 -2·15 -2'25 
220 6·166 6·99 6'00 220 -2'49 -2·49 -2'60 
240 8'659 9·57 8·71 240 -2·76 -2,76 -2·88 

270 13·09 14·01 13·51 270 -3·15 -3,16 -3·27 
310 20·42 21·04 21·1 310 -3,66 -3,68 -3·75 
333 25·39 25·72 26·0 333 -3'94 -3·97 -4'01 
370 34·42 34·33 34·59 370 -4'37 -4,41 -4'39 
410 45·12 45·16 44·84 410 -4,81 -4,86 -4,77 

450 56·13 57·09 55·98 450 -5'24 -5,28 -5'15 
490 67·12 69·01 67·49 490 -5,65 -5,68 -5'53 
523 75·91 77·90 76·47 523 -5,98 -6,00 -5,87 
550 82·55 84·13 82·99 550 -6'26 -6,27 -6'17 
572 87'30 88·44 87·53 572 -6'49 -6,49 -6'43 

581 89·03 90·00 89·18 581 ~6'59 -6,58 -6·54 
600 92·23 92·93 92·22 600 -6·79 -6,78 -6'80 
616 94·44 95·02 94·38 616 -6,97 -6,96 -7,02 
650 97·74 98·49 97·73 650 -7'37 -7·36 -7'55 
689 99·60 101·07 99·83 689 -7,88 -7,88 -8'22 
698 99·81 101·49 100·09 698 -8,00 -8,01 -8,40 
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Table 2 (Continued) 

E. !Xe'P lX.n lX,oe E" tXezp !Xen IX, .. 

(MeV) e) e) e) (MeV) n n e) 
(e) P31 (/) P33 

6 -0·03 -0·03 -0·027 6 0·23 0·20 0·22 
31 -0·34 -0·30 -0·32 31 2·82 2·63 2·81 
58 -0·85 -0·78 -0·85 58 7·81 7·59 7·89 
98 -1·82 -1·74 -1·86 98 20·48 20·45 20·61 

120 -2·42 -2·36 -2·49 120 31·53 31·55 31·65 

144 -3·11 -3·06 -3·21 144 48·15 48·09 48·46 
170 -3·88 -3·84 -4·00 170 70·59 70·37 71·20 
195 -4·61 -4·59 -4·74 195 91·70 91·57 91·63 
200 200 108·12 108·24 106·03 
220 -5·32 -5·31 -5·44 220 

240 -5·85 -5·85 -5·97 240 117·68 117·95 113·3 
270 -6·59 -6·59 -6·68 270 127·72 128·05 
310 -7·39 -7·39 -7·43 310 136·27 136·48 
333 -7·74 -7·73 -7·75 
370 -8·09 -8·09 -8·07 (g) D13 

410 -8·15 -8·15 -8·11 31 0·005 0·005 0·004 
450 -7·81 -7·84 -7·78 98 0·122 0·111 0·103 
490 -7·02 -7·10 -7·03 120 0·214 0·198 0·184 
523 -6·02 -6·13 -6·04 170 0·659 0·540 0·517 
550 -4·93 -5·08 -4·,96 220 1·1866 1·161 1·148 

572 -3·87 -4·03 -3·89 270 2·161 2·175 2·22 
581 -3·38 -3·54 -3·40 333 4·14 4·27 4·55 
600 -2·26 -2·42 -2·27 410 8·55 8·90 9·81 
616 -1·22 -1·36 -1·21 490 18·19 18·63 20·4 
650 1·32 1·30 1·35 523 25·28 25·63 27·1 

689 4·80 4·77 4·74 572 42·08 42·70 40·3 
698 5·69 5·69 5·58 600 56·40 58·49 49·4 

Table 2 gives an intercomparison between the nonlocal (Xen (energy-dependent), 
loc~il (Xloe and experimental (Xexp (Roper et af. 1965) phase shifts. The nonlocal phase 
shifts were determined from equation (24), while the local phase shifts were determined 
by fitting to the local potential (equation 11). We do not discuss in detail the energy
dependent local potentials derived from equation (7), as these are to be the subject of 
a future work. The local potential is listed in Table 3. 

The Clayton Rmatrix parameters for the 811 state are listed in Table lao For this 
state we note that the nonlocafphase shifts (Table 2a) fit to the experimental data 
better than do the local ones. 'For the 811 local potential (Table 3a), six eigenvalues 
were used at equal mcrements in the range 0 < t < 1·3. The potential evidently 
behaves like a damped oscillation as r increaSes. 

Reference to the 831 Clayton parameters in Table 1b indicates thatthere appear to 
be no bound levels for either of the S states. The agreement with experiment for 
both nonlocal and local phase shifts is quite good (Table 2b). For the local potential 
(Table 3b) there appears to be a large hard core, Which is not evident in the other 
8 state. 

The PII phase shifts (Table Ie) were rather harder to fit. For the nonlocal reaction 
matrix approach, four poles were required to give reasonable results. The bound 
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p 

1 
2 

1 
2 

2 
3 
4 
5 

Vp 

22·7 
-33,4 

1322 
-35'1 

-49'8 
-2'4 
-8,4 

-20'0 
-28'5 

1 -115,6 
2 -15,1 

1 
2 
3 
4 

2 
3 

0·07 
-0,68 
-3,9 
-6'5 

142 
-47,5 
-18,2 

5·0 
2 4·9 
3 2·9 
4 -100 

E. Clayton et al. 

Table 3. Local potentials 

Errors are absolute values unless given as explicit percentages 

Error 

± 1·6 
±0·9 

± 145 
±0·4 

±lOO% 
±lOO% 
±2'1 
±0'7 
±0'4 

±0'4 
±0·9 

±100% 
±100% 
±0·4 
±0'2 

±33 
±0'9 
±0·4 

±100% 
±lOO% 
±lOO% 
±11 

p 

3 
4 

3 
4 

6 
7 
8 
9 

10 

3 
4 

5 
6 
7 
8 

4 
5 
6 

5 
6 
7 
8 

Vp 

(a) S11 

45·7 
-21,0 

(b) S31 

21'5 
-6,8 

Error 

±1·0 
±0·8 

±0'3 
±0·1 

(c) Pll (a = 1·5) 

-19,5 
-1,7 

-15,3 
21·0 

- 12·2 

(d) PI3 

±0·3 
±0'3 
±0·3 
±0'3 
±0·2 

-5·65 ±0·15 
0-447 ±0·057 

(e) P31 
-4,5 

2·1 
6·2 
3·3 

(f) P33 
-5,4 

3·1 
4·2 

(g) DJ3 

0·9 
-56 
-62,8 
-1,0 

±0'1 
±0·1 
±0·1 
±0'2 

±0·4 
±0·6 
±0'7 

±lOO% 
±2 
± 1·5 
± 1·8 

p 

5 
6 

5 
6 

11 
12 
13 
14 
15 

5 
6 

9 
10 
11 
12 

7 
8 

9 
10 

Vp Error 

9'7 ±0'2 
-2,18 ±0'13 

1'79 ±0'07 
-0,489 ±0·045 

-6,4 
-15,67 
-3·53 
13·69 

-1·52 

±0'1 
±0'07 
±0'06 
±0'07 
±0·05 

-0,14 ±0'03 
-0,015 ±0'016 

-2,6 
-3·5 
-4,1 
-1,21 

3·0 
-3,6 

48 
-17 

±0'2 
±0·1 
±0'1 
±0'07 

±0·5 
±0'3 

±2 
±1 

level at ql = -1·0645 is, in fact, the nucleon pole. Clayton (1972) showed that the 
corresponding pole in the S matrix occurred at about 928 MeV, which is slightly less 
than the correct value of 938 MeV, but since no error analysis was carried out, we 
do not know the significance of the disagreement. The fitted phase shifts are to be 
found in Table 2c and the local potential in Table 3c. The fit to the lower energies is 
seen to be rather poor for both potentials, but improves towards the higher energies. 

Unlike the nonlocal potential, the local potential appears not to give a bound state 
corresponding to the nucleon pole. Two programs were written, one based upon the 
matching method discussed in Section 2, the other upon direct numerical integration. 
If a bound state were present, an exponentially decaying external solution should have 
been found near q2 = - 1. Neither program gave this result. In fact, no bound 
state was found at all, despite the double-well structure of the local potential. The 
fits were extremely insensitive to the core region where almost any eigenvalues within 
a 100 % range gave a good fit. 



Potentials for Low Energy 7l'-N Scattering 377 

The Clayton reaction matrix parameters for the P13 state are illustrated in Table 1d. 
The phase shifts for both potentials are given in Table 2d, and the fitted local potential 
appears in Table 3d. 

The P31 state results resemble the P13 values, with significant differences. The 
Clayton R matrix parameters are listed in Table Ie. Note .the longer range of the 
P13 and P31 potentials as obtained from the best fitting radius a. The local potential 
required 12 eigenvalues for a reasonable fit and the results are given in Table 3e. 

The state P33 is the famous state which resonates strongly at an incident pion 
energy of about 195 MeV. Clayton's reaction matrix parameters are seen in Table If 
One can see that the broad peak in the total cross section appears to arise from two 
low-energy poles and the effect of their interference, rather than from an isolated pole. 
This was how the reaction matrix behaved when we calculated it and is not an 
artificial fit. The phase shift fits are to be found in Table 2f The high energy end 
could not be fitted satisfactorily for the local potential, and so the fit there was 
restricted to energies below 270 MeV. The local potential obtained is given in Table 3f 

Finally, the D state potential D13 has a resonant effect at an incident pion energy 
of about 600 MeV. The Clayton reaction matrix parameters are given in Table 19. 
The source integration yielded the phase shifts shown in Table 2g. The local potential 
fit is not nearly as accurate as the nonlocal, possibly because too few eigenvalues 
were used. The fitted local potential is given in Table 3g, and it can be seen that four 
of the chosen ten eigenvalues are not unique. 

4. Conclusions 

Both local and nonlocal potentials have been found which generally give a 
satisfactory fit to the pion-nucleon phase shifts below 600 MeV. These potentials 
display similar features of alternate wells and barriers, sometimes with a small surface 
repulsion. Since Roper et al. (1965) did not give experimental errors for their phase 
shifts, we are unable to assess the statistical significance of the fits. Furthermore, 
because of the restriction of reproducing believable potentials below 300 MeV, we are 
unable to draw sound conclusions about the behaviour of wave functions at small 
distances of r < 0·2. 
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