A Radio Study of Abell Clusters

B. Y. Mills and D. G. Hoskins
School of Physics, University of Sydney, N.S.W. 2006.

Abstract

A search for radio sources close to 247 clusters of galaxies in the Abell catalogue has been carried out at the Molonglo Radio Observatory at a frequency of 408 MHz . A list of 116 sources near 89 clusters is given, identifications have been made and criteria for cluster membership have been established. A cluster luminosity function is derived in the range $10^{23}-10^{25} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, and spectra have been obtained for sources in 25 clusters utilizing published surveys made at other frequencies. It is found that there is no correlation between the richness of a cluster and its inclusion of at least one radio source, but those clusters containing multiple sources are significantly richer than average.

1. Introduction

The Abell (1958) catalogue of clusters of galaxies provides a statistically homogeneous collection of 2712 rich clusters at approximately known distances out to a redshift of $z \approx 0 \cdot 2$. It therefore contains a large sample of galaxies which may be examined for radio emission. In general the clusters are too distant for an effective study of weakly emitting 'normal galaxies' and insufficiently numerous to include the rare powerful radio galaxies which comprise the greatest proportion of catalogued radio sources. However, they do include numerous weak radio galaxies which are otherwise difficult to isolate. Additionally, it might be hoped that information about the intergalactic material in clusters may be obtained indirectly.

An investigation of a limited sample of 58 clusters, using the Arecibo reflector supplemented by the Molonglo radiotelescope, has already been described (Mills et al. 1968). Here we extend the investigation to a larger group of clusters using the Molonglo radiotelescope alone. In these new observations the sensitivity limit has been extended from about 1 to 0.4 Jy . All clusters south of declination $+18^{\circ}$ and up to distance class $4(z \lesssim 0 \cdot 1)$ have been observed, plus a random selection from distance classes 5 and 6 (up to $z \approx 0 \cdot 2$), chosen for observational convenience. Altogether 247 clusters were observed, including 35 of the clusters in the earlier program. The observations were made mainly during the period 1968-70 but final analysis of the results has been unavoidably delayed until recently.

The interpretation of cluster observations is difficult because of the high degree of contamination with distant radio sources of very much greater absolute luminosity than the cluster members. For example, we list 116 sources detected in close proximity to the cluster centres, but statistical considerations imply that nearly half of these may be field sources. In order to confine attention to the cluster members it has been necessary to apply stringent statistical criteria which exclude many of the weaker
sources from consideration. Measurement of the redshift of an identified galaxy provides a better criterion of cluster membership but this information is available in very few doubtful cases.

2. Cluster Distances and Intrinsic Source Properties

Since only a small fraction of the clusters in the Abell catalogue contain galaxies with measured redshifts, distances to individual clusters must rely on estimates of apparent magnitude. Rather than assume a particular value for the absolute magnitude of a particular cluster member, Abell's approach will be followed here. This consists of calibrating the estimated apparent magnitude for the tenth brightest cluster members directly in terms of measured redshifts. This method has the advantage that it does not require a specific form of the optical K correction to be assumed, and the results are not affected by any nonlinearity that might exist in the magnitude scale. It does, however, require the clusters for which redshift measurements are available to be a representative sample. In practice there is some bias in favour of 'interesting' clusters, such as those containing strong radio sources, but the available evidence does not suggest there to be any significant effect on the observed $\log z$ versus m_{10} relationship (Rowan-Robinson 1972).

Fig. 1. Least square calibration line for the cluster distance scale using current redshift data. Points available to Abell are shown as squares. The two circled points were excluded from the least square calculation.

Fig. 1 is a redshift-apparent-magnitude scatter diagram for 85 Abell clusters for which redshift measurements are available. The optical magnitudes m_{10} refer to the tenth brightest cluster member and are taken from Abell's catalogue. Most of the redshift data are taken from a list compiled by Noonan (1973) who gave references to the original measurements. Eight of the points correspond to the following
clusters not included in Noonan's list:

Abell No.	m_{10}	z	Abell No.	m_{10}	z
98	$16 \cdot 9$	$0 \cdot 1028$	2029	$16 \cdot 0$	0.0777
274	$16 \cdot 3$	$0 \cdot 1289$	2224	$17 \cdot 4$	$0 \cdot 1499$
655	$17 \cdot 1$	$0 \cdot 1287$	2589	$15 \cdot 3$	$0 \cdot 0440$
665	$17 \cdot 5$	$0 \cdot 1832$	2670	$15 \cdot 7$	0.0774

These data are taken from Sargent (1973), except for A2589, where they are from Sandage (1972).

The straight line shown in Fig. 1 is the result of a least squares fit to the data. Two points (circled in Fig. 1) which lie more than three standard deviations from the line were omitted from the calculation. These correspond to A465 and A1318. Many of the redshift values listed by Noonan (1973) are average values for several cluster members measured by several observers. All points, however, were given equal weight in the least squares calculation, since it is magnitude, rather than the redshift which is responsible for most of the scatter in the diagram.
The equation of the line is

$$
\begin{equation*}
\log z=0 \cdot 2126 m_{10}-4.513 \tag{1}
\end{equation*}
$$

The r.m.s. deviation of the points about the line is 0.09 in $\log z$, corresponding to 23% in z, or 0.4 magnitudes in m_{10}. The inclusion of a term in m_{10}^{2} does not significantly improve the fit. This confirms the result of Rowan-Robinson (1972), based on 31 clusters, that a straight line is adequate to represent the $\log z$ versus m_{10} relationship rather than the curve suggested by Abell's original data. Any departure from a straight line or from the 'ideal' slope of 0.2 is not of any significance, since repeatability, rather than absolute accuracy, was the principal aim in setting up the magnitude scale. Although the dispersion is somewhat greater than for the data used by Abell (rejecting one discrepant point) or by Rowan-Robinson (1972), the relationship (1) is considered to be the most reliable available for estimating redshifts from the values of m_{10} in Abell's catalogue.

More recent work by Abell (1972) and Bautz and Abell (1973) suggests that the quantity m^{*}, the magnitude at which the integrated optical luminosity function changes slope, may be a better distance indicator (in the sense of yielding a smaller dispersion about the $\log z$ versus m_{10} relationship). However, values of m^{*} are not available for sufficient clusters to take advantage of the smaller dispersion.

One of the three points which Rowan-Robinson (1972) excluded from his calculations corresponds to a redshift of 0.237 for the cluster A1890. This redshift is the value measured for the galaxy IC 5532, which lies approximately $2 \cdot 5^{\circ}$ north of the cluster. The association of the redshift with the Abell cluster probably results from the fact that both IC 5532 and A1890 have previously been suggested as being associated with the radio source 3C 296.

In order to calculate intrinsic properties of cluster sources as a function of the redshift, it is necessary to choose a particular cosmological model. Here, the convenient Einstein-de Sitter model is adopted, which has the following relationships between intrinsic and observed properties:

$$
\begin{align*}
d & =\theta\left(2 c / H_{0}\right)(1+z)^{-1}\left\{1-(1+z)^{-\frac{1}{2}}\right\}, \tag{2}\\
P_{408} & =S_{408}\left(2 c / H_{0}\right)^{2}(1+z)^{\alpha+2}\left\{1-(1+z)^{-\frac{1}{2}}\right\}^{2}, \tag{3}
\end{align*}
$$

where d is the projected separation corresponding to an angular separation θ, and $P_{408}\left(\mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}\right)$ is the luminosity corresponding to a flux density S_{408} at 408 MHz . In our calculations, the mean spectral index α is taken as -0.9 (Murdoch 1976) and the Hubble constant H_{0} is taken as $100 \mathrm{Km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ for consistency with previous radio investigations.

3. Observations and Identifications

The 247 clusters selected for observation are listed in Table 1, together with values of the red magnitude m_{10} of the tenth brightest galaxy, the distance class D, and the richness class R. These data have been taken directly from Abell's catalogue.

The selected clusters were observed at a frequency of 408 MHz using the multiple pencil beam system of the Molonglo radio telescope. The eleven pencil beams, whose half-power beamwidths are $2^{\prime} \cdot 6$ in right ascension and $2^{\prime} \cdot 86 \sec \left(\delta+35^{\circ} \cdot 5\right)$ in declination, lie in the plane of the meridian, spaced at intervals of one half-beamwidth, and thus cover a declination range of $14^{\prime} \cdot 3 \sec \left(\delta+35^{\circ} \cdot 5\right)$ in a single scan. For some of the nearer clusters, several scans at different declination settings were necessary to cover the cluster out to the required angular separation from the cluster centre. Clusters near which a source was detected were reobserved in order to reduce the errors in position and flux density.

The system used for recording and analysing the data was similar to that described earlier. For sources which were unresolved, the positions and flux densities were obtained using the point source fitting program described by Munro (1971). For sources showing slight extension, the degree of extension was measured on analogue records, and a correction was then applied to the fitted flux density. For well-resolved sources, centroid positions and integrated flux densities were determined from a printout of the digital data.

The observations were taken from a number of observing sessions. Since the telescope's sensitivity and the reliability of the position calibration vary from session to session, the positional errors cannot be expressed as a function of flux density. For each source the radio position has been assigned to an error classification denoted by A, B or C. Approximate standard errors corresponding to these classifications are as follows:

	A	B	C		A	B	C
σ_{α}	$3^{\prime \prime}$	$5^{\prime \prime}$	$10^{\prime \prime}$	σ_{δ}	$5^{\prime \prime}$	$8^{\prime \prime}$	$12^{\prime \prime}$

All clusters near which a radio source was detected were examined on the Palomar Sky Survey prints and any objects considered to be possible identifications were selected for optical measurements. For these measurements, usually six reference stars were used for each field, and the final accuracy achieved is $\sim 1^{\prime \prime}$ in each coordinate. (The errors may be slightly larger than this in the case of bright galaxies, due to inaccuracies in setting the cross wires on the overexposed images on the Sky Survey prints.) Optical objects measured in this way were described according to the following scheme: E, elliptical galaxy; Sp, spiral galaxy; DB, double galaxy; CG, compact galaxy; G, galaxy (not classified); QSO, optically confirmed QSO; BSO, blue stellar object; ST, stellar image (other than QSO and BSO).

Stellar objects lying close to a radio position, even though not considered to be possible identifications, were also measured and recorded if sufficiently close. In addition, the position of the brightest or the second brightest cluster member

Table 1. Abell clusters observed

Abell No.	m_{10}	D	R	Abell No.	m_{10}	D	R
2	$17 \cdot 3$	6	1	389	$15 \cdot 9$	4	2
13	$16 \cdot 6$	5	2	397	$15 \cdot 1$	3	0
14	$15 \cdot 2$	3	0	399	$15 \cdot 6$	3	1
18	$17 \cdot 1$	5	0	400	$13 \cdot 9$	1	1
20	$17 \cdot 1$	5	1	401	$15 \cdot 6$	3	2
35	$17 \cdot 1$	5	1	415	$16 \cdot 3$	4	1
43	$15 \cdot 9$	4	0	419	$15 \cdot 7$	4	0
66	$17 \cdot 8$	6	0	428	$16 \cdot 5$	5	0
74	$15 \cdot 9$	4	0	438	17-2	5	1
76	$15 \cdot 0$	3	0	440	$17 \cdot 2$	5	1
85	$15 \cdot 7$	4	1	458	$17 \cdot 2$	5	2
86	$15 \cdot 9$	4	0	465	$17 \cdot 7$	6	1
88	$15 \cdot 6$	3	1	470	$16 \cdot 9$	5	0
99	$17 \cdot 1$	5	0	471	$17 \cdot 6$	6	1
102	$15 \cdot 4$	3	0	474	$17 \cdot 1$	5	1
114	$15 \cdot 9$	4	0	477	$17 \cdot 5$	6	1
116	$15 \cdot 7$	4	0	487	$17 \cdot 0$	5	1
117	$16 \cdot 0$	4	0	495	$17 \cdot 0$	5	0
119	$15 \cdot 0$	3	1	496	$15 \cdot 3$	3	1
121	$16 \cdot 0$	4	1	500	$15 \cdot 8$	4	1
133	$15 \cdot 9$	4	0	506	$17 \cdot 5$	6	2
134	$16 \cdot 0$	4	0	513	$17 \cdot 5$	6	0
147	$15 \cdot 0$	3	0	514	$15 \cdot 2$	3	1
151	$15 \cdot 0$	3	1	524	$16 \cdot 7$	5	1
154	$15 \cdot 6$	3	1	526	$16 \cdot 4$	4	1
158	$15 \cdot 9$	4	0	533	$15 \cdot 8$	4	0
166	$16 \cdot 3$	4	1	535	$17 \cdot 4$	6	1
168	$15 \cdot 4$	3	2	538	$17 \cdot 4$	6	1
171	$15 \cdot 9$	4	0	539	$14 \cdot 4$	2	1
189	$15 \cdot 7$	4	1	543	$16 \cdot 9$	5	1
193	$16 \cdot 0$	4	1	547	$17 \cdot 0$	5	2
194	$13 \cdot 9$	1	0	548	$13 \cdot 7$	1	1
208	$16 \cdot 6$	5	0	550	$16 \cdot 7$	5	2
224	$17 \cdot 0$	5	1	551	$17 \cdot 5$	6	1
225	$15 \cdot 9$	4	1	592	$15 \cdot 0$	3	1
235	$17 \cdot 5$	6	1	598	$17 \cdot 4$	6	1
240	$15 \cdot 6$	3	0	614	$17 \cdot 0$	5	0
245	$16 \cdot 4$	4	0	619	$16 \cdot 8$	5	1
246	$16 \cdot 4$	4	1	632	$17 \cdot 2$	5	1
274	$16 \cdot 3$	4	3	638	$17 \cdot 0$	5	0
277	$15 \cdot 6$	3	1	644	$16 \cdot 2$	4	0
295	$16 \cdot 6$	5	1	653	$17 \cdot 0$	5	1
316	$17 \cdot 2$	5	0	658	$17 \cdot 0$	5	1
336	$17 \cdot 2$	5	0	673	$17 \cdot 1$	5	0
342	$17 \cdot 7$	6	1	674	$17 \cdot 7$	6	0
357	$16 \cdot 8$	5	0	688	$17 \cdot 5$	6	1
358	$15 \cdot 6$	3	0	689	$17 \cdot 1$	5	0
362	$17 \cdot 7$	6	1	703	$17 \cdot 8$	6	1
365	$17 \cdot 4$	6	0	713	$16 \cdot 8$	5	0
371	$17 \cdot 0$	5	1	744	$16 \cdot 6$	5	0

Table 1 (Continued)

Abell No.	m_{10}	D	R	Abell No.	m_{10}	D	R
754	$15 \cdot 2$	3	2	1644	$15 \cdot 7$	4	1
769	$16 \cdot 5$	5	1	1648	$16 \cdot 9$	5	1
776	$17 \cdot 9$	6	1	1651	$16 \cdot 0$	4	1
780	$16 \cdot 6$	5	0	1663	$17 \cdot 0$	5	1
838	$15 \cdot 3$	3	0	1684	$17 \cdot 2$	5	1
858	$16 \cdot 6$	5	0	1692	$17 \cdot 2$	5	0
878	$16 \cdot 8$	5	1	1709	$16 \cdot 4$	4	0
912	$15 \cdot 9$	4	0	1729	$17 \cdot 2$	5	1
933	15.9	4	0	1736	$14 \cdot 8$	2	0
957	$15 \cdot 9$	4	1	1750	$15 \cdot 9$	4	0
970	$16 \cdot 5$	5	1	1768	$17 \cdot 2$	5	0
978	$15 \cdot 6$	3	1	1772	$17 \cdot 0$	5	1
979	$15 \cdot 3$	3	0	1773	$15 \cdot 6$	3	1
993	$14 \cdot 9$	3	0	1780	$16 \cdot 6$	5	1
999	$15 \cdot 6$	3	0	1796	$17 \cdot 2$	5	1
1016	$15 \cdot 4$	3	0	1809	$15 \cdot 8$	4	1
1020	$16 \cdot 0$	4	1	1833	$17 \cdot 0$	5	1
1032	$15 \cdot 7$	4	0	1836	$15 \cdot 7$	4	0
1060	$12 \cdot 7$	0	1	1837	$15 \cdot 7$	4	1
1069	$15 \cdot 1$	3	0	1860	$17 \cdot 2$	5	1
1113	$17 \cdot 6$	6	1	1866	$17 \cdot 2$	5	1
1126	$16 \cdot 0$	4	1	1881	$17 \cdot 0$	5	1
1139	$15 \cdot 0$	3	0	1890	$15 \cdot 5$	3	0
1142	$15 \cdot 4$	3	0	1897	$17 \cdot 0$	5	0
1145	$15 \cdot 7$	4	0	1899	$16 \cdot 0$	4	0
1149	$16 \cdot 0$	4	0	1913	$16 \cdot 0$	4	1
1171	$16 \cdot 2$	4	0	1924	$17 \cdot 0$	5	2
1183	$17 \cdot 2$	5	1	1970	$17 \cdot 2$	5	1
1205	$16 \cdot 9$	5	1	1983	$15 \cdot 4$	3	1
1216	$16 \cdot 0$	4	1	1991	$15 \cdot 4$	3	1
1238	$16 \cdot 0$	4	1	2020	$16 \cdot 0$	4	0
1308	$15 \cdot 7$	4	0	2028	$15 \cdot 7$	4	1
1332	$16 \cdot 0$	4	0	2029	$16 \cdot 0$	4	2
1334	$15 \cdot 7$	4	0	2033	$15 \cdot 7$	4	0
1362	$16 \cdot 0$	4	0	2036	$16 \cdot 0$	4	0
1364	$16 \cdot 0$	4	1	2040	$15 \cdot 7$	4	1
1390	$16 \cdot 0$	4	0	2048	$16 \cdot 0$	4	1
1399	$16 \cdot 0$	4	2	2052	$15 \cdot 0$	3	0
1469	$17 \cdot 2$	5	2	2055	$16 \cdot 0$	4	0
1474	$16 \cdot 0$	4	1	2063	$15 \cdot 1$	3	1
1516	$16 \cdot 6$	5	1	2066	$17 \cdot 2$	5	2
1524	$17 \cdot 2$	5	2	2072	$17 \cdot 0$	5	0
1541	$16 \cdot 0$	4	1	2082	$17 \cdot 0$	5	0
1564	$16 \cdot 6$	5	0	2094	$16 \cdot 7$	5	1
1581	$17 \cdot 2$	5	1	2108	$15 \cdot 7$	4	0
1604	$17 \cdot 6$	6	1	2113	$17 \cdot 1$	5	0
1612	$17 \cdot 6$	6	0	2147	$13 \cdot 8$	1	1
1620	17•2	5	0	2151	$13 \cdot 8$	1	2
1625	$17 \cdot 0$	5	0	2152	$13 \cdot 8$	1	1
1631	$15 \cdot 4$	3	0	2159	$15 \cdot 9$	4	0

Table 1 (Continued)

Abell No.	m_{10}	D	R	Abell No.	m_{10}	D	R
2163	$17 \cdot 5$	6	2	2480	$16 \cdot 9$	5	1
2173	$17 \cdot 1$	5	1	2504	$17 \cdot 2$	5	0
2182	$17 \cdot 4$	6	0	2511	$16 \cdot 0$	4	0
2204	$17 \cdot 1$	5	3	255	$16 \cdot 0$	4	0
2324	$16 \cdot 8$	5	1	2549	$17 \cdot 0$	5	1
2328	$16 \cdot 4$	4	2	2571	$17 \cdot 6$	6	1
2331	$16 \cdot 3$	4	0	2572	$15 \cdot 3$	3	0
2338	$17 \cdot 0$	5	1	2599	$15 \cdot 3$	3	0
2347	$16 \cdot 4$	4	1	2593	$15 \cdot 1$	3	0
2350	$17 \cdot 1$	5	0	2612	$17 \cdot 7$	6	2
2353	$16 \cdot 8$	5	1	2623	$17 \cdot 2$	5	3
2361	$16 \cdot 7$	5	1	2630	$15 \cdot 2$	3	0
2362	$16 \cdot 9$	5	1	264	$16 \cdot 6$	5	1
2366	$15 \cdot 9$	4	0	2656	$16 \cdot 2$	4	0
2382	$16 \cdot 0$	4	1	2657	$14 \cdot 9$	3	1
2384	$15 \cdot 9$	4	1	2660	$16 \cdot 4$	4	0
2398	$17 \cdot 1$	5	0	2665	$15 \cdot 8$	4	0
2399	$15 \cdot 6$	3	1	2670	$15 \cdot 7$	4	3
2410	$16 \cdot 0$	4	1	2675	$16 \cdot 4$	4	1
2412	$15 \cdot 9$	4	0	2676	$16 \cdot 8$	5	0
2415	$15 \cdot 9$	4	0	2700	$16 \cdot 0$	4	1
2448	$16 \cdot 0$	4	0	2709	$17 \cdot 2$	5	1
2457	$16 \cdot 0$	4	1				
2459	$16 \cdot 0$	4	0				
2462	$16 \cdot 2$	4	0				

(whichever was the nearer to the radio position) was also recorded if it had not already been measured. As a rough indication of brightness, the red magnitudes of galaxies and the photographic magnitudes of stellar objects were estimated to the nearest magnitude.

Assigning an identification to a radio source in a relatively close cluster, such as an Abell cluster, presents some problems because it is usually not known whether possibly associated galaxies are actually cluster members. If it is physically located in the cluster, angular displacements between the parent galaxy and the radio source due to separation of the centroids may be quite large, substantially exceeding the positional uncertainties (see e.g. Mills et al. 1968). If it is a field source it is likely to be considerably more distant than the Abell cluster, so that angular displacements are more likely to be dominated by measurement errors. To overcome this problem and for some other purposes described later, the radio sources have been divided into three statistical categories which are related to their probable association with a cluster. A Category I source is situated within a critical angle θ_{c}, corresponding to a projected linear distance of 400 kpc from the cluster centre, and has a flux density greater than a critical value S_{c} corresponding to the flux density above which the probability of a chance association within θ_{c} is $0 \cdot 02$. A Category II source is situated within a projected distance of 700 kpc , but not included in Category I, while the remainder of the sources are assigned to Category III. Some illustrative examples of the magnitude of θ_{c} and S_{c} are tabulated below; the general relations being given
in the Appendix:

z	0.05	0.10	0.15
θ_{c}	$10^{\prime} \cdot 0$	$5^{\prime} \cdot 4$	$3^{\prime} \cdot 9$
S_{c}	1.12	0.49	0.32 Jy

In searching for identifications with galaxies, the Category I sources were provisionally assumed to be associated with the clusters, and galaxy identifications were sought to an angular separation corresponding to a projected distance of 50 kpc at the cluster redshift. Association of the clusters with Category II sources is uncertain, while association with Category III sources is unlikely, as is discussed below. Identifications with Category II and III sources have been sought on the assumption that they are field sources, and the angular displacement criteria of Schilizzi (1975) have been employed. These criteria are based on combining a physical displacement, which is a function of galaxy magnitude, with the measurement errors; they are more stringent than the criterion used for the Category I identifications.

Some possible and known associations with QSOs, BSOs and neutral stellar objects have also been noted; these are based on angular displacements less than twice the standard erorrs in position.

4. Table of Results

Details of the radio sources observed near 89 clusters are given in Table 2. For each source the following information is given:

Column 1, Abell catalogue number of cluster.
Column 2, redshift z, calculated according to equation (1).
Column 3, source reference number in the Parkes and Molonglo systems.
Column 4, right ascension α of the radio source (epoch 1950.0).
Column 5, declination δ of the radio source (epoch $1950 \cdot 0$).
Column 6, error class Δ as described in Section 3. Where no error class is given, the listed position is the approximate centroid of an extended or double source.
Column 7, 408 MHz flux density S_{408} on the Wyllie (1969) scale.
Column 8, source structure Σ. No entry indicates that the source is unresolved. ' X ' indicates that the source noticeably broadens the response pattern of the radiotelescope. ' D ' indicates that the source contains two components and, when no reference number is quoted in column 3, two of the separately listed sources in the cluster have been regarded as components of a double source with the centroid given. 'XD' indicates that the source is clearly extended and appears to contain two components which may be only partially resolved. In one instance ' T ' is used to designate the centroid of three close separately listed sources regarded as a triple. The separate sources included in the double or triple sources may be determined from inspection of column 7, where the flux densities have been added together.
Column 9, angular separation θ of the source position from the nominal cluster centre.
Column 10, statistical category as described in Section 3.
Table 2. Properties of radio sources detected near Abell clusters

(1) Abell No.	(2) z	(3) Source No.	$\begin{gathered} \stackrel{(4)}{\alpha(1950)} \\ h \mathrm{~m} \mathrm{~s} \end{gathered}$	$\begin{gathered} (5) \\ \delta(1950) \end{gathered}$	(6) Δ	$\begin{aligned} & (7) \\ & S_{408} \\ & (\mathrm{Jy}) \end{aligned}$	$\stackrel{(8)}{\Sigma}$	(9) θ	(10) Category	(11)	(12) Ident.	${ }_{i c a l}^{(13)} \begin{gathered} \text { Posn } \end{gathered}$	(14) Notes
2	0. 146	0005-199	000543	-195640		$1 \cdot 80$	X	$3 \cdot 1$	I	1.54	16*E	1P 14N	B
13	0.104	0010-197	$001055 \cdot 2$	-194626	C	$0 \cdot 50$		2.6	I	0.68	17 G	25P 20S	2B is $1^{\prime} \cdot 6 \mathrm{NF}$
66	$0 \cdot 187$	0034-054	$003409 \cdot 0$	-052936	B	0.54		$1 \cdot 8$	I	$1 \cdot 23$	17 G	0 17S	B
85	0.067	$\begin{aligned} & 0038-096 \\ & 0039-095 \end{aligned}$	$\begin{aligned} & 003858 \cdot 5 \\ & 003917 \cdot 6 \end{aligned}$	$\begin{aligned} & -093900 \\ & -093402 \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 1.47 \\ & 0.30 \end{aligned}$		$\begin{aligned} & 2 \cdot 1 \\ & 4 \cdot 9 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { II } \end{gathered}$		$\begin{aligned} & 19 \mathrm{G} ? \\ & 18 \mathrm{E} \\ & 14 \mathrm{E} \end{aligned}$	$\begin{array}{rr} 7 \mathrm{~F} & 2 \mathrm{~N} \\ 2 \mathrm{~F} & 9 \mathrm{~S} \\ 13 \mathrm{~F} & 36 \mathrm{~S} \end{array}$	B
86	0.074	0039-222	$003942 \cdot 0$	-221327	C	$0 \cdot 51$		$9 \cdot 4$	II				2B is $11^{\prime} \mathrm{NF}$
117	0.077	$\begin{aligned} & 0052-101 \\ & 0053-101 \end{aligned}$	$\begin{aligned} & 005216 \cdot 7 \\ & 005305.6 \end{aligned}$	$\begin{aligned} & -100910 \\ & -100830 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 0.57 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 20 \cdot 1 \\ & 11 \cdot 2 \end{aligned}$	$\begin{array}{r} \text { III } \\ \text { II } \end{array}$		$\begin{aligned} & 20 \mathrm{BSO} \\ & 20 \mathrm{G} ? \\ & 18 \mathrm{G} \end{aligned}$	$\begin{array}{rr} 1 F & 1 S \\ 7 F & 1 S \\ 54 P & 2 S \end{array}$	B is $7^{\prime} \cdot 7 \mathrm{SF}$
119	0.047	0053-015	$\begin{aligned} & 005325 \\ & 005351 \\ & 005340 \end{aligned}$	$\begin{aligned} & -013755 \\ & -013320 \\ & -013520 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 4.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \\ & \mathbf{D} \end{aligned}$	$\begin{aligned} & 8.2 \\ & 1.5 \\ & 3.9 \end{aligned}$	I	$1 \cdot 19$	$\begin{aligned} & 14 * \mathrm{E} \\ & 14 * \mathrm{E} \\ & 17 * \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { 65F 96N } \\ & \text { 7F 71N } \\ & \text { 39P 50S } \end{aligned}$	See map SM B is $2^{\prime} \cdot 8 \mathrm{NP}$ Alternative identifications appear equally permissible
133	0.074	0100-221	$010014 \cdot 7$	-220842	A	2.71		$4 \cdot 7$	I	$1 \cdot 11$	15 E	5F 20S	B
158	0.074	0108+165	$010800 \cdot 0$	163400	C	$0 \cdot 77$		$16 \cdot 1$	III		15 E	17P 21S	Not cluster member; B is $\mathbf{1 6}^{\prime} \mathbf{F}$
194	0.028	0123-016	012330	-013730		$13 \cdot 6$	XD	$11 \cdot 3$	I	$0 \cdot 96$	13*DB	54P 95N	
208	0. 104	$0128+002$	012859.7	001759	A	1.49		$0 \cdot 1$	I	$1 \cdot 15$	16 E	12P 3S	B
224	0.126	$\begin{aligned} & 0134-071 \\ & 0135-071 \end{aligned}$	$\begin{aligned} & 013429 \cdot 5 \\ & 013548 \cdot 0 \end{aligned}$	$\begin{aligned} & -071135 \\ & -071030 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.59 \end{aligned}$		$\begin{array}{r} 19.5 \\ 2.5 \end{array}$	$\begin{array}{r} \text { III } \\ \text { I } \end{array}$	$0 \cdot 92$	17 G	6F 5S	B
235	0. 161	0137-177	013759.0	-174434	A	1.72		$4 \cdot 4$	II	$1 \cdot 60$	17*E	14P 5N	B
240	0.064	$\begin{aligned} & 0138+073 \\ & 0138+074 \end{aligned}$	$\begin{aligned} & 013800 \cdot 3 \\ & 013818 \cdot 0 \end{aligned}$	$\begin{aligned} & 072201 \\ & 072819 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.50 \end{aligned}$	X	$\begin{aligned} & 19 \cdot 3 \\ & 15 \cdot 8 \end{aligned}$	$\begin{aligned} & \mathrm{IIII} \\ & \mathrm{III} \end{aligned}$		19 BSO	15P 6N	B is $18^{\prime} F$ Extended 1'EW
357	0.114	$0226+129$	022611.4	125706	B	1.16		8.9	III				B is $10^{\prime} \cdot 6 \mathrm{NF}$
362	0.178	0229-051	022909.9	-050611	B	$0 \cdot 68$		$1 \cdot 0$	I	$1 \cdot 29$	17 G	16F 0	B
400	0.028	$0255+058$	025505	055045		16.3	X	1.5	I	$1 \cdot 04$	13*DB	$\left[\begin{array}{l} 28 \mathrm{P} 85 \mathrm{~S} \\ 30 \mathrm{P} 69 \mathrm{~S} \end{array}\right.$	B 18^{m} E galaxy (105F, 24N) may also radiate
401	0.064	0255 + 133	$025545 \cdot 8$	132140	B	1.05		$6 \cdot 5$	I	$0 \cdot 57$	$\begin{aligned} & 20 * G \\ & 17 * \mathbf{G} \end{aligned}$	$\begin{aligned} & 13 \mathrm{P} 95 \mathrm{~S} \\ & 19 \mathrm{~F} 42 \mathrm{~N} \end{aligned}$	B is $6^{\prime} \cdot 7 \mathrm{NF}$

Table 2 (Continued)

(1) Abell	$\underset{z}{\text { (2) }}$	(3) Source	$\stackrel{(4)}{\alpha(1950)}$	$\stackrel{(5)}{\delta(1950)}$	(6) Δ	$\begin{gathered} (7) \\ S_{408} \end{gathered}$	$\stackrel{(8)}{\Sigma}$	${ }_{\theta}^{(9)}$	(10) Cate-	$\begin{gathered} (11) \\ L \end{gathered}$	Optical		(14) Notes
No.		No.	h m s	- , "		(Jy)		,	gory		Ident.	Posn	
415	0.090	0304-122	030435	-121730		$3 \cdot 80$	X	$3 \cdot 7$	1	1.43	$\begin{aligned} & 16^{*} \mathrm{E} \\ & 17^{*} \mathrm{E} \end{aligned}$	82P 24S 8F 46N	2 B ; B is $10^{\prime} \cdot 9 \mathrm{~N}$ Perhaps both galaxies radiating
474	0.133	$\begin{aligned} & 0405-167 \\ & 0406-167 \end{aligned}$	$\begin{aligned} & 040530.9 \\ & 040638 \cdot 7 \end{aligned}$	$\begin{aligned} & -164626 \\ & -164737 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.44 \end{aligned}$	X	$\begin{array}{r} 3 \cdot 8 \\ 15 \cdot 2 \end{array}$	$\begin{array}{r} \text { I } \\ \text { III } \end{array}$	1.00	17 G	18F 1S	2B; may be extended EW; B is $15^{\prime} \mathrm{P}$
496	0.055	$\begin{aligned} & 0431-133 \\ & 0431-134 \\ & 0431-132 \end{aligned}$	$\begin{aligned} & 043117 \\ & 043152 \\ & 043157 \end{aligned}$	$\begin{aligned} & -132145 \\ & -132850 \\ & -131633 \end{aligned}$		$\begin{aligned} & 0.89 \\ & 2.40 \\ & 5 \cdot 50 \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{D} \\ & \mathbf{X} \end{aligned}$	$\begin{array}{r} 0 \cdot 3 \\ 10 \cdot 7 \\ 11 \cdot 0 \end{array}$	$\begin{aligned} & \text { II } \\ & \text { II } \\ & \text { II } \end{aligned}$	$0 \cdot 27$	13 E 16 CG 17 G	25F 11S 7P 27N 44P 22N	B
506	0.161	0440-096	044031.6	-094101	C	0.43		9.7	III		17 G	1P 4N	B ? is $7^{\prime} \cdot 9 \mathrm{~S}$
514	0.052	$\begin{aligned} & 0445-206 \\ & 0445-205 \\ & 0446-206 \end{aligned}$	$\begin{aligned} & 044523 \\ & 044553 \\ & 044620 \end{aligned}$	$\begin{aligned} & -203820 \\ & -203230 \\ & -203740 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.95 \\ & 2.70 \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \text { XD? } \\ & \mathbf{X} \end{aligned}$	$\begin{array}{r} 6.5 \\ 5.4 \\ 13.0 \end{array}$	$\begin{aligned} & \text { II } \\ & \text { II } \\ & \text { II } \end{aligned}$		$\begin{aligned} & 15^{*} \mathrm{E} \\ & 18^{*} \mathbf{G} \\ & 17^{*} \mathrm{E} \end{aligned}$	44F 101S 13F 6S 10P 15N	2B; possible 'head-tail' source; see Map SM
526	0.094	0457+052	$045704 \cdot 0$	051532	C	$0 \cdot 65$	X	$7 \cdot 7$	II		18 G	SF 15S	$\sim 2^{\prime} \mathrm{EW}$; galaxy is almost obscured by a star; may be 2 B ; a $20^{m} \mathrm{G}$ is closer to radio position
		0457 + 054	$045722 \cdot 1$	052455	C	0.40		$3 \cdot 2$	II		17 G	19F 20 S	B is $\mathbf{3}^{\prime} \cdot 2 \mathrm{~S}$
551	0.161	0552-176	$055255 \cdot 2$	-173917	B	0.45	X	7.4	III		18 BSO	5P 16N	Slightly extended EW; B is $9^{\prime} \cdot 2$ SP
614	$0 \cdot 126$	0758+181	075814.3	180701	B	1.34	X	0.5	I	$1 \cdot 28$	17 E	0 3N	B; extended $\sim 1{ }^{\prime}$ EW
619	0.114	0759-020	$075905 \cdot 6$	-020054	C	$0 \cdot 54$	X	$15 \cdot 6$	III		$\begin{aligned} & 19 \text { G } \\ & 20 \text { BSO } \end{aligned}$	5F 15S 14F 18S	Slightly extended EW; B is $15^{\prime} \mathrm{F}$
658	0.126	$0821+157$	082112.4	154437	B	$0 \cdot 79$		7.0	II	1.05	16 DB	18 P 8 S	B
688	0. 161	0834+159	083403.4	155635	C	0.42		$10 \cdot 7$	III		18 BSO	25F 8S	
744	$0 \cdot 104$	$0903+169$	$090344 \cdot 0$	165817	A	$6 \cdot 21$		12.7	III		18.3**SO	1 F 1S	Data from Hunstead (1971, 1972)
754	0.052		090559.1	-092134	B	$0 \cdot 60$		$8 \cdot 2$			$\begin{aligned} & 18 \mathrm{G} \\ & 17 \mathrm{G} \end{aligned}$	$\begin{gathered} 14 \mathrm{P} 5 \mathrm{~S} \\ 1 \mathrm{~F} \\ \hline 1 \mathrm{~N} \end{gathered}$	
			$090622 \cdot 8$	-092840	C	0. 50		1.7			18 CG	49P 6N	
		$\begin{aligned} & 0906-094 \\ & 0907-093 \end{aligned}$	090610 $090753 \cdot 3$	-092450 -092300	A	1.10 0.80	D	4.1 22.4	III	$0 \cdot 43$	13 E		B; galaxy lies close to line joining the two components
780	$0 \cdot 104$	0915-118	$091541 \cdot 2$	-115307	A	138	X	12.5	III		15*D	$0 \quad 3 \mathrm{~N}$	Hydra A is not associated with A780
838	0.055	0933-047	$093345 \cdot 7$	-044204	C	0.42		13.5	II	$0 \cdot 04$	15 DB	16F 39S	B
878	$0 \cdot 114$	$\begin{aligned} & 0947+060 \\ & 0948+060 \end{aligned}$	$094748 \cdot 8$ $094826 \cdot 7$	$\begin{aligned} & 060549 \\ & 060452 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.55 \end{aligned}$		$\begin{aligned} & 11 \cdot 7 \\ & 20 \cdot 4 \end{aligned}$	$\begin{aligned} & \text { III } \\ & \text { III } \end{aligned}$		$\begin{aligned} & 18 \text { ST } \\ & 17 \text { CG } \end{aligned}$	$\begin{array}{ll} 0 & 12 N \\ 6 F & \mathrm{~N} \end{array}$	Bis $5^{\prime} \cdot 0.0$ P

Table 2 (Continued)

(1)	(2)	(3)	${ }_{\text {(4) }}^{\text {(1950) }}$	(5) $\delta(1950)$	(6)	(7)	$\stackrel{(8)}{\Sigma}$	$\stackrel{\text { (9) }}{\theta}$	(10) Cate-	$\begin{gathered} (11) \\ L \end{gathered}$	(12) Opti	${ }^{(13)}$	(14) Notes
Abell	(2)	Source	$\alpha \text { (1950) }$	$\delta(1950)$		$\begin{aligned} & S_{408} \\ & (\mathrm{Jy}) \end{aligned}$			gory		Ident.	Posn	
No.								$1 \cdot 7$	I	0.44	18 CG	088	B is $2^{\prime} \cdot 5 \mathrm{SF}$
1890	0.061	$1415+084$	141503.5	082638	B	0.87			II		18 DB	34F 14S	B is $4^{\prime} \cdot 5 \mathrm{SP}$
1899	0.077	$1419+180$	$141931 \cdot 2$	180234	B	1.51		9.9	II				B is $10^{\prime} \cdot 1 \mathrm{P}$; nearest galaxy is $0^{\prime} \cdot 8 \mathrm{SP}$
1913	0.077	$1424+169$	$142440 \cdot 6$	165641	C	0.49		3.8	II		$18{ }^{\text {BSO}}$		B
2029	0.077	$1508+059$	$150827 \cdot 3$	055555	A	$2 \cdot 66$		1.3	I	$1 \cdot 14$	13 D		sible
2033	0.067	$1508+065$	$150859 \cdot 3$	063205	A	$1 \cdot 67$		0.9	I	0.81	15 E	15 P 8 N	B is $8^{\prime} \cdot 4 \mathrm{SF}$
2036	0.077	$1508+182$	150850	181500		$2 \cdot 30$	X	$5 \cdot 2$	1	1.08	16 E	16 F	Possible head tail soure; $\mathrm{B}^{\text {is }} 8^{\circ} \mathrm{S}$
2048	0.077	$\begin{aligned} & 1511+045 \\ & 1512+046 \end{aligned}$	$\begin{aligned} & 151126 \cdot 1 \\ & 151204 \cdot 4 \end{aligned}$	$\begin{aligned} & 043214 \\ & 043618 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 1 \cdot 15 \\ & 0 \cdot 70 \end{aligned}$	X	$\begin{aligned} & 20 \cdot 6 \\ & 10 \cdot 9 \end{aligned}$	$\begin{gathered} \text { III } \\ \text { II } \end{gathered}$		19 BSO 17 E	3 F 41 P 17 N 3 P 2 N	Ext ~ 1'EW
		$1512+045$	$151240 \cdot 8$	043511	C	0.47		$1 \cdot 8$	II		15 E	63 F 3 N	B
2052	0.047	$1514+072$	$151416 \cdot 9$	071213	A	28.0		$0 \cdot 3$	I	1.74	16*E	2 F 3 N	B; optical data from Hunstead (1971)
2055	0.077	$1516+064$	151619.0	062457	A	$1 \cdot 23$		1.0	I	$0 \cdot 81$	17 CG	21P 8S	2B is 8.85
2072	0.126	$1523+184$	$152310 \cdot 2$	182411	C	0.41		6.	II				
2082	0.126	$\begin{aligned} & 1528+036 \\ & 1529+036 \end{aligned}$	$\begin{aligned} & 152842 \cdot 1 \\ & 152904 \cdot 6 \end{aligned}$	$\begin{aligned} & 034120 \\ & 033611 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.38 \end{aligned}$		$\begin{array}{r} 8 \cdot 7 \\ 13 \cdot 1 \end{array}$	$\begin{aligned} & \text { III } \\ & \text { III } \end{aligned}$				$\begin{aligned} & \mathrm{B} \text { is } 8^{\prime} \cdot 4 \mathrm{P} \\ & \mathrm{~B} \text { is } 14^{\prime} \cdot 7 \mathrm{P} \end{aligned}$
2094	$0 \cdot 109$	1533-017	153311	-014400		0.71	X	14.9	III		18 CG	1P 21N	
		1533-018	153340	-015040		0.37 0.42	X X ($5 \cdot 2$ 3.5	II		17 E	38F 15S	2B
		$\begin{aligned} & 1533-019 \\ & 1534-018 \end{aligned}$	$\begin{aligned} & 153353 \\ & 153408 \\ & 153356 \end{aligned}$	$\begin{aligned} & -015500 \\ & -015130 \\ & -015220 \end{aligned}$		$\begin{aligned} & 0.61 \\ & 1.40 \end{aligned}$	X \mathbf{X} \mathbf{T}	$\begin{aligned} & 2 \cdot 1 \\ & 1 \cdot 1 \end{aligned}$	I	0•80	17 G	36P 5S	Centroid of the three close sources above $\text { B is } 4^{\prime} \cdot 3 \mathrm{~N}$
2108	0.067	$1538+182$	153848.9	181546	C	0.73		$19 \cdot 3$	III				B is $18{ }^{\prime} \mathrm{SP}$
2147	0.026		$155907 \cdot 2$ $160020 \cdot 1$	$\begin{aligned} & 154520 \\ & 155224 \end{aligned}$	A	$\begin{aligned} & 2 \cdot 26 \\ & 2 \cdot 40 \\ & 4 \cdot 66 \end{aligned}$	X	$\begin{aligned} & 21 \cdot 7 \\ & 11 \cdot 6 \\ & 14 \cdot 5 \end{aligned}$	I	0.45	$\begin{aligned} & 15 * \mathrm{E} \\ & 15 \mathrm{E} \\ & 13^{*} \mathrm{DB} \end{aligned}$	88P 87S 42F 73N 85F 61N	Extended ~1'.5EW B is $17^{\prime} \mathrm{N}$
		$1559+158$	155945	154900		4.66			II		14*E	1F 15S	B is $7^{\prime} \cdot 9 \mathrm{P}$
2151	0.026	$\begin{aligned} & 1602+178 \\ & 1603+179 \end{aligned}$	$\begin{aligned} & 160253 \cdot 9 \\ & 160346 \cdot 6 \end{aligned}$	$\begin{aligned} & 175207 \\ & 175558 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 2 \cdot 11 \\ & 0 \cdot 47 \end{aligned}$		$\begin{array}{r} 1 \cdot 7 \\ 11.5 \end{array}$	II		19 BSO	2P15S	\mathbf{B} is $\mathbf{1}^{\prime} \cdot \mathbf{2 P}$; either identification is possible
2152	0.026	$1603+165$	$160317 \cdot 8$	163425	C	$0 \cdot 41$		2.9	II	-0.61			B is $6^{\prime} \cdot 7 \mathrm{SP}$
2182	0.154	$1620+143$	$162014 \cdot 9$	142341	B	1-14		$11 \cdot 5$	III				B
2204	0.133	$1630+056$	$163019 \cdot 8$	054035	C	$0 \cdot 37$		1.5	1	0.75	14 E	10 P	

(1)	(2)	(3) Source	$\begin{gathered} (4) \\ \alpha(1950) \end{gathered}$	$\stackrel{(5)}{\delta(1950)}$	(6) 4	(7)	$\stackrel{(8)}{\Sigma}$	$\begin{gathered} (9) \\ \theta \end{gathered}$	$\begin{aligned} & \text { (10) } \\ & \text { Cate- } \end{aligned}$	$\begin{gathered} (11) \\ L \end{gathered}$	(12)	$\text { ical }{ }^{(13)}$	(14) Notes
No.		No.	h m s	-, "		(Jy)		,	gory		Ident.	Posn	
2366	0.074	2139-069	$213943 \cdot 3$	-065735	B	$1 \cdot 14$		11.0	II		17 G	1 P iS	2B is $9^{\prime} \cdot 2 \mathrm{SP}$
2382	0.077	2149-158	214912	-155135		$1 \cdot 40$	X	1.9	I	0.86	16 DB	$\left[\begin{array}{cc} 24 \mathrm{P} & 1 \mathrm{~N} \\ 13 \mathrm{P} & 6 \mathrm{~S} \end{array}\right.$	B is $4^{\prime} \cdot 6 \mathrm{~S}$
2399	0.064	$\begin{aligned} & 2154-080 \mathrm{~A} \\ & 2154-080 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 215423 \cdot 8 \\ & 215456 \cdot 5 \end{aligned}$	$\begin{aligned} & -080453 \\ & -080205 \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.89 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { In } \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 15 \mathrm{E} \\ & 15 \mathrm{E} \end{aligned}$	$\begin{gathered} 9 \mathrm{P} 9 \mathrm{~N} \\ 22 \mathrm{P} \quad 7 \mathrm{~N} \end{gathered}$	B
2412	0.074	2201-216	$220116 \cdot 9$	-214131	B	$0 \cdot 65$		1.7	I	0.49	$\begin{aligned} & 17 \mathrm{E} \\ & 16 \mathrm{E} \end{aligned}$	$\begin{array}{ll} 21 F & 7 N \\ 16 P & 4 N \end{array}$	B
2415	0.074	2203-058	$220300 \cdot 2$	-05 5021	B	0.85		$3 \cdot 1$	I	$0 \cdot 60$	16 E	21F 11N	2B is $3^{\prime} \cdot 4 \mathrm{~N}$
2448	0.077	2229-086	222905	-084000		1.90	XD	$3 \cdot 0$	I	1.00	14*E	9 F 1N	B
2457	0.077	$2233+010$	223341.4	010413	C	0.53		$10 \cdot 6$	II		17 G	15F 2S	B is $10^{\prime} \mathrm{NP}$
2462	0.085	$\begin{aligned} & 2235-177 \\ & 2236-176 \end{aligned}$	$\begin{aligned} & 223549 \cdot 8 \\ & 223629 \cdot 9 \end{aligned}$	$\begin{aligned} & -174705 \\ & -173634 \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 1 \cdot 00 \\ & 4 \cdot 20 \end{aligned}$		$\begin{array}{r} 13.0 \\ 1.5 \end{array}$	$\begin{array}{r} \text { III } \\ \text { I } \end{array}$	$1 \cdot 43$	$\begin{aligned} & 19 \text { G? } \\ & 15^{*} \mathrm{l} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~F} 12 \mathrm{~N} \\ & 4 \mathrm{~F} 28 \mathrm{~N} \end{aligned}$	G ? is blue
2480	0.120	$\begin{aligned} & 2242-180 \\ & 2243-178 \end{aligned}$	$\begin{aligned} & 224221 \cdot 3 \\ & 224317 \cdot 9 \end{aligned}$	$\begin{aligned} & -180117 \\ & -175322 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.84 \end{aligned}$		$\begin{array}{r} 15 \cdot 5 \\ 3.9 \end{array}$	$\begin{array}{r} \text { III } \\ \text { I } \end{array}$	$1 \cdot 03$	$\begin{aligned} & 17 \mathrm{CG} \\ & 16 \mathrm{E} \end{aligned}$	$\begin{array}{ll} 2 \mathrm{~F} & 5 \mathrm{~N} \\ 6 \mathrm{~F} & 2 \mathrm{~N} \end{array}$	B
2525	0.077	2302-110	$230206 \cdot 1$	-110038	C	0.49		18.9	III				B ? is $12^{\prime} \cdot 8 \mathrm{P}$
2571	0.169	$\begin{aligned} & 2315-025 \\ & 2315-024 \end{aligned}$	$\begin{aligned} & 231514 \cdot 0 \\ & 231550 \cdot 9 \end{aligned}$	$\begin{aligned} & -023245 \\ & -022502 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.79 \end{aligned}$		$\begin{array}{r} 11.5 \\ 8.3 \end{array}$	$\begin{aligned} & \text { III } \\ & \text { III } \end{aligned}$		20 G ?	6F 4S	B is $10^{\prime} \cdot 6 \mathrm{NF}$
2572	0.055	$2316+184$	$231611 \cdot 5$	182446	C	0.92		$5 \cdot 3$	I	0.38	$\begin{aligned} & 16 \mathrm{E} \\ & 14 \mathrm{E} \end{aligned}$	27P 11N 34F 43N	2B
2593	0.050	$2322+143$	232202	142230		$1 \cdot 40$	XD	0.7	I	0.48	16 E	13P 37S	B is $\mathbf{3}^{\prime} \cdot 1 \mathrm{P}$
2612	0.178	2328-189	$232841 \cdot 6$	-185716	A	1.50	X	5.7	II				Extended $\sim 1^{\prime} \cdot 5 \mathrm{EW}$
2644	0.104	$\begin{aligned} & 2338-001 \\ & 2338-002 \end{aligned}$	$\begin{aligned} & 233825 \cdot 9 \\ & 233838 \cdot 3 \end{aligned}$	$\begin{aligned} & -001143 \\ & -001745 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.62 \\ & 0.28 \end{aligned}$		$\begin{aligned} & 2 \cdot 6 \\ & 6 \cdot 8 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { II } \end{aligned}$	$1 \cdot 19$	17*DB	1 F 3 S	B is $\mathbf{2}^{\prime} \cdot \mathbf{0 N F}$ B is $7^{\prime} \cdot 9 \mathrm{~N}$

Column 11, radio luminosity L, expressed as $L=\log P-23$. This quantity is only entered when an association with the cluster is probable, i.e. a Category I source identified with a likely cluster galaxy or a Category II source identified with the brightest member of the cluster or another known cluster member. P is calculated from equation (3).
Column 12, optical objects according to the classification scheme described in Section 3. The object listed in boldface type is considered to be the most probable identification; if none is given in boldface, the listed identification is considered to be possible but not probable. Identifications of many of the sources have been suggested previously, sometimes incorrectly, but the poor cross-referencing of southern identifications and the frequent lack of published optical positions leads to a confusing situation which is impractical to resolve here. However, an asterisk is included in the column if we are aware of a previous identification of the source with any optical object, not necessarily the identification we have made.
Column 13, optical position with respect to the radio position given in seconds of arc. Abbreviations used are: P, preceding; F, following; N, North; S, South.
Column 14, Notes. Abbreviations used are: B, brightest cluster member; 2B, second brightest member. Positions are given with respect to the radio source. SM refers to Schilizzi and McAdam (1975).

5. Statistical Properties

Fig. $2 a$ shows the distribution of the projected linear separations between the nominal cluster centres and the tabulated radio source positions. A similar distribution for the sources which have been identified with the brightest cluster galaxy is shown
in Fig. $2 b$. The curves in Fig. $2 a$ indicate our estimates of the distribution of real cluster sources and chance associations; this division is necessarily subjective, but it is consistent with the distribution in Fig. $2 b$ and the expected form of the distribution of chance associations. Few Category I sources represent chance associations (the expectation value is 5) but it seems likely that about half the Category II sources are the result of chance.

As a further check on the Category I sources, similar distributions of the radio-source-galaxy separations are shown in Fig. $2 c$ for those sources for which galaxy identifications have been made. Both the brightest and nonbrightest galaxy identifications have distributions of a similar shape, with no evidence for a population proportional to d^{2}, which would indicate significant numbers of chance associations. In each case the median separation is close to 25 kpc . As this figure also includes the effects of measurement errors, the true median separation will be somewhat less, but probably substantially higher than the equivalent separation in field sources (see e.g. Schilizzi 1975).

Correlation with Cluster Properties

Many clusters have been classified according to their different morphological characteristics but, for the sample observed, only the Abell richness class R (listed in Table 1 for all clusters observed) is available for sufficient clusters to allow meaningful analysis.

The basic dependence of the radio properties of a cluster on the richness class, i.e. the number of galaxies in the cluster, is tabulated below. In this tabulation, the mean richness class is given for clusters containing radio sources in each of the three statistical categories, for clusters containing more than one source in Categories I or II, and for clusters in which no sources were detected.

	I	II	III	Multiple sources	No sources
$\langle R\rangle$	0.67 ± 0.11	0.65 ± 0.13	0.52 ± 0.15	1.18 ± 0.12	0.67 ± 0.05

It appears that there is no significant correlation between the richness of a cluster and the probability of occurrence of a radio source, a result which has also been found with varying degrees of significance in previous investigations. However, a new result is that the probability of multiple sources is significantly greater among the rich clusters. A hypothesis consistent with these results is that the potentiality of a galaxy to become a radio galaxy is determined by a property of the primordial gas cloud from which the whole cluster condensed. This 'property' is not related to the mass of the cloud which, however, determines the number of potential radio galaxies in a 'radio' cluster.

An obvious 'property' to investigate is the time at which condensation from the primordial cloud occurred. All well-studied radio galaxies are old evolved systems; if radio emission resulted from their own evolution, it' would be expected that rich clusters would have a greater probability of containing a radio galaxy because of the natural dispersion in evolutionalry rates. It therefore appears more probable that the determining factor is an actual physical property of the cloud itself at condensation. This may, of course, be dependent on the cosmic time at which the condensation occurred. Some factors which may prove crucial are magnetic fields, turbulent energy or chemical composition. There is obviously scope for an extensive investiga-
tion of the overall properties of 'radio' and 'nonradio' clusters to attempt to determine correlations.

6. Cluster Luminosity Function

The term 'cluster luminosity function' is used here to refer to the average number of sources per Abell cluster per unit range of $\log P_{480}$. This function is written ρ_{c}. Since ρ_{c} is defined in terms of sources per cluster it cannot be compared directly with the galaxy radio luminosity function, which is defined in terms of sources per unit volume.

Table 3. Data for cluster luminosity function

(1) $\log P-23$	(2) m_{10}	(3) Cluster numbers	(4) Source numbers	(5) ρ_{c}
$0-0 \cdot 2$	$13 \cdot 5$	1	0	0
$0 \cdot 2-0 \cdot 4$	$14 \cdot 8$	8	1	$0 \cdot 125$
$0 \cdot 4-0 \cdot 6$	$16 \cdot 0$	88	9	$0 \cdot 102$
$0 \cdot 6-0 \cdot 8$	$16 \cdot 8$	152	2	$0 \cdot 013$
$0 \cdot 8-1 \cdot 0$	$17 \cdot 4$	221	7	$0 \cdot 032$
$1 \cdot 0-1 \cdot 2$	$18 \cdot 0$	247	11	$0 \cdot 045$
$1 \cdot 2-1 \cdot 4$	$18 \cdot 0$	247	4	$0 \cdot 016$
$1 \cdot 4-1 \cdot 6$	$18 \cdot 0$	247	4	$0 \cdot 016$
$1 \cdot 6-1 \cdot 8$	$18 \cdot 0$	247	1	$0 \cdot 004$
$1 \cdot 8-2 \cdot 0$	$18 \cdot 0$	247	0	0

We consider first all the Category I radio sources which may be reasonably identified with cluster galaxies. For these the luminosity has been calculated and is given in Column 11 of Table 2. To obtain ρ_{c} it is necessary to determine the number of clusters which would be represented in the table if they did contain sources of given luminosity. For sources in a cluster with redshift z it is shown in the Appendix that the minimum luminosity for inclusion as a Category I source is given by

$$
\begin{equation*}
P_{\min }=2 \cdot 5 \times 10^{24}(1+z)^{10 / 3+\alpha}\left\{1-(1+z)^{-1 / 2}\right\}^{2 / 3} . \tag{4}
\end{equation*}
$$

This holds out to a distance at which the flux density of a source of luminosity $P_{\text {min }}$ falls below the detection limit. Setting the limit at $S_{408}=0.4 \mathrm{Jy}$ (where all detections should be complete), we find the corresponding redshift is $z=0 \cdot 12\left(m_{10}=17 \cdot 0\right)$. For greater redshifts we apply equation (3) to determine $P_{\min }$, taking S_{408} as 0.4 Jy .

The numbers from which the luminosity function is derived are listed in Table 3. Column 1 identifies the luminosity range in intervals of 0.2 in $\log P$. Column 2 gives the value of m_{10} corresponding to the maximum z for which sources having $\log P$ equal to the mid-point of the luminosity range would be included as a Category I source. Column 3 tabulates the number of clusters in the sample for which m_{10} is equal to or less than the value in Column 2. Column 4 gives the number of Category I radio sources with luminosities in the range defined by Column 1. Finally, in Column $5, \rho_{\mathrm{c}}$ is tabulated (obtained by dividing the entry in Column 4 by that in Column 3). Because not all the cluster sources are included amongst Category I sources, the true values of ρ_{c} are some $30 \%-50 \%$ higher.

A similar calculation to the above has been carried out for the identified brightest galaxies labelled B in column 14 of Table 2. In this case $P_{\text {min }}$ is determined by equation (3) alone, as no statistical selection has been made. As before, the flux density limit has been taken as 0.4 Jy .

The two sets of results for ρ_{c} from the Category I sources and the brightest galaxy identifications are:

$\log P-23$	$0-0.4$	$0.4-0.8$	$0.8-1.2$	$1.2-1.6$	$1.6-2.0$
ρ_{c} for Category I sources	0.125	0.115	0.077	0.032	0.004
ρ_{c} for brightest galaxies	0.045	0.037	0.060	0.024	0.008

To reduce the scatter, the range of $\log P$ has been increased to 0.4 (one magnitude). It is evident that the cluster luminosity function of the brightest cluster galaxies contains more radio sources of high luminosity and less of low luminosity.

Fig. 3. Radio luminosity functions for identified galaxies in Abell clusters compared with the general radio luminosity functions for galaxies obtained by Cameron (1971) and Sholomitskii (1968a, 1968b).

In order to compare the present results with the general galactic radio luminosity function, the spatial density of Abell clusters must be estimated. Within a redshift of 0.2 and a solid angle of approximately 6 sr the number of listed clusters is 2172 . In an Einstein-de Sitter cosmological model the corresponding space density is approximately $8 \times 10^{-6} \mathrm{Mpc}^{-3}$. In Fig. 3 the absolute radio luminosity function, obtained by multiplying ρ_{c} by the cluster space density, is compared with the luminosity function of nearby galaxies obtained by Cameron (1971) and his extrapolation of the luminosity function of radio galaxies obtained by Sholomitskii (1968a, 1968b). Although statistical uncertainties are large it appears that only a small proportion of the radio sources out to $z \approx 0.2$ are to be found in Abell clusters, even after allowing for the underestimation of ρ_{c}.

7. Radio Spectra

About half of the radio sources which have been associated with a cluster and used to construct the luminosity function have also been catalogued in surveys at other
frequencies. Although there is a diversity of absolute flux density scales at low frequencies, reasonably accurate spectral indices may be obtained by making systematic flux density adjustments. The data used are: 80 MHz , Slee and Higgins (1973, 1975); 85 MHz , Mills et al. (1958); 178 MHz , Gower et al. (1967); 1420 MHz , Ekers (1969), Murdoch (1976); 2700 MHz , Ekers (1969), Bolton et al. (1975), Murdoch (1976), Wall et al. (1971); 5000 MHz , Bolton et al. (1975), Wall et al. (1976). Flux density adjustment factors of $1 \cdot 2$ and $1 \cdot 15$ were applied to the 80 and 178 MHz data respectively. The remaining data were used unscaled.

Table 4. Spectral data

Abell	Source	S_{80}	S_{85}	S_{178}	S_{408}	S_{1415}	S_{2700}	S_{5000}	Indices	
number	number	(Jy)	${ }^{-}$	${ }^{-\alpha_{+}}$						
2	0005-199		17		$1 \cdot 80$		$0 \cdot 45$	0.25	$1 \cdot 43$	0.78
85	0038-096	42	56		$1 \cdot 47$				$2 \cdot 18$	
119	0053-015		70 :		8.0 D		1.45		1.38:	0.90
133	0100-221	37	35		2.71				$1 \cdot 62$	
194	0123-016	32	88		13.6 XD	$4 \cdot 4$	$2 \cdot 67$		$0 \cdot 82$	0.87
208	$0128+002$			$2 \cdot 4$	1.49		$0 \cdot 33$		0.57	0.80
235	0137-177		10		1.72		$0 \cdot 42$	$0 \cdot 30$	$1 \cdot 12$	0.75
362	0229-051		12:		$0 \cdot 68$				$1 \cdot 83$	
400	0255+058	51	51		$16 \cdot 3$	$5 \cdot 5$	$3 \cdot 5$		0. 71	0.82
401	$0255+133$				1.05	$0 \cdot 5$	0.3			0.65
415	0304-122	10	18:		$3 \cdot 80$	1.5	$0 \cdot 82$	$0 \cdot 38$	0.78:	0.90
496	0431-134				$2 \cdot 40 \mathrm{D}$		0.25			1.20
	0431-132	19			5.50X	$1 \cdot 4$	$0 \cdot 8$	$0 \cdot 48$	0.76	0.99
754	0906-094		17:		$1 \cdot 10$				1.72:	
1308	1130-037			$2 \cdot 3$	2.30X		0. 54		$0 \cdot 00$	0.77
1620	1247-012		14:		$0 \cdot 84$				1.79:	
1684	$1306+107$			$2 \cdot 9$	$1 \cdot 63$	$0 \cdot 54$	$0 \cdot 28$		0.69	0.93
1836	1358-113	10	13		$4 \cdot 40$	1.9	$1 \cdot 1$		0.59	0.73
2029	$1508+059$		24		$2 \cdot 66$	$0 \cdot 8$	$0 \cdot 2$		1.40	1.32
2052	$1514+072$	126	140	54	28.0	$5 \cdot 2$	$2 \cdot 3$		0.99	$1 \cdot 33$
2147	$1559+158$			$8 \cdot 4$	4.66D	$1 \cdot 78$	0.91		0.71	0.85
2382	2149-158		$8 \cdot 8$		1.40 X				$1 \cdot 17$	
2448	2229-086		15		1.90 X	$0 \cdot 60$	$0 \cdot 45$	$0 \cdot 20$	1.32	0.79
2462	2236-176	16	14		$4 \cdot 20$	1.5	1.2		$0 \cdot 80$	0.69
2480	2243-178				$0 \cdot 84$		$0 \cdot 21$			0.73
2644	2338-001		11	$3 \cdot 5$	$1 \cdot 62$		$0 \cdot 38$		$1 \cdot 22$	0:77

In Table 4 the flux density spectral data are tabulated, together with two spectral indices α_{-}and α_{+}. The index α_{-}is the least squares fit to a power law v^{α} for measurements made at frequencies 408 MHz and below, while α_{+}is the corresponding index for frequencies 408 MHz and above. In the table, five of the 85 MHz flux densities are indicated as being uncertain by a colon. In these cases the coincidence between the 85 MHz positions and the present 408 MHz positions is not good, suggesting that extra emission has been included in the 50^{\prime} arc beam used at 85 MHz . Where the spectral index α_{-}depends on these measurements it has also been indicated as uncertain.

Mean indices have been, calculated (excluding the uncertain results indicated by a colon) and they are as follows:

$$
\left\langle\alpha_{-}\right\rangle=-1 \cdot 00 \pm 0 \cdot 12, \quad\left\langle\alpha_{+}\right\rangle=-0 \cdot 88 \pm 0 \cdot 05
$$

Neither of these is significantly different from the mean index of about -0.9 obtained by Murdoch (1976) for various samples of sources selected at 408 MHz . Moreover, the differences which do exist are in the sense expected from the operation of selection effects in the finding surveys.

It has been suggested by Bridle and Feldman (1972) that steep-spectrum extended radio sources may be associated with X-ray emission as the result of inverse Compton scattering of the synchrotron electrons from the microwave background. No definite support for this suggestion could be found among the present results. One of the observed clusters A401, which is an X-ray source, has been advanced as an example of the suggested mechanism by Harris and Romanishin (1974). They attributed to it a steep-spectrum extended source which they found at low frequencies. In our observations there is no indication of low-level extended emission, but an unresolved radio source (4 C 13.17), probably unassociated with the cluster, is located about half a degree north following $0255+133$. A blending of these two sources may possibly have caused a misinterpretation of their results. In fact, any low resolution observations are subject to uncertainties of this type, and many published spectra should be treated with caution.

Only one clear example of an excessively extended source was found among the present observations. The cluster A194 contains a double source apparently surrounded by an extensive halo (Schilizzi and McAdam 1975). However, its spectrum is normal, and it does not appear to have been detected as an X-ray source.

The MSH catalogue (Mills et al. 1958) allows some further possibilities of search for extended steep-spectrum sources. Possible examples should be included among the Abell cluster associations suggested by Mills (1960). Those sources listed in Table 4 with uncertain 85 MHz flux densities may be in this category. Further examples not related to the sources found in the present investigation are located near the following clusters: A36, A477, A513, A538, A869, A1773, A2328, A2384, A2544, A2612. However, the probability of chance associations is such that there is no compelling reason to assume that any of these associations is physical. In fact, the evidence of the MSH survey would appear to severely limit the possibility of making a positive identification of steep-spectrum extended emission associated with any of the present sample of clusters south of declination $+10^{\circ}$; in possible examples the observed flux densities are not much higher than the background confusion level.

8. Conclusions

The present observations of 247 Abell clusters show no clearly demonstrable peculiarities in the radio emission associated with the clusters. The properties of radio galaxies identified in the clusters appear to fall within the wide range of properties of other radio galaxies and no clear evidence for excess emission by the intergalactic matter could be found. We conclude that the presumed presence of excess intergalactic matter in the clusters has no marked effect on the development of radio galaxies, and it does not itself emit sufficiently to be differentiated with certainty from the normal fluctuations of sky brightness.

No clear examples of 'head-tail' sources were found, although 0445-206 and $1508+182$ may be examples. With the resolution available, such sources would only be easily recognizable in very close clusters, and there are few of these in the sample. However, the rather large median displacement between the radio and optical centroids of identified galaxies may possibly represent a similar effect.

The most interesting result arises from the correlations with cluster richness. These seem to imply that the potentiality for radio emission is imprinted on a galaxy when it is formed as a result of some physical property associated with the primordial gas cloud.

Acknowledgments

The work was supported by the Australian Research Grants Committee, the University of Sydney Research Committee and the Science Foundation for Physics within the University of Sydney. One of us (D.G.H.) acknowledges receipt of a Commonwealth Postgraduate Research Award.

Note added in proof

Observations with the Fleurs synthesis telescope have indicated that 0445-206 is not a 'head-tail' source.

References

Abell, G. O. (1958). Astrophys. J. Suppl. Ser. 3(31).
Abell, G. O. (1972). In 'External Galaxies and Quasi-Stellar Objects' (Ed. D. S. Evans), p. 341
(Reidel: Dordrecht).
Bautz, L. P., and Abell, G. O. (1973). Astrophys. J. 184, 709
Bolton, J. G., Shimmins, A. J., and Wall, J. V. (1975). Aust. J. Phys. Astrophys. Suppl. No. 34, 1.
Bridle, A. H., and Feldman, P. A. (1972). Nature Phys. Sci. 235, 168.
Cameron, M. J. (1971). Mon. Not. R. Astron. Soc. 152, 429.
Ekers, J. A. (1969). Aust. J. Phys. Astrophys. Suppl. No. 7.
Gower, J. F. R., Scott, P. F., and Wills, D. (1967). Mem. R. Astron. Soc. 71, 49.
Harris, D. E., and Romanishin, W. (1974). Astrophys. J. 188, 209.
Hunstead, R. W. (1971). Mon. Not. R. Astron. Soc. 152, 277.
Hunstead, R. W. (1972). Mon. Not. R. Astron. Soc. 157, 367.
Mills, B. Y. (1960). Aust. J. Phys. 13, 550.
Mills, B. Y., Shobbrook, R. R., and Stewart-Richardson, D. (1968). Aust. J. Phys. 21, 511.
Mills, B. Y., Slee, O. B., and Hill, E. R. (1958). Aust. J. Phys. 11, 360.
Munro, R. E. B. (1971). Aust. J. Phys. 24, 263.
Murdoch, H. S. (1976). Mon. Not. R. Astron. Soc. 177, 441.
Noonan, T. W. (1973). Astron J. 78, 26.
Rowan-Robinson, M. (1972). Astron. J. 77, 543.
Sandage, A. (1972). Astrophys. J. 178, 1.
Sargent, W. L. W. (1973). Publ. Astron. Soc. Pac. 85, 281.
Schilizzi, R. T. (1975). Mem. R. Astron. Soc. 79, 75.
Schilizzi, R. T., and McAdam, W. B. (1975). Mem. R. Astron. Soc. 79, 1.
Sholomitskii, G. B. (1968a). Sov. Astron. 11, 756.
Sholomitskii, G. B. (1968b). Sov. Astron. 12, 381.
Slee, O. B., and Higgins, C. S. (1973). Aust. J. Phys. Astrophys. Suppl. No. 27.
Slee, O. B., and Higgins, C. S. (1975). Aust. J. Phys. Astrophys. Suppl. No. 36.
Wall, J. V., Shimmins, A. J., and Merkelijn, J. K. (1971). Aust. J. Phys. Astrophys. Suppl. No. 19. Wall, J. V., Wright, A. E., and Bolton, J. G. (1976). Aust. J. Phys. Astrophys. Suppl. No. 39, 1. Wyllie, D. V. (1969). Mon. Not. R. Astron. Soc. 142, 229.

Appendix

Over the range of flux densities in which we are interested, we take the number of sources per steradian with flux density above S janskys to be given approximately by

$$
\begin{equation*}
n=900 S^{-1 \cdot 5} \tag{A1}
\end{equation*}
$$

The probability that a source of flux density S or greater is located within an angle θ of an arbitrary position is then given by

$$
\begin{equation*}
p=n \pi \theta^{2}=900 \pi S^{-1 \cdot 5} \theta^{2} \tag{A2}
\end{equation*}
$$

To define a Category I source we determine θ_{c} from equation (2) (of the text) on putting $d=0.4 \mathrm{Mpc}$, and we then determine S_{c} on putting $\theta=\theta_{\mathrm{c}}$ and $p=0.02 \mathrm{in}$ equation (A2). The minimum luminosity $P_{\min }$ with which a cluster source will be classified as Category I is then given by substituting S_{c} in equation (3) of the text. On inserting the values of c and H_{0} in S.I. units we obtain equation (4).

