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Abstract 

The coupling between lattice vibrations and electrons in the partly filIed shells of paramagnetic 
ions is normaIIy presumed to take place via a localized complex consisting of the paramagnetic 
ion surrounded by its ligands. In such cases the number of parameters is reduced significantly by 
the use of the superposition model. This model, with some related approximations, has been employed 
to determine coupling parameters for fluorine, chlorine and oxygen ligands using both experimental 
and theoretical results. 

Introduction 

Many physical processes occur as a result of the coupling between lattice 
displacements and the electrons in partly filled shells of paramagnetic ions, yet 
little progress has been made in constructing realistic Hamiltonians for this coupling. 
It is usual to break the coupling mechanism into two aspects, which can then be 
treated as separate problems: 

(i) The excitation of local modes in an ionic complex, consisting of the 
paramagnetic ion and a single shell of surrounding ligands, by the lattice 
vibrations. 

(ii) The coupling between the local modes of the complex and the electrons 
in the partly filled shell of the paramagnetic ion due to modulation of the 
crystal field. 

This model omits long-range electrostatic coupling effects which may, however, be 
added in separately. Both aspects of the problem have been discussed extensively 
in the literature (see e.g. Orbach and Stapleton 1972), where it is made clear that 
(ii) is the main stumbling block in obtaining reliable quantitative orbit-lattice 
Hamiltonians. 

The assumption made in omitting long-range interactions between the lattice 
vibrations and the electrons in the paramagnetic ions is already incorporated in the 
superposition model of the crystal field (Newman 1971). It is only necessary to 
introduce the further assumption that each ligand acts independently on the open-shell 
electrons to use this model in the treatment of problem (ii) above. A formulation of 
this approach has been given by Curtis et al. (1969). In the next section we consider 
a modified formulation, closely related to the application of the superposition model 
in static crystal field theory. 
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Superposition Model of Dynamic Crystal Field 

According to the superposition model, the static crystal field can be expressed as 
a sum of axially symmetric contributions from the individual ligands. In particular, 
each crystal field parameter can be written (in Stevens's normalization) as 

B;:' = A;:'<rn) = L K;:'(Oi <Pi) AnCRi), (1) 
i 

where the sum is over the ligands at Ri = (Ri 0i <PJ and the An(Ri) are intrinsic 
parameters describing the axially symmetric crystal field due to a ligand at distance 
Ri. The 'coordination factors' K;:'(Oi <Pi) are functions of the ligand angular positions 
determined using the transformation properties of spherical harmonics. They are 
normalized so that K~(O, 0) = 1. A list of these functions for a restricted set of 
n,m values has been given by Newman and Urban (1975, p. 816). 

In most practical applications of equation (1) there will be several ligands at 
the same distance Rv from the central paramagnetic ion, so the summation can be 
rearranged as 

B;:' = L K;:'(v) AnCRv) , (2) 

where 
K;:'(v) = L K;:'(Oj <p) 

jEv 

are the 'combined coordination factors' for the set of equidistant ligands at Rv 
labelled v. 

Dynamic crystal field parameters are defined as the differentials oB;:,/oen where 
the er represent normal mode displacements in the paramagnetic complex. Using 
equation (1) we obtain 

oB;:' = L ORi K;:'(Oi <Pi) oAn + L (OOi oK;:'(i) + O<Pi O~;:'(i»)An. (3) 
oer i oer ORi i ver OOi oer O<Pi 

It is thus appropriate to define two sets of 'dynamic coordination factors', 

y;:'( 0i <Pi r) = ~Ri K;:'( 0i <Pi) , 
ver 

Pm(o. rI. r) _ OOi DK;:'(i) Orl.· oKm(i) 
n ,,/,i _ ---+ ,/" n 

oer OOi oer ~' 
so that 

O~B;:' = L {y;:'(i, T) A~(i) + P;:'(i, r) AnCi)} . 
ver i 

(4) 

This expression may also be simplified if the ligands are separated into equidistant 
sets (at Rv) as: 

O~B;:' = L {y;:'(v,r) A~(v) + P;:'(v, r) An(v)} , 
ver v 

(5) 

where 
y;:'(v, r) = L y;:'(Oj <Pjr), p;:,( v, r) = L P;:'(Oj <Pj r). 

jEV jEV 

In the above expressions we have treated the differential A~ as a distinct parameter. 
However, it is usual to assume that the function An(R) can be expressed as a power 
law in R, at least over a limited range of R. We may therefore write 

A~(R) = -tnAn(R)/R, 
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where R is the ligand distance. This also allows us to relate the different Aiv). 
Hence we may regard the quantities An and tn as giving a complete description of 
the dynamic crystal field. 

Most work on dynamic coupling to date has used the point-charge approximation 
for the ligands, in which these parameters take the following values for a single 
electronic charge (in atomic units): 

A2 = <r2) 
2R3 ' 

A4 = <r4
) 

8R 5 ' 

A6 = <r6
) 

16R7 ' 

(6)" 

giving tn = 2n + 1. It is now generally accepted that this approximation is quite 
unrealistic, even for the lanthanides, and the determination of the An and tn is a 
far more complex problem (Newman 1971). 

Expressions for the dynamic coordination factors in a variety of paramagnetic 
complexes will be given in a forthcoming publication. The aim of the present work 
is to show that reliable values of the parameters An and tn for the lanthanides can 
now be obtained. Several procedures are available which can provide this information: 

(a) Static (or quasi-static) strain experiments on systems with high site 
symmetry. 

(b) Comparison of crystal field parameters in several different, but isomorphic, 
systems. 

(c) Analysis of static crystal field parameters for sites with at least two ligand 
distances. 

(d) Ab initio calculations and related models. 

All three of the experimental procedures are faced with the problem that, in the 
case of substituted ions, there will be some differences between bulk and local 
properties of the crystal. Careful analysis is required to eliminate the uncertainties 
arising from such effects. Strain experiments on crystals containing substituted 
paramagnetic ions are particularly difficult to interpret, since local elastic constants 
may change as well as the ionic positions at equilibrium. 

Given that reliable values of An and tn can be obtained using one or more of 
the procedures (a)-(d) above, it is unnecessary to regard any of the parameters in 
the orbit-lattice Hamiltonian as indeterminate in interpreting spin-Iatti~ relaxation 
data. This makes it possible to use such data as a test of the superposition model. 
Unfortunately, previous tests of this nature have been rather inconclusive owing to 
confusion in the interpretation of symbols (North and Stapleton 1977) or to the 
use of a completely different symbolism (Baker and van Ormondt 1974). 

F- Ligands 

A considerable amount of experimental data has been collected for lanthanide 
ions in cubic sites in fluorite structure crystals. Such data are particularly appropriate 
for the method (b) described in the previous section, as it is relatively simple to 
calculate local distortions or to use indirect experimental means such as ENDOR to 
estimate them. An example of this approach is the work by Anderson et al. (1975), 
who find power-law exponents for Tm2+ in CaF2, SrF2 and BaF2 of the order 
t4 = 10·5 ± 0·5 and t6 = 11·5 ± 1 ·5. These results should be more accurate than 
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a previous analysis by Stedman and Newman (1971), who obtained a mean value 
for divalent ions of t4 = t6 = 5·7 ± 0·9, due to an underestimate of the static local 
distortion around a substituted ion in these crystals. The static strain experiments 
of Axe and Burns (1966) also underestimate local distortion effects, and give the 
power-law exponents t4 = t6 = 6·8±0·3. 

This section is devoted to a re-examination of the data for lanthanide ions in the 
fluorites in order to be able to obtain more reliable estimates of t4 and t6. We first 
address ourselves to the question of whether t4 = t6 for lanthanide ions substituted 
in fluorite structure crystals, as this can be decided without reference to the actual 
lanthanide-ligand distances involved. It is also independent of the superposition 
model, since in cubic symmetry the crystal field parameters themselves are a function 
of the lanthanide-ligand distance R alone, so there is no need to relate measured 
parameters to intrinsic parameters in order to eliminate angular variation effects. 
We can therefore write 

!.i = 10g(A6<r6)RJA6<r6)R2) 
t4 log(A4<r4)dA4<r4)R,} 

Table 1. Intrinsic parameters for lanthanide ions in fluorite structure crystals 

Ionic Intrinsic parameters .4n (em-I) Exp. 
Ion radiusA CaF2 SrF2 BaF2 data 

(A) .44,.46 .44,.46 .44, .46 sourceB 

Gd3+ 0·938 86·8,27·8 77 ·1,23·3 69-4,17·5 1 
Tb3+ 0·923 84·2,27·0 80·6,24·9 74·8,22·6 2 
D y3+ 0·908 82·6,23·6 77·9,21·3 73·9,19·0 3 
Er3+ 0·881 78·8,21·8 71·7,19·3 66·9,17·1 4 
Yb3+ 0·858 68·5,19·4 5 
Ho2+ 94·8,16·4 80·0,13·6 67 ·5,11·7 6 
Dy2+ 75·5,17·7 67·2,15·8 59·5,13·8 7 
Tm2+ 60·8,15·6 53·0,12·8 44·6,10·6 8 

A Taken from the CRC Handbook (1975-6). 
B Sources: 1, O'Hare et at. (1969); 2, Davydova et at. (1976); 3, Al'tshuler 
et at. (1970); 4, Aizenberg et at. (1971); 5, Kiro and Low (1970); 6, 
Weakliem and Kiss (1967); 7, Kiss (1965); 8, Hayes and Smith (1971). 

(7) 

A collection of experimental data for lanthanide ions in the three hosts CaF 2, 
SrF2 and BaF2 has yielded the intrinsic parameters listed in Table 1. However, 
the derivation of Dy2+ parameters implicitly assumes that t4 = t6, so we cannot 
derive any information from equation (7). The results for the remaining systems 
may be summarized as: 

t6/t4 = 1·7±0·3 

t6/t4 = 1·1 ±0·2 

for trivalent ions; 

for divalent ions. 

Edgar and Newman (1975) used strain data for the GdH spin-Hamiltonian to 
estimate ligand distances for GdH substituted into cubic sites in fluorite structure 
crystals.· Their results have recently been confirmed using ENDOR by Baker and 
Christidis (1977). From the data given in Table 1 and with the assumption that the 
GdH ligand distances are at least approximately valid for other trivalent ions, we 
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obtain the following power-law exponents: 

(a) for Gd3+, 

(b) for Tb3+, Dy3+ afld Et3+, 

t4 = 10·7 ± 1· 3, t6 = 21· 6 ± 4 ; 

t4 = 6·3±1·4, t6 =10·1±1·1. 

83 

The striking differences between Gd3+ and the other trivalent ions are probably 
due to the different nature of the crystal field in this ion (Newman 1970; Judd 1977). 

Pig. 1 plots experimental A4 parameters for Tb3 +, Dy3 + and Er3 +, the straight 
line fits being drawn with the same gradient (corresponding to t4 = 6·3) for all 
three ions. This graph allows us to derive an approximate formula for all the A4 
parameters, namely 

A4(~) = A4(~/~O)6.3 , (8) 

where A4 may be chosen arbitrarily, provided ~ is specified. Por 

A4 = 7S·9cm-1 we obtain ~o = 2·373A for Er3+ , 

= 2·401 A for Dy3+ , 

= 2·41OA for Tb3+ . 

The differences between ~o are very close to the differences in ion.ic radii of the ions. 
This suggests that equation (8) may be used as a general extrapolation formula 
giving A4(~) for any trivalent lanthanide ion with a fluorine ligand. The corresponding 
graph for A6(~) (Pig. 2) gives 

where 
A6 = 20·3 cm- 1 

A6(~) = A6(~/~)10.1, 

and ~O = 2·376A for Er3+, 

= 2·401 A for Dy3+, 

= 2·438 A for Tb3+. 

(9) 

Pigs 1 and 2 also serve to confirm the relative ligand distances in the substituted 
fluorites determined by Edgar and Newman (1975), as all three sets of data for a 
given value of log ~ in both graphs lie in a 'best fit' position for their value of log ~ 
in relation to the fitted lines. This criterion could have been used to determine 
the relative ligand distances in SrP2 and BaP2 , assuming zero distortion in the case 
of CaP2 • In this case the Tb3+ value of ~o is greater than would be suggested by 
differences in ionic radii. 

Porcher and Caro (1976) have determined crystal field parameters for Eu3+ 
substituted for y3+ in C4v sites in KY3PI0, providing an alternative source of 
information on P- intrinsic parameters. Observed parameters and calculated 
coordination factors for each of the two groups of P- ions are given in Table 2. 

The observed n = 4 and n = 6 parameters can be understood using the super-
position model if we accept the values ' 

~ = 78·4±2 cm- 1 , 

A6 = 19·7 ±2 cm- 1 , 

t4 = 16·6; 

t6 = 9·1 ; 
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Fig. 1. Plots of log,44 (,44 in cm-I) against 10gR (R in A) for Er3+, Dy3+ and 
Tb3 + ions in fluorite hosts. Fitted lines with 14 = 6·3 are shown, giving equation 
(8) in the text. The horizontal dashed line corresponds to ,44 = 75·9 cm -I. 

n,m 
values 

2,0 
4,0 
4,4 
6,0 
6,4 

Table 2. Superposition model analysis data for Eu3+ : KY3FIO 

Observed parametersA 

A::'<,"> (cm- I ) 

-276±8 
-170±3 

360±24 
24·6±2 

164±14 

Calculated coordination factorsB 

x:'(1) x::'(2) 

0·016 
-1·564 
-7·715 

0·870 
-18·72 

0·112 
-1·612 

7·347 
0·751 

18·99 

A Obtained by Porcher and Caro (1976) and here expressed in Stevens's 
normalization. 
B The four ions included in x::'(I) have positions RI = (Rhllt, rPI +90,) 
where RI = 2·33 A, 81 = 54.57°, rPI = 45° and , is an integer; similarly, 
R2 is given by Rz = 2·19A, 82 = -53·60° and rP2 = O. 

for P- ligands at a distance of 2·19 A from Eu3+. The values of 14 and 16 are of a 
similar order of magnitude to the values determined for cubic systems, although 
14 is greater than t6 , probably due to local distortion effects. The superposition model 
cannot explain the observed sign of A~<r2>, given the X-ray determination of ionic 
positions and the usual condition ..42 > 0, again suggesting the importance of local 
distortion effects in this system. 
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Fig. 2. Plots of log{A6 (cm-')} against log{R(A)} for Er3+, Dy3+ and Tb3+ 
ions in fluorite hosts. Fitted lines with t6 = 10·1 are shown, giving equation (9) 
in the text. The horizontal dashed line corresponds to A6 = 20·3 cm-'. 
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To summarize, we have found the power-law exponent t6 to be greater than had 
been suggested prior to the work of Anderson et al. (1975). The cubic-site results 
for the ratios t6/t4' which are independent of both the superposition model and local 
distortion effects, show t4 to be significantly smaller than t6 for the trivalent 
lanthanides. Formulae have been derived for the intrinsic parameters .44 and .46 
of Dy3 +, Er3 + and Tb3 + which can be extrapolated for other trivalent lanthanides. 
Similar formulae can be written down for the divalent lanthanides using the values 
of t4 and t6 obtained by Anderson et al. and the intrinsic parameters quoted in Table 1. 

Cl- Ligands 

Cheng and Dorain (1976) have recently determined the cubic crystal field param
eters for Pr3 + ions in octahedrally coordinated sites with CI- ligands in single 
crystals of CSzNaPrCI6 . The intrinsic parameters for this system can thus be 
determined as 

.44 = 82·4 cm-1, .46 = 52·8 cm-1, 

which are considerably larger than experimental results give for Pr3 + : LaCl 3 

(Margolis 1961). They are also rather different from the parameters determined 
by Dunlap and Shenoy (1975) for CszNaPrC16, namely .44 = 137 cm-1 and 
.46 = 56 em-I. 
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Assuming the Na-Cl distance in Cs2NaPrCl6 to be the same as in NaCl we may 
use X-ray data (Morss et al. 1970) to determine the Pr3+-Cl- distance as 2'673A, 
compared with 2·953 A in LaCI3 . Using intrinsic parameters determined from 
experimental data for Pr3+: LaCl3 (Curtis et al. 1969), A4 = 38·8 cm -1 and 
A6 = 15·8 cm - \ in conjunction with the results of Cheng and Dorain (1976), 
we derive the power-law exponents 

t4 = 7'9, t6 = 12·1. 

Although slightly larger, these have a remarkably similar ratio to that already 
determined for F- ligands in fluorite crystals. They may also be compared with the 
results of the ab initio calculation by Curtis et al. (1969) which gives 

t4 = 9'6, t6 = 10·6. 

This represents an unusually good agreement between theory and experiment for 
these parameters. 

2·1 

2·0 

..,. 
l-<e 

0 

.0; 
..8 

1·9 

1· 8 

• 

'" I -----L. 
0'00 . 0·37 0·38 0·39 0·40 0·41 

loglO R 

Fig. 3. Plots of log{A4 (cm- 1)} against log{R(A)} for various lanthanide ions with oxygen 
ligands. Fitted lines corresponding to t4 = 11·0 are shown, giving equation (10) in the text. 
The horizontal dashed line corresponds to A4 = 75·9 cm -1 • 

0 2 - Ligands 

Values of the intrinsic parameters A4 and A6 for several trivalent lanthanides 
in garnet host crystals have been determined by Newman and Stedman (1969). 
A plot of the results for A4 in Er3+ : YGaG, ErGaG and ErAIG gives remarkable 
consistency, as is shown in Fig. 3, where t4 = 11· O. In this figure lines of the same 
gradient have also been fitted to A4 values for Dy3 + in garnet hosts, Er3 + : LuGaG 
and Eu3+ in a variety of host crystals (Linares and Louat 1975). As Linares and 
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Louat showed, there is not very good consistency between A4 values for Eu3 + in 
the host La20 2S and its values in LaAI03 and La20 3, and hence the points for this 
ion in Fig. 3 show considerable scatter. This is to be expected for 0 2- ligands, 
which show variable ionicity (Newman 1977). Nevertheless, the differences between 
the fitted lines for Dy3 + and Er3 + can be understood in terms of differing ionic radii, 
following our explanation of the relative A4 and A6 values in the fluorites. The 
general formula takes the form 

AiR) = AiRj Ro)l1'O , (10) 
where 

A4 = 75·9 cm- l and Ro = 2·377 A for Er3 + replacing y3 + , 

= 2'352A for Er3+ replacing Lu3+ , 

= 2·407 A for Dy3+ replacing y3+ , 

= 2·456A for Eu3 + in La202S, 

= 2·494A for Eu3+ in La20 3 and LaAI03. 

As is shOwn in Fig. 4, the fitted A6 values obtained by Newman and Stedman 
(1969) have considerably greater scatter than the fitted A4 values. Nevertheless, 
there is still good consistency between the values obtained for Er3 + and Dy3 + in 
the gallium and aluminium garnets. It is not possible to distinguish between A6 
values for Er3 + in LuGaG and the other garnets. With these reservations in mind, 
the following approximate general formula for garnet hosts may be derived: 

where 
A6 = 21·2 cm- l 

A6(R) = A6(RjRo)IO'9, 

and Ro = 2·377 A for Er3+' 

= 2·450A for Dy3+. 

(11) 

The A6 values for Eu3+ in various hosts obtained by Linares and Louat (1975) 
do not show any systematic relationship to the garnet values. It is worth remarking, 
however; that these authors obtain consistent fits to experimental data using a value 
of t6 close to 11. This value can therefore be taken as universally valid for 0 2 - , 
although there is apparently no universally valid value of A6 • 

It is interesting to compare the above results with those obtained by Vishwamittar 
andPuri(1974a)forEr3+ :YV04 • TheirderivedintrinsicparametersareA4 = 51 em-I, 
A6 = 27 em-I, while equations (10) and (11) give A4 = 93·2 em-I, A6 = 26·3 em-I. 
All the results for zircon structure crystals show such relatively low values for A4 , 

which may be interpreted as the effect of covalent bonding (e.g. in the V04 complex) 
removing much of the effective charge of the oxygen ion. It is therefore necessary 
to be very careful in using equation (10) to obtain values of A4 • 

Intrinsic parameters have also been determined for trivalent ions in a variety 
of scheelite hosts (Vishwamittar and Puri 1 974b). For example, Er3+: CaW04 

(with R = 2·466 A) gives the experimental values A4 = 51 em-I, A6 = 17 em-I. 
Equations (10) and (11) give, for this value of R, A4 = 50·6 em-I, A6 = 15·0 em-I, 
which is· excellent agreement in view of the many uncertainties involved in deriving 
these parameters from data in substituted i(l)ns. This suggests that covalent bonding 
effects are not important in these systems. 
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Fig.4. Plots oflog{..46 (em-I)} against 10g{R (A)}for Er3+ and Dy3+ substituted 
for y3+ and Lu3+ in garnets with oxygen ligands. Fitted lines corresponding 
to 16 = 10·9 are shown, giving equation (11) in the text. The horizontal dashed 
line corresponds to ..46 = 21·2 em-I. 

Analysis of n = 2 Parameters 

Relatively little work has been carried out to determine the intrinsic parameters 
A2 and power-law exponents 12 from experimental values of the A';(r 2) because 
of the additional uncertainties involved in this procedure for n = 2. These uncertainties 
are: 

(i) The A';(r 2) include significant electrostatic contributions from distant 
ions, so the usual 'ligand only' form of the superposition model may not 
be appropriate. 

(ii) There are generally fewer param~ters A';(r2) than there are for higher n 
values, so that self-consistency checks are difficult to obtain. 

Any useful estimates of the A2 and 12 must therefore be based on an attempt to 
separate the intrinsic parameters into their electrostatic parts A~ and their 'contact' 
parts A~ arising from overlap, covalency, charge penetration and exchange. The 
contact interactions arise mainly from one-electron matrix elements between the 
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lanthanide f shell and the outer S2p6 configuration of the ligand, and thus do not 
perturb the ml = 2 and ml = 3 f-electrons, so we may write the orbital energies 
E(ml=2) = E(ml=3) = O. This gives the following relation between the A~ (Curtis 
el al. 1969): 

A~ = 144°3(13A~-7A6) = 3·64A~-1·96A6. (12) 

Using the energy zero defined above we may write the f-electron orbital energy 
ratio E(ml= 1)/E(ml=O) = A.. The intrinsic parameter ratios can then be expressed 
in the form 

A~ = /3 = 40(2+3"-) 
A6 13 2-3,1. ' 

A4 12(3+,1.) 
A6 = 13 2-3,1. = Y (say), (13) 

where the symbol /3 was introduced by Newman and Price (1975). It was pointed 
out in that paper that it is a very good approximation to write A6 = A6 (that is, 
A6 = 0) so that A~ can be readily derived from experimentally determined values 
of A6 if /3 can be assumed to be constant. The above equations show that this is 
equivalent to assuming A. to be constant. It should be also noted that equations (13) 
generalize equations (11) of Linares and Louat (1975) which correspond to the 
case A. = O. 

If A4 = 0, equation (12) can be used to determine A~ from the experimentally 
determined values of A4 and A6 quoted in the previous sections. A better approxi
mation should be obtained, however, if the formulae of equations (6) are used to 
determine the ratio A4/A~. Introducing the usual screening factors l-O"n we have 

A4 1 (r4) 1 1-0"4 
A~ = 4 (r2) R21-0"2 = J1. (say), (14) 

where calculations give (r4 )/(r 2) ~ 2·0 a.u. (e.g. Coulthard 1973). Unfortunately, 
the screening factors are not very well determined. Using the estimated ratio 
(1-0"4)/(1-0"2) = (1-0·0)/(1-0·8) = 5 (Newman and Price 1975), we obtain 

J1. = 0·70/R2, 

where R is measured in angstroms. A little manipulation then gives 

A2 = A~ +A~ = A~ +/3A6 

= J1.-1(A4 -yA6) +/3A6' (15) 
where 

y = (f3 + 1·96)/3 ·64. 

Use of the formula (15) requires the determination of /3. This was found by Newman 
and Price (1975) to be approximately 5·4, giving A. = 0·18 and y = 2·0. Experi
mentally determined ratios A4/ A6 in excess of this value may be taken to indicate a 
significant electrostatic contribution to A4 • Values less than this, such as the ratio 
A4/A6 = 1·89 obtained from the data of Vishwamittar and Puri (1974a) quoted 
previously, suggest that y = 2·0 may be an overestimate. If we assume A~ to have 
the R dependence given by equations (6), an estimate of 12 can be obtained from 
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equation (15) as follows, 

t2 = {3,u-l(.44 -/,.46) +/3.46 t 6 }/.42 , (16) 

where .42 is to be calculated using equation (15). 

Determination of n = 2 Parameters 

The above equations will now be used to estimate values of .42 and t2 from 
experimental data for n = 4 and n = 6 parameters. These estimates will be compared 
with more direct attempts to estimate these parameters from experimental values 
of the A~<r 2) and the results of ab initio calculations. Our previous results for 
trivalent lanthanides with F- ligands (taking Er3+ with R = 2· 373 A) give 

.42 = 386 cm- 1 (with.4~ = 110 cm- 1), t2 = 5·0. 

This is consistent with the experimental result obtained for Yb3 + : CaF 2 by Baker 
and van Ormondt (1974) using uniaxial strain, namely .42 = 410 cm -1. It is also 
reasonably consistent with the result obtained by Newman (1973) for interstitial 
F- ions in CaF 2, .42 = 409 cm - \ although this ion is more distant and that analysis 
ignored local distortion effects. 

Baker and van Ormondt (1974) studied the effect of uniaxial stress on Tm2+ 

substituted into CaF 2, SrF 2 and BaF 2 and obtained values for .42 of 534, 526 and 
450 cm -1 respectively for these hosts. These values are far from being in accord 
with those obtained from the model derived in the previous section which are, 
respectively, 323, 295 and 259 cm -1. This discrepancy suggests that there may be 
factors which invalidate the use of the present model parameters for divalent ions, 
such as a reduced screening of the electrostatic contribution .4~. 

Taking (J 2 = O' 8 and (J4 = 0 (which is consistent with the choice of the ratio 
(1-(J2)/(1-(J4) given above) the calculation of Newman and Curtis (1969) for 
the Pr3+ -F- system at R = 2·492 A gives /3 = 4·2 and 

.42 = 309cm-1 (with.4~ = 85cm- 1), t2 = 3'2, 

in reasonable accord with the values for trivalent ions determined from experimental 
data. A problem with making comparisons of this type is the absence of any calculation 
of the screening of the charge penetration contributions. The calculation of Newman 
and Curtis shows that equation (12) underestimates the (negative) charge penetration 
contributions to .4~ by about 50 %. This provides a reasonable, if accidental, estimate 
of the screening of these contributions. Adjusting the results of the Newman and 
Curtis calculation to include this effect gives 

.42 = 369 cm- 1 (with.4~ = 145 cm- 1), t 2 =4·2. 

A similar procedure carried out for the Pr3 + -Cl- system with a spacing of 
R = 2·953 A gives .42 = 175 cm- 1 (.4~ = 85 cm- 1), in close agreement with the 
value (188 cm -1) of this parameter determined for the Pr3+ -r system by Newman 
et al. (1971). Unfortunately the parameters obtained for Cl- ligands by Cheng 
and Dorain (1976) do not give reasonable results using the above formulae because 
we have .44/.46 < 2. This indicates that when the ligand becomes very close to the 
lanthanide ion, we must expect a reduction to occur in the parameter .:1., with 
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consequent changes in f3 and y. Taking the extreme value A = 0 we obtain, for 
R = 2·673 A, Az = 261 cm- 1, and comparison with the previous result gives the 
very approximate result tz = 4·0. 

North and Stapleton (1977) have recently tested the superposition model for 
orbit-lattice coupling in Yb3 + : CSzNa YC16 using measured spin-lattice relaxation 
rates. Unfortunately, their parameters denoted Ak are not the same as the Ak defined 
by the present author in previous work and employed in this paper. Writing the 
North and Stapleton parameters as AI" the relationships are 

A~ = 2Az , A~ = 8A4 , A6 = 16A6 · 

In terms of their parameters, the empirical relation given by equation (5) of North 
and Stapleton (1977) should read 

A~ ~ A~ ~ A6. 

Because of this confusion in the definition of the Ak , the contradiction that North 
and Stapleton claim to have found between their results and this inequality is, in 
fact, incorrect. Parameters derived from the static crystal field are 

A4 = 331·4 cm- 1 , A6 = 140·8 cm- 1 , 

while their experiment gives 

560cm- 1 ~ tzA~ ~ 1250cm-1 • 

If tz is estimated to take its electrostatic value (= 3), then both the above inequalities 
are satisfied for 331 cm -1 ~ A~ ~ 417 cm -1, showing the superposition model to 
be consistent with the spin-lattice relaxation measurements in this case. 

The garnet results may be interpreted using the formulae (15) and (16) to give 
(for Er3 +) 

Az = 371 cm- 1 (A~ = 122 cm- 1), tz = 5·6. 

This is rather different from the result obtained by Newman and Edgar (1976) by 
direct application of the superposition model to data for the n = 2 parameters. 
For Er3+ it was found that Az = 451 cm -1 and t z = 2·5. However, these results 
are understandable considering the assumptions made by Newman and Edgar 
concerning the magnitude of local distortion, and the fact that no account was 
taken of long-range contributions to the electrostatic field. 

The parameters for Er3 + : Ca W04 (R = 2·466 A) analysed by Vishwamittar 
and Puri (1974b) give (on the assumption t z = 5) Az = 388 cm- i . This result is 
not very sensitive to the choice of t z, the uncertainty being less than the differences 
between different sets of experimental results. Again assuming t z = 5, the result 
for R = 2·377 A (comparable with the garnet result quoted above) is A2 = 466 cm -1. 

This extrapolation ignores local distortion effects. Given the various uncertainties, a 
realistic assessment for Er3 + with ionic oxygen ligands at about 2·4 A is thus 

Az = 425±50cm- 1 , t z = 4±2. 

As a final example we consider the system Eu3+ : LaAI03 , for which details of 
the superposition model analysis have been given by Linares and Louat (1975). 
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Their results were A2 = 834 cm-l, A4 = 63·4 cm-l, A6 = 28·3 cm- 1, t2 = 6, 
t4 = 12 and t6 = 11 at R = 2·55 A with an error estimate of the order of 20 % 
on A2 • Equations (15) and (16) give a rather different estimate of A2 , namely 

A2 = 216cm- 1 (A~ = 63), with t2 =8'7, 

showing this system to be much less ionic than the garnets. Comparison of the 
calculated value of A~ = yA6 with equations (6) suggests an effective electronic 
charge of the order - 0·8. It should be noted that the ionicity of oxygen ions will 
not be determined by differences to their bonding with the lanthanide ion, but rather 
by their bonding with other ions in the crystal (in this case AI3+). 

Summary and Conclusions 

We have investigated the determination of orbit-lattice coupling parameters 
for lanthanide ions with fluorine, chlorine or oxygen ligands in insulating crystals 
using the superposition model and various related assumptions. Apart from certain 
hosts, such as the zircon structure crystals, where the oxygen atoms form part of 
a tightly bound covalent cluster, the superposition model describes the static and 
strain parameters well. It should therefore also be suitable to describe dynamic 
effects if the values of the parameters An and tn are known. These parameters have 
been evaluated for n = 4 and 6 for a variety of systems and new general formulae 
(equations 8-11) have been derived for fluorine and oxygen ligands. The results 
also show fluorine and chlorine to have similar power-law dependences, and the 
intrinsic parameters A4 and A6 to be very similar in magnitude for fluorine and 
oxygen ligands. 

Greater difficulties are involved in determining values of A2 and t2 directly from 
experimental data, so a rather different approach has been employed which is based 
on a model of the crystal field as a sum of contact and point-charge electrostatic 
contributions. This model gives consistent results, but their accuracy is relatively 
uncertain in the absence of adequate experimental comparisons. 
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