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Abstract 

The configurational integral and the single-particle and pair distributions for a one-dimensional 
gravitating system are calculated using approximate methods. The Helmholtz free energy and 
single-particle distributions are in good agreement with the exact analytical results. The pair 
distribution is new and shows that, in the Vlasov limit, it is approximately the product of two one
particle distributions. The method may be easily extended to more general systems. 

1. Introduction 

One-dimensional self-gravitating systems are of particular interest because they 
form a readily accessible laboratory for testing plausible theoretical assumptions. 
In particular, the validity of the Vlasov approximation can be tested, by examining 
the single-particle and pair distributions in the equilibrium system. 

Rybicki (1971) has made some progress towards assessing the Vlasov approximation 
by evaluating the single-particle distribution exactly. To evaluate more complicated 
distributions, and to deal with more general systems, there is some advantage in 
giving up the attempt at exact evaluation and concentrating on approximate methods. 
The loss of accuracy may then be balanced by greater generality. 

In this paper two approximate methods are used. One is a variational method 
which depends on the convexity properties of the canonical distribution. The other 
is a perturbation method analogous to that used by J. A. Barker (see e.g. Barker 
and Henderson 1976). The two methods are found to give similar, accurate results 
for the Helmholtz free energy and the single-particle distributions. Both may be 
easily extended to deal with more complicated problems, and in this paper they are 
used to evaluate the pair distribution. Mass segregation effects can also be studied. 

The simplest approximate method is the variational method and we examine 
it first. The perturbation method is more complicated, but it has the advantage of 
allowing an increase in accuracy by simply considering more terms. 

2. Partition Function 

Following Rybicki (1971) we consider a one-dimensional system which is equivalent 
to a set of mass sheets, of mass per unit area (1, moving freely through each other. 
We take the centre of mass as fixed at the origin. This last requirement is not essential; 
we could take the centre of mass to be moving in an oscillator potential and recover 
similar results. 
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The partition function Z takes the form 

Z = ~! r .. J <5(x) <5(j)) exp( - [3H) dXl ... dXN dpl ... dpN, 

with 
- 00 < Xi,Pi < 00, i=I,2, ... ,N, 

where H is the Hamiltonian 

and 

N 

H = I p]/2u +2nGu2 L I I Xi-Xj I 
j=l i<j 

N 

- N- l " X = L. Xj, 
j=l 

N 

j) = I Pj· 
j= 1 

The integration over the momentum is trivial and Z reduces to 

N -t(2nu/[3)(N-l)/2Q, 

where Q is the configurational integral 

Q = ~! r·· J exp( -[3V) <5(x) dxl···dxN 

and V is the potential term in H. 
To evaluate Q we choose an approximate potential U defined by 

N 

U=bIlxjl, 
j=l 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where b is an arbitrary constant. This choice is motivated by the expectation that 
it is a good approximation to treat the particles as if they move independently in a 
background potential, and by the requirement that the integrals be simple. We now 
write equation (5) as 

Q - 1 J J -pu -P(V-U) !>(-) d d - N! ... e e u X Xl··· XN· (7) 

To evaluate equation (7) it is convenient to use a variational principle. By observing 
that the tangent to e - J always lies below the function, it is easy to establish, in function 
space, that 

e- J ~ e- a +(f-a)( -ae-a), (8) 

where a is any value off Choosing a = <I), we find 

<e-J) >. e-<J> ?' • (9) 

This variational principle has been used previously for the partition function (Feynman 
1955; see also Barker and Henderson 1976). It proves to be a powerful device for 
the approximate evaluation of the n-particle distribution functions. 
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To apply the result (9) to the evaluation of Q we write 

< -PCV-U) f f -pu -PCV-U) ~(-) d d / f f -pu ~(-) d d e = ... e e u X Xl... XN ... e u X Xl.·. XN, (10) 

so that we have 

Q ~ ~ f 'fe-pu ~(-) d d -p<v-u> "'N! ... uX Xl··· xNe . (11) 

The best choice of b in the potential U is then the one which maximizes the right-hand 
side of equation (11). By introducing the representation 

J x) = f:oo exp(2niux) du 

for the delta function, we find 

~! r·· f e- Pu J(x) dX I ... dXN = ~! f:oo pN(U) du, 

where 
p(u) = 2Pb/(PZbZ +4nzuz/NZ). 

(12) 

(13) 

(14) 

The integral over u can be done analytically but there are some advantages in observing 
that, since N is very large, the integrand has a very sharp maximum at u = o. 
Expanding about this point we find 

1 foo N· 1 (2)N-I 1 
N! _ooP(u)du::::O(N_l)! pb (nN)t· (15) 

The exponent of the remaining term in equation (11) can be written 

P<V-U) = f:oo G(u)du / f:oo pN(u)du, (16) 

where 

G(u) = tPAN(N _l)pN-Z(u) f roooo exp{ -Pb(lxl + I yl)+2niu(x+ Y)/N} Ix- yl dxdy 

-PbNpN-I(U) f:oo exp{-Pblxl+2niux/N}lxl dx (17) 

and A = 2nG(jz. 
The expression (17) can be greatly simplified by noting that u can be set equal to 

zero in the slowly varying functions. Performing the integration we find 

P<V-U)::::o 3AN(N-I)/4b -N. (18) 

The variational principle now takes the form 

1 (2)N-I 1 ( 3AN(N-I)) 
Q ~ (N-I)! pb (nN)t exp N------:tb- . (19) 
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The best choice of b is that which maximizes the right-hand side. We find it to be 

bo = iAN. (20) 

Using the Stirling approximation, the best estimate of Q, for the form of U chosen, 
is given by 

InQ .~ -In{((N-l)!)2(f3Ay-l} +tln2 -/2 N. (21) 

The first term on the right-hand side of this expression is the exact result found by 
Rybicki (1971). The second and third terms are always negligible when N is large, 
because of the (N -1) !)2 in the first term. Since the Helmholtz free energy is linear 
in In Q the variational method reproduces the thermodynamic functions with a 
small percentage error. In particular the mean energy given by 

(E) = -o(lnZ)jof3 = 3(N-l)j2f3 (22) 
is exact. 

3. Single-particle Distribution Function 

We define the single-particle distribution by 

f(P,X) = N-1<jt1 D(Xj-X)D(Pj-P), (23) 

where the angle brackets denote averages over the canonical ensemble. Since the 
integrand is symmetric in the variables we can select anyone of them, for example 
j = 1, and write equation (23) as 

f(P,X) = (D(x1 -X)D(PI- P), (24) 

The integration over the momentum is trivial (Rybicki 1971). The remaining 
integration over the spatial coordinates defines a one-particle distribution function 
v1(X) according to 

N f ... f D(X) D(XI - X) exp( - f3V) dX1 ... dXN 
Vl(X) = ----''---~--;;-----------

f .. · f D(x)exp( - f3V) dx1 .. • dXN 

If note is taken of the normalization 

f~CXl vICX)dX = N, 

then equation (25) can be written 

V1(X) =NA f ... fD(X)D(XI-X)exPC-f3V)dXl ... dXN, 

(25) 

(26) 

where A is a normalization constant to be calculated later. The variational principle 
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can now be used in the form 

r·· f b(X) b(Xl - X) exp( -IW) dXl ... dXN 

~ r .. fb(X)b(Xl-X)exP(-IW)dXl ... dXNeXP(-fJF), (27) 

where 

F = r·· fev-U)b(X)b(Xl-X)exP(-fJU)dXl ... dXN. 

f··· f b(X) b(Xl - X) exp( - fJU) dXl ... dXN 

(28) 

The calculation of Q shows that the variational calculation can lead to an error 
of the form a(h)N where a and h are constants. In the case of the thermodynamic 
functions this error is unimportant since they depend linearly on In Q. In the present 
case, errors of the same form again do not affect the final results because they are 
removed by the normalization. The combination of the variational principle with 
the normalization should lead to an accurate expression for v1(X), and this is borne 
out by comparison with the exact results. 

By using the asymptotic expansions employed in Section 2 the right-hand side 
of the inequality (27) can be evaluated easily. We find it becomes 

( 2 )N-2(N)t fJb ""it exp( -fJb I X D 

xexp(N -1 +fJb I X l-fJA(N -1) I X 1_ 3A(N - ~!(N -2) 

_ A(N -1)exp( - fJb I X D) 
. . (29) 

The condition for the function (29) to be stationary is 

N -2 3A(N -1)(N -2) 
-b-- 4b2 

A(N -1) exp( - fJb I X I) 
b2 

AfJ(N -1) I X I exp( -bfJ I X I) = O. (30) 
b 

This expansion can be written 

b = iA(N-IHl+I]), 
with 

I] = -HN-2)-lexp(-bfJIXIHI +bfJIXI). 

(31) 

(32) 

Because N is ~ 1, it is a good approximation to set b = i AN in 1]. The value of b 
defined by equation (31) determines the maximum. Finally, by substituting for b 
in (29) and normalizing the resulting expression, we find 

Vl(X) ~ t AN2fJexp{l-co -texp( -i co)} , (33) 

where co = fJA(N -1) I XI, and the normalization is accurate to l' 5 %. 
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To compare the result (33) with the Vlasov value it is convenient to scale lengths 
with the unit 

L = 2<E)/3nN zGaz = 2(N -1)/N zf3J,.. (34) 

Then, with X= L~, 

LN -IV1 (X) = texp{1 -21 ~ I --j-exp( -1- I ~ I)}. (35) 

The exact value of VI (X), in the limit N ---+ 00 with <E) and Na constant, is contained 
in Rybicki's (1971) analysis. In scaled form 

LN- 1V1(X) = (2coshZ~)-I, (36) 

which is also the self-consistent field or Debye-Hlickel result. In Table 1 the results 
of the present calculation are compared with the exact result. The agreement is 
very good. 

Table 1. Comparison with the exact result of values of the single-particle 
distribution according to two approximations in the Vlasov limit 

The quantities F and a are defined in Section 5 

Parameters LN-1Vl(X) 

~ a F Variational Perturbation Exact 

0·00 0·50 0·00 0·54 0·50 0·50 
0·25 0·62 0·00 0·49 0·45 0·47 
o 50 0·85 0·11 0·40 0·40 0·39 
0·75 0·66 0·20 0·29 0·29 0·30 
1·00 0·66 0·19 0·20 0·21 0·21 
1·25 0·61 0·13 0·14 0·15 0·14 
1·50 0·59 0·02 0·088 0·10 0·09 
1·75 0·73 0·00 0·056 0·057 0·057 
2·00 0·79 0·00 0·035 0·034 0·035 

4. Pair Distribution Function 

We define the spatial pair distribution by 

, <N N ,'" vzCX 1, X z) = j~1 k~1 c5(x j - XI) c5(Xk - X z) / (j # k), (37) 

where the average is over the canonical ensemble. Because of the symmetry of the 
integrand we can write 

N(N -1) J ... I exp( - f3V) c5(X') c5(XI - X 1) c5(xz - X z) dx1 .. dXN 
viX1,XZ) = . (38) I .. · I exp( - f3V) c5(X') dX 1 ... dXN 

The variational principle can be used to estimate the integral in this expression. 
We write 

Vz(X 1, X z) = N(N -l)A I .. · I exp( - f3V) c5(X') c5(XI - XI) c5(xz - X z) dx1 .. · dXN, 
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where A is a constant chosen to ensure 

I I VZ(X 1'X2) dX1 dX2 = N(N -1). 

The variational principle then takes the form 

I··· I exp( - PV) c5(x) c5(Xl - Xl) c5(X2 - X 2) dXl ... dXN 

~ J. .. I exp( - PU) c5(x) c5(Xl - Xl) c5(X2 - X 2) dX1 •.• dXN exp( - pG), (39) 

where 

I··· I exp( - PU) c5(x) c5(Xl - Xl) c5(X2 - X 2) (V - U) dX 1 ••. dXN 

G = . (40) I··· I exp( - PU) c5(x) c5(Xl - Xl) c5(X2 - X 2) dX 1 .•. dXN 

Evaluating the integrals, we find the right-hand side of the inequality (39) to be 

( 2)N-3( 1).1. 
Pb. nN 2exp(-pbIXll-PbIX21) 

{ 3Je(N-2)(N-3) 
xexp -PJe I Xl -X21- AL +Pb(1 Xli + I X 2 0 +N-2 

-PJe(N -2)(1 Xli + I X 2 1) - Je(N,~2)(exp( - pb I Xl 0 +exp( - pb I X 2 O)}. (41) 

The maximum of this expression occurs at 

b = ,tJe(N-2) (I +8), (42) 
where 

8 ~ 1'N-1{(1 +w1)exp( -w1) +(1 +w2)exp( -W2)}' Wi = Pbl Xi I. (43) 

Collecting these results we find, after normalizing, that 

V2(X1,X2):::::; N(N-l)(tJeNPY 

x exp{2 -PJe(N-2)(1 Xli +1 X 2 1) -PJe I Xl -X21 

-1'( exp( -Pb I Xli +exp( -Pb I X 2 O)}. (44) 

Notice that the term involving I Xl - X 2 1 is always much smaller than the term 
involving I Xl I + I X21. Accordingly the pair spatial distribution function can be 
written very accurately as the product of a function of Xl and a function of X 2. 
In terms of the one-particle distribution calculated in Section 3, we have 

V2(X1, X2) :::::; V1 (Xl) V1 (X2), (45) 

which is the Vlasov approximation. 
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5. Perturbation Method 

The perturbation method of Barker and Henderson (1976) involves the following 
simple idea. Choose a reference potential involving an adjustable parameter. Expand 
about the reference potential, and choose the parameter to minimize the absolute 
value of the first correction term. This minimization of the first correction term forces 
the reference potential to mimic the true potential. When the first correction term 
vanishes the method is then similar to a variational method, for the error is second 
order. It is, however, more flexible. An application to radiative transfer has been 
given by Monaghan (1970). 

Table 2. Values of V2(X" X 2)/V1(X1) V1(X2) obtained using the 
perturbation method 

Here Xi = V;'i 

';2 Ratio V2(X1, X 2)/V1(X1) V1(X2) 
value ';1 = 0 0·5 1·0 1·5 2·0 

0 1·0 
0·5 1·0 1·0 
1·0 1·0 0·95 1·0 
1·5 1·0 0·91 0·98 1·0 
2·0 0·94 0·82 0·92 1·0 1·0 

Expanding the configurational integral we find 

Q = ~! f .. · f b(x)exp( - PU){l- P(V- U)+ ... } dx1 · .. dxN • (46) 

With the same reference potential as before, the first correction term is least, in 
absolute value, for b = ~).(N -1) and the approximation to Q is the same as that 
found in Section 2 (equation 21). 

To evaluate V1 (X) there is some analytical convenience in expanding both the 
numerator and dellominator of equation (25) to first order. The resulting Vl(X) 
is approximately then normalized. If this procedure is followed it will be found that 

V1(X) = JzNPbexp( -Pb \ X \)(1 +F), (47) 

where b is determined by finding the least absolute value of 

F = }(AJb)(N-I) -1 +P\X\ {b-A(N-l)} -(AJb)(N-l)exp(-pb\X\). (48) 

Defining a by b = ANa and using the length scale L, we find that equation (48) 
becomes 

F,;:::; }a-1 -1 +2\ ~ \ (a-I) _a-1 exp( -2\ ~ \ a). (49) 

For ~ = 0, the value of \ F \ is a minimum for a = 0·5. For \ ~ \ ~ 0, the function 
\ F \ has two zeros, one near a = 0· 5 and one with a ~ 1. We choose the root 
continuous with the first one. An alternative criterion would be to compute the 
next correction term and take the root which minimized the two. For larger \ ~ \, 
the function \ F \ first has only a single minimum, and a is specified uniquely. For 
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still larger 1 ~ I, the function has two roots. One root lies on the track that gives 
a -+ 0 (and therefore b -+ 0) as 1 ~ 1 -+ 00. We reject this root because it implies 
that the particles are distributed at large distances as if the background potential 
were constant. This result is clearly unphysical because in one dimension the potential 
increases with distance. Accordingly we take the other root. 

The one-particle distribution evaluated in this way is given in Table 1. There is 
evidently very good agreement between the two methods of approximation and the 
exact results. The values of F are also listed in Table 1 and they give an alternative 
estimate of the accuracy. 

The same procedure as above may be applied to the pair distribution function. 
The calculations are straightforward and the details are not given here. The final 
results are presented in Table 2. They show that, in the perturbation approximation, 
the pair distribution may differ from the product of two single-particle distributions 
by up to 18 %. However, over most of the domain, the approximation of a pair 
distribution by the product of two single-particle distributions is accurate. 

6. Discussion and Conclusions 

Since the two present methods of approximation give accurate results for the 
Helmholtz free energy and the single-particle distribution, it is reasonable to assume 
that the pair distribution derived here is a good approximation to the true distribution. 
The generally good agreement between the two different methods of approximation 
lends further weight to this view. 

Taken together, the results of this paper show that the Vlasov approximation, 
of treating the particles as moving independently in a background potential, is quite 
accurate in the equilibrium state. It is an open question whether the approximation 
is good when the system is far from equilibrium. 

The present analysis can be improved in two ways. The approximations can be 
made more accurate by including a more complicated potential in the variational 
method and by taking more terms in the perturbation method. The latter is easier 
because the integrals remain trivial. The analysis can also be improved by allowing 
the masses to be different. Mass segregation effects, of known importance in three 
dimensions, can then be analysed. 
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