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Abstract 

The statistical theory of energy-averaged reaction cross sections is examined using the pole expansion 
of the S-matrix. Exact expressions for the average cross sections in terms of the parameters of the 
S-matrix are derived for the case when there are two open channels. It is shown that when the number 
of channels exceeds two, the average cross sections can be evaluated provided the poles of the 
S-matrix are evenly spaced. 

1. Introduction 

The behaviour of energy-averaged reaction cross sections in terms of transmission 
coefficients was originally formalized by Hauser and Feshbach (1952; hereinafter 
abbreviated HF) using Bohr's compound nucleus assumption. Subsequent investiga­
tions, by means of the R-matrix formalism for example, showed that in the context of 
resonance theory (Thomas 1955; Lane and Lynn 1957) the HF theory, modified to 
include fluctuation corrections, could only be expected to apply when the ratio tiD 
of the averaged level width to the average level spacing was sufficiently small. 

Attempts to improve upon the HF theory, using various representations of the 
S-matrix, have met with little success (Moldauer 1964; Ullah 1969; Kawai et al. 
1973). The most notable attempt was Moldauer's (1964) theory. From the unitarity 
and analyticity of the S-matrix, he derived expressions for the average cross section 
in terms of the parameters of the statistical S-matrix. However, these results did not 
provide a practical alternative to HF theory owing to the fact that the cross sections 
contained terms which were found to be extremely difficult to evaluate. In order to 
overcome this difficulty, Moldauer (1975) introduced the 'M-cancellation principle', 
where, as a result of cancellation of certain terms, the average cross section is given 
by the HF theory in which the fluctuation correction is obtained by associating with 
each channel c a variable number of degrees of freedom v c. This procedure, originally 
proposed by Lane and Lynn (1957), is also formally identical with that put forward 
by Tepel et al. (1974) and Hofmann et al. (1975), whose analysis is based on Bohr's 
compound nucleus assumption. 

It has been found (Moldauer 1975; Hofmann et al. 1975) that, with suitable 
parameterization of the quantities v C' the HF formula yields results which are much 
more accurate than those obtained from the HF theory with all vc = 1. On the other 
hand, the basic HF expression for the cross section has only been derived from 
resonance theories in the case of weak absorption (tiD ~ 1) and in the case of many 
channels with strong absorption (Agassi et al. 1975). 
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In the present paper we investigate energy-averaged cross sections using the pole 
expansion of the S-matrix. When there are only two open channels, the averages 
can be evaluated exactly using only the unitarity and analyticity of the S-matrix. 
When more than two channels are open, the problem becomes much more difficult; 
however, in the special case when the poles of the S-matrix are evenly spaced, an 
exact solution is possible even when the number of open channels exceeds two. 

2. General Theory 

The energy-averaged cross section <acc,) for a reaction c -+ c' can be expressed 
in terms of the energy averages of the elements Ucc' of the collision matrix and of 
their absolute squares 1 Ucc' 12 as 

<acc,) = d;<1 bcc'- Ucc' 12> (1) 

and the average total cross section as 

<acT> = 2d;(1 -Re<Ucc»· (2) 

It is customary to separate <acc'> into a direct part a~c' and a compound nucleus 
part a~~, (Feshbach et al. 1953), 

a~c' = d; 1 bcc,-<Ucc')12, a~~, = n5t;«1 Ucc' 12> -1< Ucc ,) 1 2) . (3) 

With these definitions, the transmission coefficient of channel c is given by the familiar 
relation 

Tc = l-I<Ucc>1 2. (4) 

In order to evaluate the necessary energy averages, we assume a collision matrix 
of the form 

U = QSQ, 

where Q is the matrix of hard-sphere scattering phase shifts ¢c' 

Qcc' = exp(-i¢c) bcc' , 

and S is a statistical S-matrix as defined by Moldauer (1964) with elements 

where 
Scc' = S~c' +i L g;'cg;'c'/(~;.-E), 

;. 

~;. = E;. -ti<?Y';. 

(5) 

(6) 

(7) 

(8) 

and SO is assumed to be energy independent. The energy average of S, denoted by 
S == <S>, is obtained from the relation (Moldauer 1967a) 

Scc,_(S*-l)cc' = -2n<g;.cgJ..c,)/D, (9) 

where D is the average level spacing, as before. 
The Engelbrecht-Weidenmtiller (1973) transformation allows us to consider, 

without loss of generality, only those S-matrices for which 

<g;'cg;.c,) = <g;c>bcc' and Im<gxc> = O. (10) 
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Equation (9) can then be solved to yield 

<Sec,) = (coshae-sinhae)(\e" (II) 

where ae is defined by the relation 

n<gie)ID = sinhae· (12) 

The constant background matrix SO then has elements 

S~e' = coshae ()ee" (13) 

and from equation (4) the transmission coefficients become 

Te = I-exp( -2aC>. (14) 

The energy average of the quantity 1 Sec' 12 can be obtained by considering the 
integration around a rectangular contour which is based on the real energy axis and 
has vertical sides of length W with W ~ <!{!/;)ID. The integral of 1 Sec' 12 over an 
energy interval Ll on E is then equal to the value of Lli SeAz) 12 as z ~ iW, plus 
2ni times the sum of the residues within the contour. Using equation (7) we obtain 

<I Sce,1 2) = ()ee,-Zee" (15) 
where 

Zee' = 2n<g;'eg;'e,s:e,($1»ID. (16) 

The principal difficulty in the derivation of a statistical theory is the evaluation of 
Zee' in terms of known quantities, such as the transmission coefficients. 

3. One and Two Open Channels 

In the case where there is only one open channel, S is a scalar function and can be 
represented as an infinite product (Ning Hu 1948; van Kampen 1953; Simonius 
I 974a) : 

S(z) = Il ($1-z)/($;.-z). (17) 
;. 

From this it can be shown (Moldauer 1969; Simonius 1974b) that the average of the 
residues of S is given by 

n<gi)ID = sinha, (18a) 
and the average of S is 

<S) = SCiW) = cosha -sinha, (l8b) 
where 

a = n<!{!/;.)ID. (l8c) 

For the purpose of practical applications, the single-channel case is not a very 
useful one. However, the importance of the above results lies in the fact that the 
determinant of an N-channel S-matrix of the form (7) is just the single-channel 
S-matrix given by equation (17). This property allows us to solve the less trivial 
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two-channel case. If we write the unitarity condition as 

S*(z*) = L1-1( S22(Z) 
-S12(Z) 

-S12(Z») , 

S11(Z) 

the determinant L1 must be of the form 

L1 = L1°+iLh~/(g;.-z), 
where ;. 

n<h~)/D = sinha, L1 0 = cosha. 
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(19) 

(20a) 

(20b, c) 

Evaluation of the ratios Scc'/ L1 in the limit z ~ g;. leads to the result 

S;Agf) = (gVhi)Jcc' -g;'cglc,/hL (21) 

where we have defined 
g~ = g~l +g~z' 

The term Zcc' defined by equation (16) becomes 

z = 2n/g~cgi>J _ 2n/g~cg~c'> 
cc' n""- hZ cc' D""- hZ ' 

;. ,j l 

(22) 

which, by introducing the quantities rp Ac defined as 

rp).c = 2nD- 1 g~cgVhL (23) 
can be written 

Zcc' = <rp).c)Jcc' -<rp;'crp).c,/rpl) , (24) 
where 

rpl = rp)'l +rp).z· 

The compound nucleus part of the cross section is then of the form 

IT~~' = nJ.,~<rp;.crp;'c,/rp;.) +nJ.,~(Tc-<rp;.c»Jcc" (25) 

This expression for the cross section is, of course, exact in the two-channel case. 
Finally, in order to establish a connection between ac as defined by equation (12) 

and the quantity a (equation 18c), we note that in the N-channel case S(z) becomes 
a diagonal matrix as z ~ i W, that is, 

S cc(i W) = exp( - ac) . (26) 

In this limit, the determinant of S is just the product of these diagonal elements: 

L1(iW) = 1] SccCiW) = exp ( - ~ ac) . (27) 

On the other hand, from equation (18b) we have L1(iW) = exp( -a). Therefore it 
follows that 

a = Lac' 
c 

(28) 
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If there are no fluctuations in the widths and level spacings, the cross section 0"12 
is obtained by replacing g~c and h~ by the values of their averages, and thus 

0"~2 = 2di(sinha1sinha2)/sinha. (29) 

Using equation (14) this can be expressed in terms of the transmission coefficients as 

0"~2 = nJ;i T1 T2/(T1 + T2 - T1 T2)· (30) 

This result is identical with that obtained from the R-matrix picket fence model 
(Moldauer 1967b). 

4. General N-channel Case 

The method used in Section 3 to derive the average cross section when only two 
reaction channels are open does not lend itself to generalization to the multichannel 
case. Instead, we will use a method which makes more use of the analytic properties 
of the S-matrix. 

Let us write the S-matrix of equation (7) in the form 

where 
S = B+iG;./(tS';.-z), 

Bcc' = cosh ac <\c' +i L g/lCg/lC,/(tS'/l-z) , 
wi';' 

(31) 

G;,cc' = g;'cg;.c,· 

G;. is a rank one matrix and has the property G~ = G;. trace G;.. Therefore, since 
G;.B- 1 is also a rank one matrix, we can evaluate the inverse of S as 

S-1 = S* = B-1 -iB-1G;.B- 1/(tS';.-z+itraceG;.B- 1). (32) 

The determinant A of S can be expressed as 

A = AB{1 +i(traceG;.B- 1)/(tS';. -z)}, (33) 

where A B is the determinant of B. 
In the limit when Z ~ tS';., equation (32) yields 

S*(tS'i) = (B; 1 trace G;.B;1 _B;1G;.B;1)/(traceG;.B;1), (34) 

where B;. is the value of B at Z = tS';.. From equation (33) it follows that 

h~ = AitS';.)traceG;.B;1, (35) 

so that equation (34) can be written 

S*(tS'1) = {AB(tS';.)/hi}(B;1traceG;.B;1 _B;1G;.B;1). (36) 

Furthermore, if we denote the matrix of cofactors of B;. by V;., 

V;. = AitS';.)B;1, (37) 
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we find from equation (36) 

<g g S* (Iff*) = <gACgAc' '" g g (VACC' VAef - VAce VAC'f)"'" 
AC AC' CC' A h2 L... Ae AI LI (Iff ) / 

A ef B A 

- <gAcgAC' '" U > - ~ f1 gAegAf cc'ef . (38) 

The quantity Ucc'dd" defined as 

Ucc'dd' = (VACC' VUd' - VAcd VAc'd,)1 LI B(1ff A)' (39) 

is the determinant of the matrix which results when we delete from BAthe two rows 
and two columns which intersect at the elements BACC' and BAdd ,. 

In the case when there are two open channels the summation on the right-hand 
side of equation (38) contains only one nonzero term, namely Ucc'cc' = -1 (c =F c'), 
so that we obtain the result derived in Section 3, for c =/= c': 

<gACgAC,S:Alffi) = -<gicgic.jhi)· (40) 

When more than two channels are open, the evaluation of equation (38) is difficult to 
carry out in general. However, it can be done exactly for a certain class of statistical 
S-matrices which have their poles evenly spaced along the line z = E-ti@". 

5. Evenly Spaced Poles 

If the positions of the poles of a statistical S-matrix are given by 

Iff A = AnD-ti@", (41) 

its determinant can be written in the form 

LI = cosh a +i I. hHD , = cosh a -isinh a cot(z+ti<1?l), (42) 
A An- zl<1?1-z 

where 
<1?1 = @"ID, z' = EID, (nID)hi = sinha. 

In such an S-matrix the values of g AC are restricted by the unitarity condition and by 
the condition that all <1?1 A be equal. The second condition is expected to become more 
restrictive when the number of channels is small; whereas when the number of open 
channels is large the condition <1?1 A ~ @" is usually automatically satisfied. 

Let us define the function F as 

F(z') = -icot(z' +ti<1?l) = H(z') +i(lffAID _Z,)-l (43) 

and denote its nth derivative by F(n), 

F(nl(z') = H(n)(z') +in!(lffAID _z,)-n-l. (44) 

The values of H and its derivatives at z = Iff AID can then be evaluated as 

HA = H(lffAID) = 0 
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and 
Hl ti,H~ 0, Ht /si, ... , 

where, in general, 

Hi2n - 1) = (_1)n-l /i(22n - 1/n)gB2n, Hyn) = 0, (45) 

the gBn being the Bernoulli numbers. 
When z' ~ ± i W with W ~ 00 we find from equation (43) 

F(±iW) = =+= 1, F(n)(±iW) = 0. 

Therefore, if we use the form (31) for the S-matrix to evaluate the product FScc' 
and carry out the integration around a large rectangular contour with vertical sides 
extending from Im(z') = -iWto +iW, we obtain 

<BACC .) = coshO!c(jcc" (46) 

Similarly, by considering the residues of the poles of the expression F(n) Scc" we find 

<Bi~~,-l» = (_l)n-l i(2Zn - 1 /n)gBzn sinhO!c (jcc" <Bi;~l) = 0. (47) 

On the other hand, the contour integration of S;c' yields 

<BAcC,gACgAC.) = sinhO!ccoshO!e (jcc" (48) 

Comparison between equations (46) and (48) shows that 

<BACC,gACgAC') = <BACC.)<gACgAC')· (49) 

Therefore the quantities gAC and BACC' behave as though they are uncorrelated. This 
result is consistent with the assumption that there are no level-level correlations. 
In general, BACC' is of the form 

BACC' = L gJlcgJlc,/{(EJl-EA)-tWJlJl-OJIA)}, (50a) 
Jl'FA 

so that g AC and B ACC' are correlated through the presence of OJI A in each term of the 
summation on the right-hand side of equation (50a). However, when all OJIA are 
equal, which is the case being considered here, this correlation disappears. It is 
therefore a plausible assumption that g AC and Bi~~, are also uncorrelated, since the 
nth derivative of Bce' at z' = ~ A/Dis of the form 

Bi~~, = L gJlcgJlc.J{(EJl-EA)-ti(OJIJl-OJIA)}n+l. (50b) 
Jl*A 

Consequently, by examining the residues of the poles of the functions FSec' Sdd' 
and Scc,Sdd' See" we obtain values for <.f1Acc,Bud.) and <gAegAe,BAec,Bud') as 
follows 

<BACC' BUd.) = {cosh(O!c+ O!d) -isinh O!c sinhO!d}(jce' (jdd' - t(n/D)2<g ACg Ac,g ug U.) 

(51a) 
and 

<gAegAe,BAcc,Bud') = <g).egAe.)<BAcc,BAdd')· (5Ib) 
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Similarly, if we form the product F(n) Scc' Sdd" we can obtain the averages of the 
derivatives (d/dz)n(Bcc' Bdd ,) at Z = Iff;./D. If we keep repeating the above procedure 
we can, in principle, evaluate the average of any expression of the form 
(B;.cc' B;'dd' ... B ;.nn) 

The property that parameters belonging to different resonances are uncorrelated 
also allows us to simplify the expression for <g;'cg;'c,s:c-Clffi». For c # c' the only 
nonzero term in the summation on the right-hand side of equation (38) is that for 
which e = c and! = c'. Hence we have 

(n/D)<g;'cg;'c,S:c-Clffi» = (n/D)<g;'cg;'c,fhi><ucc'cc,) (c # c') 

= -(n/D)<g;'cg;'c,/hi> <Uccc'c,) , (52a) 
whereas for c = c' we obtain 

(n/D)<g;'cS:c(Iff'D> = (n/D) I <g;'cg;'d/hi> <Uccdd> . (52b) 
d 

As indicated above, the values of < Ucc'dd,) are known; for example, when there 
are two open channels (N = 2) we have < Ul122> = 1. From equation (46), for N = 3, 

< U1122> = cosh C(3 , (53) 

while from equation (51a), for N = 4, 

< U1122> = cosh(C(3 + C(4) - t sinhC(3 sinh C(4. (54) 

When the number of channels is larger, this method for evaluating < Uccc'c'> becomes 
rather complicated, but can be simplified by using recurrence relations. 

6. Recurrence Relations 

We denote by S the m x m matrix which results when we eliminate from the N x N 
S-matrix the N - m rows and columns which intersect at N - m different elements in 
the diagonal of S. Then, writing 

S = {1 +iG;.B-1/(Iff;.-z)}B, (55) 

we can express the determinant Li of S as 

Li = LiB{1 +i(traceG;.B-1)/(Iff;.-z)} = LiB+i(traceG;. V)/(Iff;.-z) , (56) 

where LiB is the determinant of B, and V is the matrix of cofactors of B. For the 
sake of simplicity we shall set D = 1 in equation (41), so that we obtain from equations 
(43) and (56) 

FLi = HLiB +i{H(trace G;. V) + LiB}/(1ff ;. -z) -(trace G;. V)/(Iff;. _Z)2 . (57) 

Since we have H(Iff;.) = 0, the residues Q;. of the poles at Z = Iff;. are given by 

Q;. = iLiilff;.) + trace G;. V~, (58) 

where V' is the derivative of V at Z = Iff;.. Integrating equation (57) around the 
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rectangular contour used in Section 5, we obtain 

<.2i B(e&";) = cosh a +i(n/D) L <gACgAC'V~CC) 
cc' 

= cosh Ii + i L (l71cc)sinh IXc . (59) 
c 

Here JBCe&" A) is the determinant of the m x m matrix resulting from the elimination of 
N - m rows and columns, corresponding to N - m diagonal elements from B A' whereas 
Vcc is the determinant of the (m-l) x (m-l) matrix which results from elimination 
of one additional row and column which correspond to the element Bcc. 

Similarly, from the expression for F(n).a we obtain the result 

<.a1n)(e&"A) = L sinh IXc{(n + l)-l<vl~:l) -( -l)"Hln\vAcc)}. (60) 
c 

Equations (59) and (60) with (45) enable us to evaluate the average <U).ccc'c') 
which occurs in equations (52), for any number of channels. Starting with the two­
channel case, for which <VACC) = 1 and <vl~~) = 0, we find from equations (59) and 
(60), for N = 3, 

<UA1122 ) = <JB(e&"A) = coshIX3 (61) 
and 

<.a ~(e&" A) = t i sinh IX3 . (62) 

Then, for N= 4, equation (59) yields 

<UA11ZZ) = <JBCe&"A) = cosh(1X3 + I(4 ) + i(sinh IX3 <V133 ) +sinhIX4<V144»). (63) 

However, V33 is the determinant of the matrix which results when the rows and 
columns corresponding to the elements Bll> B22 and B33 are eliminated from the 
matrix B. Hence, in this case we have from equation (62) 

<V~33) = tisinhIX4' 

so that equation (63) becomes 

<UAl1ZZ) = coshlX3coshlX4(1 +tt3t4), 
where 

tc = tanhIXc· 

If we continue this procedure, we find that 

where 

<UA11ZZ) = A12 n (cosh IXd)/(cosh IXl coshI(2)' 
d 

A12 = 1, for N = 3; 

= 1 +tt3t4' N = 4; 

= 1 +t(t3t4 +t3t5 +t4 t5), N = 5; 

= 1 +t(t3t4 +t3t5 +t3t6 + ... ) +tt3t4t5t6' N = 6; 

= 1 +t(t3t4 +t3t5 + ... ) +t(t3t4t5t6 +t3t4t5t7 + ... ), N = 7; 

etc. 

(64) 

(65) 

(66) 
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These results can be summarized by writing for N channels 

<U;'ccc'c') = Acc' I1 (coshocd)/(coshocccoshocc'). 
d 

If we define a function flcAx) as 

flcAx) = I1 (tanhocd +x) 
d-::J::.c,c' 

w. K. Bertram 

(67) 

(68) 

and denote the nth derivative of fI with respect to x by fI(n}, we can represent Acc' 
in the form 

A - 1 + ~ 1 fI(N-2k-2)(0) 
cc' - k~l (2k+l)(N-2k-2)! cc' , 

where the upper limit M of the summation is given by 

7. Discussion 

M = t(N-2) 

= t(N-3) 

when N even; 

N odd. 

(69) 

We have seen that an exact expression for the average cross section in terms of 
S-matrix parameters can be derived when there are two reaction channels. When 
more than two channels are open, formulae for average cross sections can be obtained 
in the case when the poles of the S-matrix are evenly spaced. ,However, in order to 
express these cross sections in terms of transmission coefficients we still require the 
value of gicgic'. Since the effects of unitarity of the S-matrix on the statistical 
distribution of g;.c are extremely complicated, it is very difficult to make assumptions 
about the statistical properties of g;.c which are in accordance with unitarity. Not­
withstanding this difficulty, if we assume that special cases exist for which 

<gicgic') = <gic) <gic-> , (70) 

the average cross section can be obtained from the transmission coefficients using 
equations (52), (67) and (14). 

One example in which equation (70) holds is the three-channel picket fence model 
of Moldauer (1967b), when two channels are equivalent, e.g. Tl = T 3 • From equation 
(66) we find then 

(f~2 = 2(sinhocl sinhoc2 cosho(3)/sinhoc. 

This result is identical with that obtained by Moldauer (l967b) who used the notation 
tc = tanh tocc. The assumption of equation (70) also leads to a simple expression 
for <gics:c(C1) when N > 3. Using the unitarity relation 

<gics:c(c!) = L <g;'cg;'c,S:AC!) , (71) 
c'¢c 

we can verify from equations (52) and (67) that 

(n/D)(gic S:c(C!) = {sinhocc sinh(oc-occ)}/sinhoc. (72) 
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On the other hand, from the pole expansions of Ll and S;c we find 

LlS:c = cosh(a-aJ +i I h;. S:c(rffi)/(rff;. -z). (73) 
;. 

Integration around a rectangular contour with vertical sides extending from 
Im(z) = +iWto -iW(W ~ &) yields 

(n/D)<hi S;c(rffi) = sinh(a-ac)· (74) 

Since we are considering S-matrices in which hi does not fluctuate, equations (72) 
and (74) imply 

<gic s:c(rffl) = <gic) <S:c(rffi) . (75) 

In general, however, equation (70) does not hold and in order to evaluate <gicgic.) 
one may have to resort to the R-matrix formalism, which has the advantage that the 
statistics of the parameters may be specified without being restricted by unitarity. 
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