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Abstract 

The general class of phase equivalent nonlocal potentials is examined using standard reaction 
matrix methods. The relationship between phase equivalent overlap matrices is derived and it is 
found that the matrices fall into four general classes. 

It was first shown by Bargmann (1949) that a potential which results in a given 
phase shift is actually a member of a whole class of phase equivalent potentials. 
Cook (1972) used a reaction matrix technique to illustrate this lack of uniqueness by 
calculating the potential in terms of Wigner and Eisenbud (1947) reaction matrix 
parameters, but did not determine what the general class of potentials should be. 

In this paper, we determine the most general form for the overlap matrix B which 
results in a given set of phase shifts. A transformation of any orthogonal matrix to 
give four matrices, each phase equivalent to B, is found. The construction of all 
possible phase equivalent matrices is a trivial extension. 

Review of Theory 

The radial wavefunction JjJI of a particle of mass M scattered by a target obeys 
the relation 

d2JjJlr) (2M(E- V) _ 1(1+1))".() = ° 
dr2 + h2 M r2 '1'1 r , (1) 

where E is the total energy of the particle, V the interaction potential operator and 
I the orbital angular momentum. A cutoff radius r = a is chosen at which 
V JjJ I = 0, and a function RI is defined by 

JjJI(a) = R1a(dJjJi/dr)r=a. (2) 

Equation (1) is then solved across the interior region ° < r < a with the boundary 
conditions 

(dU .. jdr )r=a = (bja)U..(a) , (3) 

and the U..(r) form an orthonormal set on the above interval for each partial wave. 
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Dropping the I suffix, we find 

l/J(r) = I A,,(E) U,,(r) , Vl/J = I A,,(E) V,,(r) U ,,(r), (4) 
;. ;. 

where 

I U,,(a) (dl/J) (I-b~), 
A,,(E) = 2M E;. - E dr r=a 

R 
~ = I-bR' (5) 

and the Wigner-Eisenbud reaction matrix R, with the notation U;'(a)/2Ma = y; is 
given by 

R = _I_I U;'(a) = I-1L 
2Ma ;. E;.-E ;. E;.-E' (6) 

the set {E;.} of energy eigenvalues following from the boundary conditions (3). 
Let Wk) be the solutions to equations (1) and (3) when V = O. There exist the 

expansions 

(i) U,,(r) = I B;.I' WI'(r) , (ii) V;. U;.(r) = I V;'I' WI'(r) , (7) 
I' I' 

where 
BBT = I, (8) 

that is, B is an orthogonal matrix, and 

VI';' = (E;.-el')B;.I" (9) 

the el' being the energy eigenvalues obtained with V = O. 
From equations (7) we have 

U,,(a) = I BAI' Wia) , (10) 
I' 

where U,,(a) and Wia) are known quantities, thus giving constraints on B. These 
constraints, together with the condition (8) leave t(n2 - 3n) + 1 degrees of freedom for 
the elements of B, where B is taken to be an n x n matrix. It is the arbitrariness of 
these degrees of freedom which defines phase equivalent potentials, since the reaction 
matrix (6) defines the phase shift as a function of E. It should be noted that because 
B is orthogonal there is a constraint on the terms of U,,(a) so that equation (10) 
removes n - 1 rather than n degrees of freedom. It is significant that the number of 
degrees of freedom for an orthogonal matrix of one fewer dimensions, i.e. an 
(n-l) x (n-I) orthogonal matrix, is 

t(n-I)(n-2) = tn2-!n+ 1. 

Equivalent Overlap Matrices 

We now use the notation 

U,,(a) == I u), Wia) == Iw), 

giving (from equation 10) 
lu) = Blw). 

(11) 

(12) 
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It is always possible to find a vector I b) such that 

lu) = oc I w) + 131 b), 
where 

(wlb)=O, (u I u) = (w I w) = (b I b) = 1, 
so that 

oc=(wlu), f3lb) = lu) -oclw), oc2 + 132 = 1. 
Let 
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(13) 

(14) 

(15) 

B = (oclw) +f3lb»)(wl ±(f3lw) -oclb»)(bIDP +(I-lb)(bl)PDP, (16) 

in which P is a projection operator: 

(i) P=I--Iw)(wl, (ii) p 2 = P. (17) 

Equations (16) and (13) satisfy (12). The matrix D in equation (16) is any orthogonal 
matrix in the space obtained by the projection excluding I w), that is, 

PDPDTp = PDTpDP = P. (18) 

The orthogonality condition (8) applies to equation (16) and may be verified by 
direct substitution, making use of the surrounding conditions. 

Let G be an arbitrary orthogonal matrix satisfying 

GTG = GGT = I. 

To construct a matrix D obeying equation (18) we first try 

D =PGP-vPGlw)(wIGP, 

in which case it is necessary that 

(1-vg)2 = v2 , where 

The solution is v = (g ± 1 )j(g2 -1), that is, 

v = _(1_g)-l or 

(wIGlw) =g. 

V = (1+g)-l. 

(19) 

(20) 

(21) 

Starting from a particular orthogonal matrix G, we find that the two choices of v 
in equations (21) and the choice of sign in equation (16) usually lead to four distinct 
phase equivalent B matrices. If the matrix G is already phase equivalent to B, the 
four matrices reduce to two, one of which is G. For every matrix B' that is phase· 
equivalent to anyone of the four B matrices, there are two distinct matrices D that 
are orthogonal in the space truncated by the removal of I w). All possible phase 
equivalent matrices B' can therefore be generated using as a starting point the set of 
all possible orthogonal matrices D in the truncated space. All such B' matrices then 
obey equation (10) and are orthogonal in the full space, therefore leading to the same 
set of phase shifts as obtained from B. As discussed in the preceding section, the 
number of degrees of freedom is exactly right. 

It is interesting to note that if equation (10) holds in an n-dimensional channel 
space such that 

VAcCa) = L BAil Wllc(a) (22) 
Il 

then, if we choose the same B matrix for all channels, it is fully defined by equation 
(22) and there are no phase equivalent overlap matrices. 
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In conclusion, we have thus defined here a general class of overlap matrices 
which lead to a class of phase equivalent local or nonlocal potentials. We intend to 
investigate this class numerically to find out more about the possible general 
structure of B. 
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