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Abstract 

This paper contributes to a recent series discussing quantum mechanics defined on a finite-dimensional 
Hilbert space in which Weyl's commutation relation for unitary operators holds. In an earlier paper, 
Santhanam and Tekumalla (1976) showed that the commutation relation for hermitian operators 
with a bounded spectrum tends to Hdsenberg's standard canonical commutation relation as the 
spectrum becomes continuous and the dimension n -> 00. The present paper offers a formulation 
which is coordinate free in the limit n -> 00 and makes the limiting procedure especially transparent. 

Introduction 

It is well known that, of two or more hermitian operators which satisfy 
Heisenberg's (1925) canonical commutation relation (hereafter referred to as CCR), 
at least one of them necessarily has an unbounded spectrum. The corresponding 
Hilbert space is therefore infinite dimensional. On the other hand, two hermitian 
operators defined on a finite-dimensional space do not satisfy the standard CCR. 
It is thus natural to inquire whether an analogue of the CCR can be found for opera
tors with a discrete bounded spectrum acting on a finitecdimensional vector space. 
The answer is yes. Wey1 (1931) rewrote the CCR in an exponential form using 
unitary operators, and his formulation permits bounded operators. 

Weyl's formulation has provided the basis for a recent series of papers (Santhanam 
and Tekumalla 1976; Santhanam 1976, 1977) which have discussed quantum 
mechanics defined on a finite-dimensional Hilbert space. The principal idea was to 
start with Weyl's (1931) commutation relation for two operators of the Abelian 
group of unitary rotations in ray space. When the group is continuous, the resulting 
formulation is identical with that of Heisenberg (1925) but, when the group is 
discrete or discrete-continuous, further possibilities open up. ' 

Weyl's formulation makes use of unitary operators, and many difficulties which 
arise from restrictions on the domain do not appear in it. In particular, Santhanam 
(1977) showed that operators with a discrete bounded spectrum (like the angular 
momentum operators) satisfy Weyl's commutation relation. An interesting con
sequence also revealed by Santhanam is that, when properly interpreted, Weyl's 
commutation relation implies a generalized statistics. 

Starting with Weyl's formulation, Santhanam and Tekumalla (1976) calculated 
the commutation relation between two hermitian operators (defined as the generators 
of the unitary transformation). They demonstrated that this relation reduces to the 
standard CCR as the spectrum becomes continuous and the dimension n -7 00. 
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However, in their derivation, they used an explicit matrix representation for operators 
satisfying Weyl's commutation relation. In the present paper, we develop a form
ulation which is coordinate free in the limit and which makes the limiting procedure 
especially clear. 

Quantum Mechanics in Finite Dimensions 

In the n-dimensional Euclidean space ,,(n), we choose the orthonormal basis 

l/Ir = (0,0, ... , 1, ... , 0) for r=I,2, ... ,n, (1) 

where the 1 resides in the rth column of the rth unit vector. Let us now consider 
the two operators Nand U, defined such that 

Nl/Ir = (r-l)l/I" 

U l/Ir = l/Ir+1 

Ul/In = l/I1' 

for r < n, 

(2) 

(3a) 

(3b) 

It is trivial to see that in the basis (1) the following matrix representations hold for 
Nand U: 

N = diag[O, 1,2, ... , n-l], 

Ur• = °r,.-l for r<n, s~n, 

Un. = 01 ,. s ~ n, 

(4) 

(Sa) 

(5b) 

where Oij is the Kronecker delta function. It is also trivial to see that the two 
selected operators U and N have the following properties: 

un = I, 

vn = I, where v = exp(Nlna) , 

with a = exp(2ni/n) being the nth primitive root of unity. 
Furthermore, it is easily seen that Nand U jointly satisfy 

(NU- UN)l/Ir = Ul/Ir = (U -n UPn)l/Ir for r < n, 

(6a) 

(6b) 

(7a) 

where Pr is the projection into the one-dimensional subspace spanned by l/Ir (for 
r = 1,2, ... , n). On the other hand, for r = n we have 

(NU- UN)l/In = Nl/I1 -(n-l)Ul/In = Ul/In -nUt/ln 

= (U - n UPn)l/In' 

Thus, we conclude that the following relation holds: 

[N, U] = U -n UPn• 

Now, it is clear from the equations (5) that U is unitary 

ut U = uut = 1, 

(7b) 

(8) 

(9) 
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and so equation (8) can be rewritten in the form 

U- l NU = N+1 -nPn • (10) 

The last term on the right-hand side of equation (10) takes care of both the finite nature 
of the spectrum of N and the cyclic nature of U as defined in (5). Since both sides of 
equation (10) are self adjoint and Pn commutes with N, we can exponentiate to get 

exp( -it(U-lNU)) = exp( -itN)exp( -it)exp(itnPn) for -00 < t < 00, (11) 

or 
exp( -itN) Uexp(itN) = Uexp( -it) exp(itnPn). 

Writing 
t = 2n/n 

and recognizing that 
exp(i2n Pn) = 1, 

allows us to reduce equation (12) to 

13 U exp(2niN/n) = exp(2niN/n) U, 

which is Weyl's commutation relation. 
Writing feN) in terms of the projection operators as 

n 

feN) = L f(r-l) Pr 
r= 1 

gives 

feN) UPn = (Jl f(r-1)Pr) UPn = Ctl f(r-l)Pr )P l UPn 

= f(O) UPn , 

where we have used 
UPn = Pl UPn • 

Multiplying equation (8) to the left by feN) and setting 

A =f(N) U 
we get (using equation 17) 

[N,A] = A-nf(O) UPn 

and, for functions for which f(O) = 0, we have 

[N,A] = A. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Thus we see that when feN) = .J N, for instance, the operator A can be interpreted 
as the creation operator at, and in this case we have 

[N,at] = at. (22) 

When interpreted properly, this relation has been shown to imply a generalized 
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statistics (Santhanam 1977). Finally we point out that another function for which 
f(O) = 0 is 

feN) = sin(2nN/n). (23) 

Limiting Procedure 

So far we have looked at 1(n) f&r'finite n. Tosee what happens in the limit as 
n --700, we imbed K(n) in an. infinite~dimensionaJK with basis l/Ir (r = 1,2, ... ,(0). 
Writing N(n) and u(n) as the imbedded nmk n operators given by the equations (4) 
and (5), we want to show that N(n) ahd' u(n) converge strongly. 

Let U be an isometric (one-side unitary) operator on K defined by 

Ul/Ir = l/Ir+l' (24) 
Then clearly we have 

(U - u(n)l/Ir = 0 for r < n, (25) 
and hence 

I 

(U - u(n) L CIT l/Ir = 0 for 1 < n. (26) 
r= 1 

Therefore 
(U- u(n)g --7 0 as n --7 00 (27) 

for all g of the form 
I 

g =I IY.r l/Ir 
r= 1 

1 arbitrary. (28) 

Such g form a dense set in K. Since II u(n) II = 1 = II UII it follows that u(n) con
verges strongly (i.e. on all vectors in K) to U. 

Let N be defined by 

Nl/Ir = (r-l)l/Ir for r 1,2, ... ,00, 

then N is an unbounded operator with the domain 

f0(N) = {gEK I g = kt1lY.kl/lk; 
00 

L IIY.k l 2 < 00, 
1 

~(k-l)21IY.kI2 < oo}, 
which is dense. It is trivial to see that N(n) converges strongly to N on f0(N). 

For g E f0(N) we have 
0() 

u(n) g = L IY.k u(n) l/Ik 
k=l 
n-l 

= L IY.kl/lk+l +lY.nl/l 1 • 
k=l 

The operation of u(n) leaves f0(N) invariant and so too does that of U. 
In order to see that 

n u(n) Png 

converges strongly to zero as n --7 00 we restate this expression as follows 

00 

n u(n) Png = nU(n) Pn L IY.k l/Ik = n IY.n l/Il • 
k=l 

(29) 

(30) 

(31) 

(32) 
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As a consequence of equation (32) we obtain 

iinU(n)Pngii = inocni--+O, 
since we have 

00 

2:inocn i2 <00 
n=O 
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(33) 

from the definition (30) of f»(N), given that g E f»(N) holds. Combining the results 
(32) and (33) with equation (8) we see that the commutation relation 

[N(n), u(n)]g = (u(n) -n u(n) Pn)g (34) 
converges to 

[N, U]g = Ug (35) 

for all g E f»(N). We note that equation (35) formed the basis for the result obtained 
by Santhanam (1977) that a generalized statistics implied in finite dimensions goes 
over to Bose statistics as n --+ 00. 

Since U is only isometric and not unitary, it is not in general possible to write 
U = exp(i¢). But, assuming that it is possible to do so, we may write 

U(t) = exp( -itN) Uexp(itN) (36) 

to obtain the differential equation 

dU(t)/dt = -iU(t). (37) 

A solution of this equation is 

U(t) = Uexp( -it) (38) 
or 

exp( - itN) exp(i¢) exp(itN) = exp(i¢) exp( - it), (39) 

which could have been got by taking the limit in equation (12). Now equation (39) 
implies that 

exp( - itN) ¢ exp(itN) = ¢ - t , (40) 
which shows that 

[N,¢] = -i. (41) 

Because of its lack of generality equation (41) is merely a formal result and is not 
as important as the general result (35). 

The following remarks concerning the approach adopted in this paper are in order. 
In deriving equation (8) we have made use of only (1), (2) and (3), which are 
definitely coordinate free. However, in finite space, these equations do imply the 
matrix representations (4) and (5) for the operators Nand U. Therefore, the 
usefulness of the present discussion lies essentially in considering the limit as 
n --+ 00, when the second term on the right-hand side of equation (8) vanishes and we 
obtain the standard CCR. 
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