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Abstract 

A study is made of the energy loss by an energetic (but nonrelativistic) test ion of charge Ze to plasma 
electrons in thermal equilibrium at temperature T. The classical region KT <{ Z2 Ry and the quantum 
region KT ~ Z2 Ry are both considered. The loss rates are given in closed form in terms of known 
functions of the ion speed. May's earlier work concerning the classical region is revised. Certain 
limiting cases are discussed in connection with the Bohr-Bethe-Bloch theory of the stopping power 
of ordinary matter. 

1. Introduction 

There arise three characteristic lengths in the discussion of collisions of a test 
ion of charge Ze with plasma electrons in thermal equilibrium at temperature T: 

bD = ki) 1 = ( KT ) t 
moi ' p 

bo = k0 1 = Ze2 

KT' 
( h2 )t 

bQ = kQ 1 = mKT • (1) 

Here m is the electron mass and wp = (4nne 2/m)t, with n the electron number density, 
is the electron plasma frequency. In most cases of interest the Debye length bD 

greatly exceeds boo The length bQ is essentially the thermal de Broglie wavelength 
of a plasma electron characterizing quantum diffraction effects. If we have 
bo ~ bQ , that is, KT ~ Z 2 Ry (1 Ry = e4m/2h2 = 13·605 e V), such diffraction effects 
are negligible, and we call this region of plasma parameters the classical region. 
The lengths bD and bo then characterize classical maximum and minimum collision 
impact parameters respectively, leading to the ubiquitous Coulomb logarithm 
In(bD/bo) = In(ko/kD)' If on the contrary we have bQ ~ bo, that is, KT ~ Z 2 Ry, 
quantum diffraction effects dominate close collisions and we are in the quantum 
region. The Coulomb logarithm in this region should be In(bD/bQ) = In(kQ/kD) 
(Kihara 1964; Frankel 1965; DeWitt 1966). The quantum region covers a consider
able range of plasma parameters of practical importance; e.g. for an oc particle with 
KT> 100eV. 

It is the purpose of the present work to study the energy loss by energetic test 
ions in both the classical and quantum regions. By energetic we mean that the kinetic 
energy of the ion is much higher than the plasma thermal energy, that is, MV2 ~ KT, 
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M and V being respectively the mass and speed of the ion. This does not necessarily 
mean, however, that the parameter 

x = (mV2/2KT)t (2) 

is much larger than unity, since M ~ m. The energy loss rate will be given here in 
a closed form in terms of known functions of x. Such an analysis in the classical 
region was presented by May (1969). As we shall see, however, it appears that his 
analysis does not give correct nondominant terms in the loss rate. .In the quantum 
region, the calculations available so far either are for a limited range of the 
parameter x (Larkin 1960; Honda 1964) or are overly simplified (Frankel 1965). 

The classical and quantum calculations are carried out in Sections 2 and 3 
respectively. Section 4 is devoted to a discussion of the results and, in particular, 
the connections with the Bohr-Bethe-Bloch theory (Bloch 1933a, 1933b) of the 
stopping power of ordinary matter are pointed out. 

2; Classical Region (KT ~ Z 2 Ry) 

There exist various equivalent plasma kinetic equations that are free from 
divergences in the classical region (Aono 1968a). For our purpose the formulation 
by· Kihara and Aono (1963) finds most direct application. It combines the 
Boltzmann equation for the Coulomb potential (impact theory; denoted by SUbscript 
I throughout) with the dielectric formulation (wave theory; subscript W) and gives 
the average energy loss rate in the form 

(dE/dt)c = (dE/dt)w +(dE/dt)I' (3) 

Let us assume that the parameter x defined by equation (2) satisfies x > (m/ M)t 
so that the test ion loses its energy predominantly to plasma electrons (Butler and 
BuckiQ.gham 1962). Let us further omit the terms of order m/M, taking them to be 
negligible compared with unity. The two terms in equation (3) are then given by 

(dE) = 2(Ze2)2 fffdVdkdW <5(w ~k. V)<5(k~.g) 
dtw. m IkBc(k,w)1 

( )( of (v») , 2 
x k. V k. av exp{ -t(kbi ) }, (4) 

(dE) = _ 4n(Ze2)2 fdV (g. V)f(v) foo db bexp{ -!(b/b i )2}. 
dt I m g3 J 0 b2 + (Ze2/mg2)2 

(5) 

Here b i is an intermediate length such that 

bD ~ b i ~ bo ~ bQ , (6) 

I(v) is the electron velocity distribution function given by 

I(v) = n(m/2nKT)3/2 exp( -mv2/2KT) , (1) 

with n the electron number density as before, and g = V-v is the relative velocity. 
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The classical dielectric constant ee(k, OJ) which characterizes the wave theory is 
given by 

ee(k, OJ) = 1 + 4ne2 fdU k. {of(u)/ou} 
mk2 OJ-(k.u)+ic5· 

(8) 

Let us first evaluate (dE/dt)w. The integration over v in equation (4) can be 
easily carried out and we arrive at 

(dE) = _ 4nn(Ze2)2 ~ IX ds S2 exp( _ S2) 
dt w mV.Jn 0 

I oo k3 exp{ --!-(kb l )2} 
x 0 dk (k2 +k~X)2+(k~ y)2' 

(9) 

where we have changed the variable to s = (OJ/kV)x and (Kihara and Aono 1963) 

Xes) = 1 -2sexp( _S2) f: dt exp(t2), Yes) = yin sexp( _S2). (10) 

The integral over k in equation (9) yields (Abramowitz and Stegun 1972, formulae 
5.1.11,5.1.43 and 5.1.44) 

In(bo/bl ) +-!-ln2 --!-y -tln(X2 + y2) 

--!-(X/Y) arctan(Y/X) +O{(b l /bo)2In(bl /bo)} , 

where y = O· 57721... is Euler's constant. 
Following May (1969) we now define the two functions 

P(x) = 4n- t f: ds S2 exp( - S2) = erf(x) - 2n- t x exp( - x2), (11) 

LlI(x) = -{nP(x)}-1 f: dss{Yln(X2+y2)+2Xarctan(Y/X)}. (12) 

The inverse tangent is to be evaluated in the range O-n. The function Lll(X) has 
been tabulated by May (1969). In terms of these functions, equation (9) takes the 
form 

(dE) = _ 4nn(Ze2Y p (X){ln(bo) +LlI(x) +-!-ln2 _-!-y}. 
dt w mV b i 

(13) 

The error involved is at most of the order (b l /bo)21n(bl /bo), which is much smaller 
than the terms retained as long as the conditions (6) hold. 

We next turn to the evaluation of (dE/dt)!. Carrying out the integration over b 
in equation (5), we find (Abramowitz and Stegun 1972, formula 5.1.28) 

(~~)l = - 4n(~2)2 f dv (g. :~f(V) {In(m;::I) +-!-ln2 --!-y}. (14) 

Here the error involved is at most of the order (bo/b l )21n(bo/b l ). Using the function 
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Az{x) defined and tabulated by May (1969), namely (with some small rearrangement 
of terms) 

A2(X) = / ~</ , [J: ds S2 exp( - S2) In(x2 - S2) 

+ Loo dSS2eXp(-S2){lnG~:)-2:}] -ln2-l, (15) 

we obtain 

(dE) = _ 4nn(Ze2)2 P(x) {In(4b i ) + A2(X) + 1 +t ln2 -tY}. 
dt I mV bo 

(16) 

According to equation (3), the average energy loss rate in the classical region 
from equations (13) and (16) is now given by 

(dE) = _ 4nn(Ze2)2 p(X){ln(4ko) +Ai(X) +Az(x) + 1 +ln2 -Y}. 
dt c mV kD 

(17) 

If we make the choice bi ~ (bo bD}t then the error involved in this result is at most 
of relative order (bo/bD)ln(bo/bD). The rate (17) differs from the one obtained by 
May (1969) by 1 + In 2 - Y = 1· 116 in the factor within the braces. There are reasons 
to believe that the kinetic equations used by him do not give correct nondominant 
terms; it is known that a certain divergence-free kinetic equation does give a wrong 
result (Gould and DeWitt 1967). Further discussion on this point is given in Section 4. 

3. Quantum Region (KT ~ Z2 Ry) 

Let W(p-+p') be the probability per unit time of a test ion of momentum p being 
scattered to p' by plasma electrons. The average rate of energy change of the ion 
will then be given by 

dE/dt = L. (Ep' - Ep) W(p-+p') , (18) 
p' 

where Ep = p2/2M. It is a simple matter to show that equation (18) follows from the 
Boltzmann equation for the ion momentum distribution function if the latter is 
proportional to bp'p(t)' which is the case here since we are assuming Ep ~ KT 
(May 1964). 

Turning now to the transition rate W(p-+p'), we first note that the condition 
bQ ~ bo (that is, KT ~ Z 2 Ry) assures the validity of the Born approximation. 
We then have (e.g. Wyld and Pines 1962) 

W(p -+ p+hk) = L. w(p, q -+ p+hk, q-hk)N(q) , (19) 
q 

where N(q) is the number of electrons of momentum q and 

2n 11 ( 4nZe2
) 1 12 

w(p, q -+ p+hk, q-hk) = h Q -~ BQ(k, h-i(EpHk-Ep») 

x b(Ep+hk + Bq- lik - Ep - Bq), (20) 
with 

4ne2 1 N(hk+hk')-N(hk') 
BQ(k,w) = 1+ V Qf,hw-(BlikHk,-slik,)+ib' (21) 
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8q = q2/2m and Q the normalization volume. As in Section 2 we have assumed that 
the test ion is losing its energy predominantly to plasma electrons. In the continuum 
limit we have 

Q- 1 t=--+(2n)-3 fdk, Q-l~ ... N(q)--+ fdv .. .f(V). (22) 

Introducing equations (19) and (20) into (18) and using the results (22), we 
obtain the average energy loss rate in the quantum region as 

( dE) = 4(Ze2)2 fdV f(v) fdk 2 k. V 2 f>(k.g +hk2/2m) , 
dt Q h Ik 8Q(k,OJ) I 

(23) 

where hOJ = Ep+hk-Ep, and m/M has been taken to be negligible compared with 
unity, as in Section 2. The rate (23) is free from divergences as it stands, because 
of the presence of 8Q(k, OJ) for small k and of the f> function for large k. 

In order to evaluate the integral over k in equation (23), let us introduce an 
intermediate wave numberk1 such that 

ko ~ kQ ~ kl ~ kD' (24) 

and divide the integration into the two regions (i) kl > k > 0 and (ii) 00 > k > k 1 . 

It will be seen that the final result is independent of kl to a very good approximation 
as long as the conditions (24) are satisfied. 

In region (i) the f> function in equation (23) may be approximated by 

f>(k.g +hk2/2m) = f>(k.g) +(hk/2m).(8/8g)f>(k.g) , (25) 

and the dielectric constant (21) may be replaced by its classical counterpart (8). 
The integrations in equation (23) can then be carried out in much the same way as 
in Section 2 and we arrive at 

( dE(i)) = _ 4nn(Ze2)2 P(x) {In(kl) +L1 1(X)} , 
dt Q mV kD 

(26) 

where P(x) and L1 1(x) are given by equations (11) and (12) respectively. We note 
that there is no place for quantum effects to enter in region (i). 

In region (ii) the expansion (25) cannot be used but 8Q(k, OJ) may be replaced by 
unity. Evaluation of the k-integration in equation (23) yields 

(d~~ii») Q = _ 4n(~2)2 f dv f(v) :/ In(~~~) . (27) 

To be rigorous, the range of integration over v is limited by g = I V-v I > hkl/2m. 
It is easy to see, however, that the error caused by ignoring this restriction is at most 
of order (kl/kQ)2In(kl/kQ)' Carrying out the integration over v we find 

(dE(ii») = _ 4nn(Ze2)2 P(x) {In (4kQ) +tL1ix) +t}, 
dt Q mV kl 

(28) 

where L1 2 (x) is defined by equation (15). 
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Adding equations (26) and (28) we arrive at the desired loss rate in the quantum 
region: 

(dE) = _ 4nn(Ze2)2 'l'(x) {In (4kQ) +Lll(X) +!Llix) +!}. 
dt Q mV kD 

(29) 

If we choose kl '" (kD kQ}!.t then the error involved in this result is at most of the 
relative order (kD/kQ)ln(kD/kQ). (We note that kQ/kD = KT/hwp.) The dominant 
Coulomb logarithm is not In(ko/kD) but In(kQ/kD) when we have KT ~ Z2 Ry. 
Unless Z ~ 1 the use of the classical rate (17) substantially overestimates the loss 
rate if KT ~ 1 keY. 

4. Discussion 

Equation (17) for KT ~ Z 2 Ry and equation (29) for KT ~ Z 2 Ry summarize 
the results of the present work. They are valid when (a) the kinetic energy of the 
test ion is much higher than the plasma thermal energy, that is, E ~ KT, but 
(V/C)2 ~ 1, and (b) x ~ (m/Myt so that the energy is lost predominantly to plasma 
electrons. 

Let us first consider the limiting case x ~ 1. Using the asymptotic forms of 
Ll l(x) and Llix) given by May (1969), we find 

(dE) _ 
dt C,x»l -

4nn(Ze2)2 {In (2m V3 ) _ } 
mV Z 2 Y , e wp 

(30) 

(dE) = _ 4nn(Ze2)2 In (2m V2) . 
dt Q,x»l mV hwp 

(31) 

Equation (30) is in complete agreement with the results of Jackson (1962) and 
Kihara and Aono (1963). This limiting form has a very clear physical interpretation, 
as shown by Aono (1968b). It is also interesting to see that the rate (30) can be 
obtained by simply replacing the harmonic atomic frequency w by wp in the classical 
formula for the stopping power of ordinary matter due originally to Bohr (1913) 
(see Bloch 1933a, 1933b). May's (1969) formula does not have this limiting form 
(Gould 1972); in fact this is the reason why it was considered that his theory 
needed revision in the first place. 

The quantum loss rate as given by equation (31) is in complete agreement with the 
result first obtained by Larkin (1960). We observe that the energy lost to completely 
degenerate electrons by ions with V ~ VF (the Fermi speed) is also given by equation 
(31) (Kramers 1947; Ritchie 1959). Apparently, sufficiently fast ions do not 
distinguish between Maxwell-Boltzmann and Fermi-Dirac statistics. It is also satisfy
ing to see that the rate (31) can be obtained from the Bethe-Bloch formula (Bloch 
1933a, 1933b) for the quantum stopping power of ordinary matter by replacing the 
average atomic binding energy by hwp. These observations do not justify the 
modification of the Bethe-Bloch formula considered by Bagge and Hora (1974). 

Consider next the case x < 1. Neglecting terms of order x2 we have 

(dE) 4n(Ze2)2(2nm)tV2 { (4(KT)3/2) } - = - In -2y-t 
dt C,x<l 3(KT)3/2 Ze2mt cop , 

(32) 
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(dE) __ 4n(Ze2)2(2nm)tV2 { (23/2KT) _.1. } 
dt - 3( T)3/2 In hw 2(1 +y) . 

Q,x<l K p 
(33) 

The limiting forms (32) and (33) are in complete agreement with the results of 
Kihara and Aono (1963) and Honda (1964) respectively, for E ~ KT. 

We conclude with a remark on the comparison of the classical energy loss rate 
(17) with experiIl1ent. Halverson's (1968) preliminary report on the measurement 
of the energy loss rate of 5 ke V protons in a lithium plasma with n '" 4 x 1012 cm - 3 

and KT '" 1· 5 eV indicated that the necessary correction to the dominant Coulomb 
logarithm In(4ko/kD) in the theory amounted to -40%. May's (1969) formula 
gave a correction of - 14 %, and he thus pointed out that although his result dimin
ished the difference there was still a significant discrepancy between the theory and 
experiment. This problem has led to a recent study by Swami and Sharma (1977) 
on the effect of possible turbulence within the plasma which could appreciably 
reduce the loss rate. The present revision of May's formula represented by equation 
(17) yields a correction of only - 3 % to the simple theory, so that it might appear 
that the discrepancy is even more serious. However, a full account of the same 
experiment by Caby-Eyraud (1970) shows that In(4ko/kD) alone gives a loss rate well 
within the experimental uncertainty of 40%. Our equation (17) is therefore not at 
variance with experiment. There exist no experimental data in the quantum region 
where equation (29) is applicable. 

Notes added in proof 

If x < 1 then equation (17) applies when KT ~Z2 Ry and equation (29) when 
KT ~ Z2 Ry, as described in the text. If x > 1, however, equation (17) is valid when 
KT ~ (Z2/X2) Ry and equation (29) when KT ~ (Z2/X2) Ry. These points are dis
cussed in a forthcoming paper by George and Hamada (1978). 

For more recent comparisons of the theory and experiment, the reader is referred 
to the paper by Burke and Post (1974). 
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