
Estimation of the Equilibrium Properties 
of the Simple AB Alloy 

c. H. J. Johnson 

Aust. J. Phys., 1978,31, 319-32 

Division of Chemical Physics, CSIRO, P.O. Box 160, Clayton, Vic. 3168. 

Abstract 

Simulation estimates are presented for the equilibrium values of energy, long-range order and 
particle concentration as functions of temperature and chemical potential for the AB aIloy set on 
a simple square lattice. The simulation was based on a simple Markov process with transitions 
defined in terms of particle exchange between nearest-neighbour lattice sites. An ensemble mode of 
relaxation, employing an ensemble of five 32 x 32-particle samples from the aIloy, was used in order 
to reduce the level of the fluctuations. The usual periodic boundary conditions were replaced by 
probability boundary conditions where the states of the external lattice site were estimated using 
probability distribution functions whose lower moments were equal to the running moments of 
the sample. These boundary conditions aIlowed particles to move in and out of the sample region, 
so that the relative numbers of A and B particles could adjust to accommodate the difference in 
chemical potential between the two particle-species. 

1. Introduction 

Computer simulation has been used extensively to examine various aspects of the 
behaviour of statistical models which exhibit order-disorder transitions, with much 
of the effort being directed toward the study of kinetic Ising models of ferromagnetism 
or alloy models which are isomorphic to them (see e.g. Ehrmann et al. 1960; Yang 
1963; Ogita et al. 1969; Binder 1974). In almost all of these investigations, the 
simulation has been based on the 'Monte Carlo' prescription given in 1953 by 
Metropolis et al. while studying hard disc systems. In general terms, the computer 
simulation of a statistical mechanical system is based on simulated sampling over 
the set of configurations of a finite subsystem or sample taken from the infinite 
system, the sample statistics providing estimates for the appropriate quantities 
describing the infinite system. The sample particles are not independent of the rest 
of the infinite system and, since the interaction between the two systems will con­
tribute to the energy of the sample particles, a satisfactory means of describing this 
interaction must be found. Recently (Johnson 1978), we discussed modifications to 
the conventional simulation process, as applied to Ising systems, where the interaction 
is estimated using probability distribution functions whose lower moments are equal 
to the running sample moments (correlations) obtained from the simulation. In the 
present paper we apply these ideas to the study of the equilibrium behaviour of the 
simple AB alloy and in particular consider the estimation of equilibrium thermo­
dynamic properties, such as long"range order and the relative concentrations of A 
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and B particles, as functions of the temperature and volume and of the relative 
chemical potentials of the two species of particles. 

In studying the behaviour of kinetic Ising systems, the simulation process is usually 
regarded as a realization of the actual physical process which controls the behaviour 
of the system. In physical terms, the system of Ising particles is assumed to interact 
with a large thermal reservoir which can induce in the system transitions allowing 
particles to change from one configuration to another. It follows that, if the system 
is initially in thermodynamic equilibrium at a given reservoir temperature, and if this 
temperature is suddenly changed, the reservoir will reach equilibrium at the new 
temperature very rapidly, since its relaxation time is, by definition, very short. The 
Ising system, on the other hand, over a very much longer time, will pass to equilibrium 
at the new temperature through a sequence of configurations determined by a 
stochastic process whose probability field is defined in terms of the coupling between 
the Ising system and the thermal reservoir and the nature of the interaction between 
the particles. If the coupling between the Ising system and the reservoir is weak, the 
stochastic process may be approximated by a Markov process which is such that 
each transition probability is a function only of the energy of the transition and 
does not depend explicitly on the particle configuration immediately prior to the 
transition. This Markov property can be seen as a consequence of the requirements 
that detailed balance for the transition process holds at and very near to equilibrium. 
It would therefore appear that using the Markov process in the simulation of the 
approach to equilibrium is really only justified when the system is already sufficiently 
close to the required equilibrium. In all other cases a more general stochastic process 
should be used. However, if we are interested only in the equilibrium properties 
of the particle system, and not in the time approach to equilibrium, it does not matter 
how the approach is made so long as the system is able to reach equilibrium and to 
stay there. This last condition would appear to be guaranteed by the nature of the 
Markov process as it is usually set up. 

In the course of the simulation, the sample particles will interact with each other 
and with those outside. The states of the external particles are unknown and must 
be estimated, preferably using the sample statistics, in order to calculate the interaction 
with these particles. For an Ising system with nearest-neighbour influence only, this 
interaction can be described in terms of 'boundary conditions' applied at the edge 
of the sample. This will, in effect, impose conditions on the particles immediately 
outside the sample, these being the only external particles that matter on account of 
the short range of the interaction. In the Ising model the particles are set at the node 
points of a lattice, and assigning boundary conditions thus provides a means of 
estimating the spin states of the particles on the nearest-neighbour external sites in 
the case of a spin system, or a means of estimating the particle occupancy of these 
sites in the case of an alloy. The conventional method of assigning the boundary 
conditions is to replicate the (instantaneous) sample over all space, thus setting up 
a periodic structure. The inner particles interact with each other in a known way 
since their states are known, while their interaction with the outer particles is 
estimated by assuming the states of these particles to be those of the equivalent inner 
particles. However, these 'periodic boundary conditions' are not really satisfactory 
for reasons related to critical phenomena (Johnson 1978) and, from a simulation 
point of view, work reasonably well only when the sample is large enough so that 
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boundary effects are small compared with bulk effects. Further, they do not allow 
any level of continuity in the local correlations to be maintained across the sample 
boundary. This continuity is essential since the sample may be taken from anywhere 
within the infinite system and the particles outside the sample must accordingly behave 
in the same way as those inside. For alloy systems, periodic boundary conditions 
have the added disadvantage that, in the course of the simulation, particles are unable 
to move across the sample boundary and so allow the particle-species concentrations 
to adjust in order to accommodate any difference in chemical potential. For an 
alloy system with periodic boundary conditions the chemical potentials can play no 
role in the determination of equilibrium since, if there is no particle creation, the 
particle numbers cannot change and hence the system cannot reach the lowest possible 
free-energy state. For the AB alloy with periodic boundary conditions, the lowest 
possible energy state is reached only for the 50: 50 alloy and this implies that the 
particles have the same chemical potential. If there are vacancies present, and these 
take part in the transitions, there are effectively three particle types and it is difficult 
to see how periodic boundary conditions can ever be satisfactory. 

From the above discussion, it is clear that for the alloy problem the occupancies 
of the lattice sites outside the sample must be assigned in such a way that particles 
are able to enter and leave the sample region, thus making the sample truly represent­
ative of the infinite system. This movement must accommodate not only differences 
in chemical potential but must also be in accord with the fluctuations that must 
occur in the simulation. If the particle numbers are free to change then the equilibrium 
state found in the course of the simulation will be the proper thermodynamic 
equilibrium state, that is, the state with the lowest possible free energy, and it can 
therefore be interpreted in terms of a grand canonical probability distribution. Of 
course, if the chemical potentials are correctly chosen functions of temperature, as 
well as of volume and concentration, the particle concentrations will remain constant 
with temperature. 

Following the method of the earlier paper (Johnson 1978), we assign the occupancy 
of each external site using probability distribution functions whose lower moments 
are equal to the running moments, which are the lattice site correlation functions 
obtained from the simulation. The occupancy of each external site is thus not fixed 
but will vary in a way determined by the statistical behaviour of the sample particles, 
that is, the external particles will behave, statistically at least, in the same way as the 
internal particles. In implementing these probability boundary conditions, we use 
transitions based on particle interchange between nearest-neighbour lattice sites, 
which are similar to the spin exchange transitions first introduced by Kawasaki (1966). 
The probability boundary conditions are clearly consistent with the transition process, 
particles moving in and out of the sample region by means of the exchange process. 
Furthermore, using these boundary conditions provides a self-consistent means of 
computing the sample moments, that is, the" lattice site correlation functions, and 
hence the particle numbers. -

In this paper we consider the simulation of an AB alloy set on the simple square 
lattice with all the sites occupied either by A particles or by B particles. We restrict 
ourselves to probability boundary conditions using only first moments, that is, the 
long-range order functions. Specifically, we determine the equilibrium state of a 
32 x 32-particle sample for a range of temperatures and chemical potentials and, in 
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a particular case, give the variation in relative chemical potential so that the particle 
numbers in the sample region remain constant. The numerical results show the 
existence of a phase transition at temperatures consistent with the Onsager value of 
2·2 ... for the equivalent ferromagnetic system in zero field. However, the actual 
temperature is difficult to locate precisely on account of the fluctuations. A larger 
sample would probably enable the fluctuations to be reduced but a feature of the 
present simulation is the use of an ensemble mode of relaxation, where an ensemble 
of 32 x 32 alloy samples is allowed to relax simultaneously, cycle by cycle, using 
ensemble-averaged moments in the probability boundary conditions. The fluctuations 
are certainly less than they would have been had the ensemble members been allowed 
to relax independently, but the proper way to reduce the fluctuations is either to 
increase N, to which there is a practical limit, or to introduce higher moments into 
the boundary conditions (Johnson 1978). However, this would increase the computa­
tional time considerably and better computational and programming techniques would 
have to be developed for this to be done. 

2. Alloy Simulation 

Let L be the simple two-dimensional infinite square lattice with site coordination 
number z = 4 and with the same fixed uniform lattice spacing in each lattice direction. 
L is a superlattice composed of two sublattices La and Lp such that every a-site is 
surrounded by z f3-sites and every f3-site is surrounded by z a-sites. Let every site of 
L be occupied either by an A particle or by a B particle, with the number of A particles 
not necessarily equal to the number of B particles. There are thus no vacant lattice 
sites and no interlattice particles. We shall refer to this system of particles on the 
superlattice L as the AB alloy, with a particular distribution of A and B particles on 
L constituting a configuration of the alloy. This alloy system is assumed to interact 
with a thermal reservoir at a given fixed temperature thereby inducing in the alloy 
transitions which cause the particles to change from one configuration to another. 
In the course of a sequence of configurations generated in this way, particles will 
move from one sublattice to the other, so that we may consider the system of particles 
on L to consist of two subsystems of particles, the one set on La and the other set on 
Lp, which can interact by exchange of particles. If the alloy is initially in thermo­
dynamic equilibrium with the reservoir at a particular temperature and this temper­
ature is then changed, the reservoir, by definition, will reach equilibrium at the new 
temperature in 'zero time', while the alloy will, in the course of a long time, pass 
from those configurations characteristic of equilibrium at the initial temperature to 
those characteristic of equilibrium at the new temperature. These 'equilibrium con­
figurations' are characteristic in the sense that they are the most likely ones at the 
given temperature. We now wish to develop the computer simulation of the passage 
of the alloy from equilibrium at one temperature towards equilibrium at a new 
temperature in terms of a stochastic process in which particle configurations are 
generated sequentially according to a well-defined transition process. The stochastic 
process will also operate when the alloy is in the equilibrium state, so that when, 
in a statistical sense, the alloy is sufficiently close to equilibrium the time sequence of 
configurations will be stationary and we may collect running averages of configuration­
dependent quantities which may later be interpreted in terms of the variables defining 
the thermodynamic state of the system. 
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We proceed within the context of the simple Ising model and ascribe to each 
lattice site i E L a state variable Si' which describes the occupancy of the site and is 
defined by 

Si = +1 

Si = -1 

if site i is occupied by an A particle, 

if site i is occupied by a B particle. 

(la) 

(lb) 

If the potential energy can be represented as the sum of pairwise-additive potentials 
over nearest neighbours, we may write this energy as 

V(s) =! L [8AA(1 +si)(l +s) +8BB(l-si)(1-s) 
< ij> 

+8AB{(1 +Si)(l-S) +(l-si)(l +s))]. (2) 

Here s is the configuration vector (St, Sz, S3' ... ) and the summation is over nearest­
neighbour pairs. Also 8AB is the potential energy for unlike particles and 8AA and 
8BB are the potential energies for like particles. Rewriting equation (2) we have 

V(s) =! L {(8AA - 8AB) +(8BB - 8AB)}Si Sj 
<ij> 

+-!-(8AA - 8BB) L Si +!N(8AA + 8BB+28AB) , 
i 

where N is the number of particles involved. If we assume that at very low tem­
peratures the most likely configuration is that in which every site of La is occupied 
by an A particle and every site of Lp is occupied by a B particle, then we have 
8AA > 8AB and eBB> 8AB' so that 

(8AA- 8AB) +(8BB - 8AB) > 0 
and we can write 

V(s) =J L SiSj +YLSi +Eo, 
< ij> i 

where 
J = H(8AA-8AB)+(8BB-8AB)} > 0, 

Y = 1-(8AA -8BB) ~ 0, 

Eo = !N(8AA +8BB + 28AB) < O. 

(3) 

(4a) 

(4b) 

(4c) 

For J > 0 it is known that an order-disorder transition will occur at a nonzero 
temperature (Domb 1974). 

In general, NA and NB, the number of A and B particles respectively, will not be 
constant, although any change in the number of A particles will be matched by the 
negative of this change in the number of B particles. Accordingly, the equilibrium 
statistical mechanics of the alloy system will be described by the grand canonical 
partition function S defined by 

S == SeT, V, fl A, flB) 

= Nto ~ exp{ p ( - V(s) +-!- ~ {flA(l +Si) +fli1- Si)})} , (5) 
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where T is the absolute temperature; V is the volume as expressed by the lattice 
spacing which is implicitly contained in the energy parameters eAA' eBB and eAB; 
f.1A and f.1B are the chemical potentials of the A and B particles respectively; and 
f3 == l/kB T, with kB being Boltzmann's constant. The inner summation in equation 
(5) is over all configurations s while the outer summation is over the number of A 
particles, this summation being taken into account also in the chemical potential 
sum. Using the form (3) for the potential energy V(s), we may write the partition 
function in the form 

8 = £ L exp{ f3 (-J L SiSj +~ ~ Si +IJ)} , 
NA=O s <8> ~ 

(6) 

with ~ = -Hf.1A-f.1B)-Y and IJ = -Eo+tN(f.1A+f.1B)· Clearly, we may regard ~ as 
a normalized relative chemical potential for the two particle-species. In the simulation 
process, when the alloy system has reached the equilibrium state for the given tem­
perature, the running averages over the equilibrium sequence of configurations will 
yield estimates for the various mean values associated with the grand canonical 
distribution function as expressed in equation (6). Thus, for example, we may 
estimate the average number of A particles and the average occupancies of the La 
and Lp lattices, that is, the long-range order parameters for these lattices. 

To implement the simulation process, we shall assume the transitions by which 
the alloy passes from one configuration to another to be those of particle interchange 
between nearest-neighbour sites of the lattice L. These transitions are similar to the 
spin-exchange transitions first introduced by Kawasaki (1966) and used by Binder 
(1974) and others in alloy simulation problems. It must be emphasized that this 
exchange process is not intended to be the actual physical mechanism for the transition 
process which determines the behaviour of the alloy, where presumably the 'real' 
mechanism is controlled by the movement of vacancies. However, it should be 
sufficient to enable the computation of quantities such as equilibrium-critical 
exponents, which, if universality is to have any meaning at all, must not depend too 
strongly on the detailed nature of the transition process. The simulation process 
will be set up by regarding the transitions as defining a stochastic process taken over 
the set of configurations of the alloy and which we shall assume to be a Markov 
process with the transition probabilities depending only on the particle configuration 
immediately before the transition. In point of fact, it will turn out that the dependence 
is less than this, with the transition probabilities depending only on the energy of 
the transition and not on the current configuration itself. That is, there are no 
'memory' effects at all, and this will mean that the rate of convergence to equilibrium 
will be the 'slowest possible'. 

We first define long-range order statistics based on the particle occupancy of the 
sites of the lattices La and Lp. If n be a positive even integer, consider an n x n 
subsystem from the lattice L having the same coordination and lattice spacing. We 
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(7a) 

(7b) 
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where T is the absolute temperature; V is the volume as expressed by the lattice 
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(6) 
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perature, the running averages over the equilibrium sequence of configurations will 
yield estimates for the various mean values associated with the grand canonical 
distribution function as expressed in equation (6). Thus, for example, we may 
estimate the average number of A particles and the average occupancies of the La 
and Lp lattices, that is, the long-range order parameters for these lattices. 
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immediately before the transition. In point of fact, it will turn out that the dependence 
is less than this, with the transition probabilities depending only on the energy of 
the transition and not on the current configuration itself. That is, there are no 
'memory' effects at all, and this will mean that the rate of convergence to equilibrium 
will be the 'slowest possible'. 

We first define long-range order statistics based on the particle occupancy of the 
sites of the lattices La and Lp. If n be a positive even integer, consider an n x n 
subsystem from the lattice L having the same coordination and lattice spacing. We 
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with the L order parameter rI defined by 

rI = (na; rIa; +np rIp)/(na; +np)' (8) 

These order parameters are defined so that, for a 50: 50 AB alloy at zero temperature 
with each species having the same chemical potential, all the a-sites are occupied by 
A particles and all the fJ-sites are occupied by B particles, with the result that 

rIa; = rIp = rI = 1. 

At very high temperatures each site is just as likely to be occupied by an A particle 
as by a B particle, so that 

rIa; = rIp = rI = O. 

In the computer simulation of the behaviour of the present AB alloy, we simulate 
the behaviour of a finite n x n subsystem or sample from the infinite system and then 
use the sample statistics to estimate the behaviour of the infinite system. Now, the 
sample particles interact with each other and with the particles outside in exactly 
the same way, according to equation (2). The state of each externa11attice site (i.e. 
its occupancy) is unknown and must be estimated in some way, preferably using 
the sample statistics, before the samp1e-particle-externa1-particle interaction can be 
computed. Since we allow only nearest-neighbour interaction, it will be sufficient 
to estimate only the states of the sites immediately outside the n x n sample. As 
discussed in the Introduction, the conventional method of estimating these states by 
introducing periodic boundary conditions is unsatisfactory for our purposes and we 
now consider application of the alternative method proposed earlier (Johnson 1978). 

Since every site of the lattice L is always occupied, either by an A or B particle, 
the most satisfactory way of estimating the occupancies of the external sites is to 
assign them in probability using distribution functions whose moments are equal to 
those of the sample particles. The occupancy of each external site is then not fixed 
but can vary in a manner determined by the statistical behaviour of the sample 
particles, which, by the very notion of a sample, must behave in the same way as any 
other sample from the infinite system. That is, the external particles must behave in 
the same way as the internal particles. On assigning the occupancies in this way, it 
follows that after particle interchange between an internal and an external site the 
relative numbers of A and B particles in the sample will change, but in such a way 
that the total number of particles in the sample remains constant. This change in the 
relative numbers of A and B particles will reflect the difference in chemical potential 
for the two particles-species, so that, if the correct variation of chemical potential 
difference with temperature is given, the relative numbers of A and B particles will, 
apart from fluctuations, be the same for all equilibrium states of the alloy. 

The simplest probability function that can be used to assign the states of the 
external sites is the one-particle site probability function defined by 

Pa;(si = ± 1) = -HI ± rIal (9a) 

for a site on the La; lattice and 

PP(Si = ± 1) = -HI + rIp] (9b) 
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for a site on the Lp lattice. The forms (9) follow immediately from the definitions 
of CFa and CFp as site means for a one-particle sample in a simple Ising system (see 
Johnson 1978). The values to be given to these parameters as they appear in equations 
(9) are the running values obtained from the simulation. That is, the probability 
functions (9) have the same first moments as the sample particles, so that use of 
these probability functions in the boundary conditions provides a self-consistent 
scheme for estimating the values of the order parameters for the infinite system. 

In the course of the simulation, to assign the state of an external site we proceed 
as follows. Taking:YJi as the value of a random variable uniformly distributed over 
the interval (0, 1), we assume: 

for i E La, if Pa(Si = + 1) > :YJi then Si = +1 else Si = -1; (lOa) 

otherwise 

for i E L p , if pp(si=-I»:YJi then si=-1 else si=+l. (lOb) 

We shall refer to the application of these conditions as applying 'probability boundary 
conditions' to the n x n sample from the infinite system. 

We must now compute the energy change involved in a single transition and then 
use this to define the transition probabilities. Consider first a transition involving 
particles on two internal nearest-neighbour sites of the sample and let all the nearest 
neighbours of these two sites be internal sites as well. It follows that the occupancies 
of both transition sites and their nearest-neighbour sites are known. Denote the state 
variables for the two transition sites by Sl and S2 and use the notation s~, s~, s-;:, s~ 

for the respective states of the nearest-neighbour sites, with k = 1,2. Let us suppose 
for the moment that before the transition we have S2 = s~ and Sl = s~. In the initial 
configuration with Sl and S2 as given, the initial energy EJ of the n x n sample may 
be written 

E J = lSi (S! +S~ +sD +Js2(S~ +S~ +sn 

+Js1 S2 +Erem -NAJiA -NBJiB' 

where Erem is the energy from the remaining sites. On interchanging the two particles, 
we have the final energy EF given by 

EF = lSl(S~ +s~ +sn +Js2(S~ +sf +sD 

+Jsi S2 +Erem -NAJiA -NBJiB' 

The energy change AE = EF - EJ resulting from the transition is then simply 

AE = 1(sl-s2){(s~ +s~+s~)-(s! +sf +sD}, 

since the numbers of A and B particles in the sample are unchanged in this transition. 
Using the fact that the transition particles are on nearest-neighbour sites, we may 
write the energy change in the form 

AE = 1(Sl-S2){(S~ +s~+s~ +sD-(s! +s~+sf +SD-(Sl-'S2)}' (11) 

This expression for AE is symmetric in each of s~, s~, s;: and s: for k = 1,2 and 
therefore holds for all transitions where the transition particles and their nearest 
neighbours are all on internal sites. It is important to note that all the state variables 
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appearing in equation (11) areto be given their values just prior to the transition, 
that is, they are all initial values. 

If now the particle interchange sites are both inside the sample region but some 
of their nearest neighbours are outside, we assign the states of these external sites 
using the conditions (10) and proceed as before. Again, the numbers of A and B 
particles do not change as a result of the transition, so that there is no change in 
the chemical potential contribution to the energy change and equation (11) still holds. 

Now suppose one of the interchange sites to lie within the sample and the other 
to lie without. Since we have only interchange between nearest neighbours, the 
inner site must lie at the edge of the sample. The states of the external site and its 
nearest neighbours, apart from the other transition particle, are first assigned using 
the rules (10). On particle interchange, the numbers of A and B particles in the 
sample will each change by unity, since all the lattice sites must remain occupied. 
(It goes without saying that if both transition particles are the same-both A's or 
both B's-there is no transition.) Consequently, there will be a change in chemical 
potential in the sample leading to an energy change of I1E +(JtA - flB) if the external 
particle is an A particle and I1E + (flB - fl A) if the external particle is a B particle. 
In the present work the chemical potentials of each particle species were assumed 
site-independent, but any such dependence could easily be taken into account. 

As we are concerned essentially with the equilibrium properties of the AB alloy, 
we construct the probability W(S1f--+S2 ) for the transition involving interchange on 
nearest-neighbour sites 1 and 2 simply by requiring that W(S1f--+S2 ) and its inverse 
satisfy the condition of detailed balance in the equilibrium state, with the probability 
of occurrence of the equilibrium configurations coming from the grand canonical 
probability distribution function as defined by equation (5). This leads to W(S1f--+S2) 

being a function of I1E/kB T only and also requires that it satisfy a certain functional 
equation (Johnson 1978). This functional equation has a variety of solutions and, 
in the present computations, we have used the particular form 

W(S1f--+S2) = {I +exp(I1E/kB Tn -1. (12) 

Note that I1E contains both the change in exchange energy in the transition as well 
as any possible changes in chemical potential of the sample. 

3. Numerical Results 

The simulation of the behaviour of a 32 x 32-particle sample has been computed 
for the AB alloy set on a simple square lattice and estimates have been made of the 
equilibrium values for the energy, long-range lattice order and particle concentrations 
for a range of temperatures and values of the relative chemical potential. The simula­
tion was based on a Markov process using the transition probabilities (12), and the 
states of the nearest-neighbour external particles were estimated using probability 
boundary conditions with the one-particle probability distribution functions (9), 
which depend only on the one-particle correlation functions Ua and up. The simulation 
used an ensemble of five 32 x 32-particle samples, each sample being given the same 
weight when computing ensemble averages. The members of the ensemble were 
allowed to relax simultaneously rather than consecutively, as this was found to reduce 
the fluctuation level inherent in the simulation, particularly as probability boundary 
conditions were being used. The simulation was operated as follows. Initially, each 
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site-independent, but any such dependence could easily be taken into account. 

As we are concerned essentially with the equilibrium properties of the AB alloy, 
we construct the probability W(Slf-c>S2) for the transition involving interchange on 
nearest-neighbour sites 1 and 2 simply by requiring that W(Slf-c>S2) and its inverse 
satisfy the condition of detailed balance in the equilibrium state, with the probability 
of occurrence of the equilibrium configurations coming from the grand canonical 
probability distribution function as defined by equation (5). This leads to W(Slf-c>S2) 
being a function of I1EjkB T only and also requires that it satisfy a certain functional 
equation (Johnson 1978). This functional equation has a variety of solutions and, 
in the present computations, we have used the particular form 

(12) 

Note that I1E contains both the change in exchange energy in the transition as well 
as any possible changes in chemical potential of the sample. 

3. Numerical Results 

The simulation of the behaviour of a 32 x 32-particle sample has been computed 
for the AB alloy set on a simple square lattice and estimates have been made of the 
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the fluctuation level inherent in the simulation, particularly as probability boundary 
conditions were being used. The simulation was operated as follows. Initially, each 



328 C. H. J. Johnson 

member of the ensemble was set in the well-ordered low-temperature configuration 
with A particles occupying all the La sites and B particles all the Lp sites. The tem­
perature was then set equal to 1· 5 (in units of J/kB) and each member of the ensemble 
was allowed to relax over one cycle, that is, 32 x 32 = lO24 simulation steps, the 
initial values of (fa and (fp being used in the estimation of the states of the external 
lattice sites. At the end of the first cycle, the ensemble averages of both long-range 
order parameters were computed. Each member of the ensemble was then allowed 
to relax over a second cycle, using the ensemble averages for (fa and (fp computed at 
the end of the previous cycle in the estimates of the occupancies of the external sites. 
At the end of this cycle, new ensemble averages for (fa and (fp were computed and 
the relaxation process continued over third and subsequent cycles. After 100 cycles 
each ensemble member appeared to be in a stationary state, as evidenced by the 
stationary nature of the sample statistics, and thermodynamic equilibrium was deemed 
to have been attained. The ensemble was then allowed to run over a further 20 cycles, 
with ensemble-averaged data being collected every cycle. At the end of this sequence, 
the sequence averages, that is, the averages of the 20 values of energy, long-range 
order and particle numbers, together with their standard deviations were computed. 
The temperature was then increased and, taking the final configurations of the ensemble 
members as the initial states, the ensemble was allowed to relax as before. This 
process extended over a number of temperatures and different values of the relative 
chemical potential. The ensemble could have been used to compute the variation in 
free energy with temperature and chemical potential but this was not done, as the 
level of the fluctuations appeared to be too high. 

The simulation results for the 32 x 32 sample are given in Table 1a for the case of 
zero chemical potential difference between the two particle-species. On examining 
the variation with temperature of energy and long-range order on the La lattice, we 
see that the order has gone to zero by T = 2· 45, although the fluctuations (i.e. the 
standard deviations of the ensemble mean values, as shown in parentheses) in both 
the energy and the order indicate that the 'critical region' has begun at a very much 
lower temperature (around T = 2· 20). It is interesting to note that the average 
concentration of A particles (and hence of B particles, since there are equal numbers 
of IX- and fJ-sites and every site is occupied) remains at O· 5, to within the level of 
fluctuations. 

Table 1b contains the results for the case where the relative chemical potential 
is again constant but is nonzero and equal to 2·0. We see that the behaviour of the 
energy and the order is much the same as before, but the concentration of the A 
particles does not remain constant but increases slowly with temperature, this increase 
being significantly above the level of the fluctuations. 

The results listed in Table Ie are for the case where the relative chemical potential 
is chosen to be that function of temperature which yields the constant value of O· 7 
for the particle concentration. The variation of chemical potential with temperature 
is approximately correct, the variations in mean concentration all lying within the 
level of the fluctuations. It is to be noted that the fluctuations here at temperatures 
away from the critical region are greater than the corresponding values in Tables la 
and lb. This is because the simulations for the first two cases were done with an 
ensemble while the third was done with a single sample. We note also that in all 
three sets of results there is no change in the level of fluctuations in the A particle 
concentration as we pass through the critical region. 
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Table 1. Simulation estimates of equilibrium values 
Estimates from a 32 x 32-particle sample are presented for the equilibrium values of lattice energy, 
long-range order on the L. lattice and the fraction FA of sites of the L lattice occupied by A particles. 
Three cases are considered: (a) zero chemical potential difference between the particle species, 
(b) a constant potential difference of 2·0 and (c) a potential difference varying with temperature 
in such a way to keep FA approximately constant at 0·7. Standard deviations of the estimates 

are shown in parentheses 

Temperature Potential Lattice Lattice order Fraction FA 
T ItB - itA energy u. of A particles 

(a) Zero potential difference 
1·50 0·0 -2069(04) 0·982(0·001) 0·499(0·015) 
1·60 -2036(04) 0·974(0·001) o . 499(0 . 009) 
1·70 -2014(04) 0·974(0·003) 0·499(0·015) 
1·80 -1923(06) 0·923(0·003) 0·498(0·015) 
1·90 -1852(05) 0·908(0·006) 0·495(0·014) 
2·00 -1669(09) 0·929(0· 009) 0·492(0·015) 
2·10 -1664(14) 0·821(0·009) 0·500(0·014) 
2·20 -1493(15) 0·678(0·018) 0·496(0·013) 
2·25 -1388(11) 0·685(0·009) o . 494(0 . 005) 
2·30 -1324(10) 0·536(0·025) 0·488(0·015) 
2·35 -1170(08) 0·266(0·061) 0·491(0·010) 
2·40 -1084(16) 0·110(0·099) 0·484(0·015) 
2·45 -1044(10) - 0 . 056(0·080) O· 500(0·005) 
2·50 -1013(14) -0·070(0·038) O· 506(0 . 009) 
2·55 -995(08) 0·088(0·087) o . 498(0 . 008) 
2·60 -956(16) 0·068(0·041) 0·498(0·014) 
2·70 - 878(11) -0·031(0·033) 0·498(0·015) 
3·00 -784(10) -0·013(0·019) 0·501(0·013) 

(b) Constant nonzero potential difference 
1·50 2·0 -2059(33) 0·997(0·000) . 0·502(0·016) 
1·60 -1987(05) o . 986(0 . 000) 0·508(0·016) 
1·70 -1918(46) 0·971(0·000) 0·512(0·015) 
1·80 -1768(11) 0·959(0·007) 0·527(0·015) 
1·90 -1580(09) 0·916(0·004) 0·541(0·012) 
2·00 -1390(06) 0·833(0·011) 0·554(0·006) 
2·10 -1192(14) 0·647(0·016) 0·561(0·014) 
2·20 -1002(10) 0·286(0·046) 0·566(0·010) 
2·25 -905(13) 0·016(0·076) 0·585(0·016) 
2·30 -788(16) 0·207(0·071) O· 598(0·017) 
2·35 -697(09) 0·161(0·027) 0·614(0·014) 
2·40 -677(09) o· 228(0·018) 0·613(0·014) 
2·45 -600(07) O· 317(0·027) 0·630(0·011) 
2·50 -512(08) 0·282(0·021) 0·638(0·006) 
2·55 -427(14) 0·319(0·017) 0·652(0·018) 
2·60 -416(10) 0·312(0·023) 0·649(0·018) 
2·70 -338(08) 0·318(0·016) 0·665(0·026) 
3·00 -237(08) 0·347(0·015) 0·671(0·018) 

(c) Variable potential difference (FA canst.) 
1·50 10·0 -453(54) 0·774(0·029) 0·691(0·010) 
2·00 5·0 -110(34) 0·558(0·041) 0·717(0·016) 
2·10 2·5 -74(28) 0·362(0·047) 0·720(0·025) 
2·20 2·0 -62(46) 0·364(0·037) 0·720(0·029) 
2·30 2·0 39(27) 0·454(0·038) 0·730(0·030) 
2·40 2·0 6(27) 0·462(0·033) o . 726(0 . 025) 
2·50 1·5 - 59(33) 0·404(0·040) 0·711(0·031) 
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It is clear from the numerical results shown in Table 1 that no satisfactory 
estimates of either critical temperatures or critical exponents could be obtained from 
the data. A larger sample would probably achieve this, although a more satisfactory 
method would be to include higher moments in the probability boundary conditions 
(Johnson 1978). Further, it is not possible to determine the nature of the transition 
(i.e. its order) although, by analogy with the Ising model for antiferromagnetism in 
a zero magnetic field, a second-order phase transition would be expected for the AB 
alloy with zero chemical potential difference between the particle species. It is possible 
that a first-order transition is hidden in the data of Tables Ib and Ie but more detailed 
numerical work would be needed to show this. It was thought at first that the 
difference in the order of the transition might show up in a simple Bragg-Williams 
(1934) treatment of the problem but, as might be expected, the usual mean-field 
results are recovered for the zero chemical potential difference and the nonzero case 
yields the same result. This is discussed in the Appendix. It may be possible to 
extend the Bragg-Williams analysis in the manner of Kirkwood (1938), possibly 
incorporating the probability boundary conditions (9). 
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Appendix. AB Alloy in Bragg-Williams Approximation 

Let there be N sites on the lattice L and let NA be the number of A particles and 
NB the number of B particles. The grand canonical partition function may be written 
(cr. equation (5) in the text) 

3(V, T,flA,flB) = L Z(V, T; NA, NB)exp{(NAflA +NBflB)/kB T}, (AI) 
NA,NB 

where the canonical partition functions Z(V, T; NA , NB) are defined by 

Z == Z(V,T;NA,NB) = Lexp{-V(s)/kBT}. (A2) 
s 

Proceeding in the manner of the usual Bragg-Williams (1934) approximation, we 
classify all the configurations s of the alloy particles into equivalence classes defined 
by the ordered pairs (s .. , sp), where s .. = u .. and sp = up, so that for a given (s .. , sp) 
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equivalence class we can write Z in the form 

Z == Z(V,T;s",sp) = '(s",sp)exp{-W(s",sp)/kBT}, (A3) 

where ,(s", sp) is the weight of the equivalence class, and is in fact the number of 
ways of distributing NA A particles and NB B particles over the sites of L, and 
W(s", sp) is the potential energy of the class. It follows then that 

n ! np! 
- " --,' ,(s",sp) - nA,,!nB,,! nBP!nAP. 

which, on using Stirling's approximation log N! '" Nlog N, may be written 

log ,(s", sp) '" - {n" h(s,,) + np h(sp)}, 
where 

h(s) = -HI +s)Iog{-!-(l +s)} +-!(l-s)log{-!-(l-s)}. 

(A4) 

(A 5) 

The potential energy W(s", sp) is the sum of nearest-neighbour pairwise interactions 
and in the present context may be written 

W(s",sp) = VAA BAA +(VAB+VBA)BAB +VBBBBB, 

where VAA is the average number of AA interactions, (VAB + VBA) is the average number 
of AB interactions and VBB is the average number of BB interactions. Using the 
definitions of n A" etc. given in Section 2, we find 

W(s",sp) = -2NJs"sp +Ny(s,,-sp) +2Eo, (A6) 

where J, Y and Eo are as defined by equations (4). 
Expressing the chemical potential terms in equation (AI) in terms of s" and sp, 

we have 

3(V,T,/lA,/lB) = exp(-Na) L ,(s",sp)exp(!NK{s"sp+/l(s,,--sp)}) , (A7) 
s(X"sp 

where 

a = {2EoN- 1 --H/lA +/lB)}/kB T, /l = V- 1(p,A - /lB-4y) , K = 4J/kB T; 

K thus has the role of a reciprocal temperature. Introduction of the functional form 
(A4) for' into equation (A 7) then gives 

3 = exp(-Na) L (exp{-q(s",sp)}Y, (AS) 
s(X"sp 

where 
q(s",sp) = -!(h(s",) +h(sp) -K {s"sp +/l(s,,-sp)}). (A9) 

To evaluate the partition function, we assume the maximum term in equation (AS) 
to dominate, with its value determined by the values of s" and sp which satisfy 

8q/8s" = 0, 8q/8sp = O. 
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These two conditions lead to the two equations 

Srz = tanh{K(sp+Jl)}, Sp = tanh{K(srz-Jl)}. (AI 0) 

Consider first the case Jl = O. There are three solutions to equations (AlO) for 
Jl = 0, namely the null solution Srz = sp = 0 and the two solutions Srz = sp = ± s, 
where S satisfies 

S = tanh(Ks). (All) 

The solution for -s is obtained from that for +s simply by interchanging the two 
sublattices La. and Lp. Equation (All) is the usual Bragg-Williams (1934) solution 
for the AB alloy, and it is readily shown (graphically) that there is a transition tem­
perature To corresponding in the present notation to K = 1. Expanding tanh(Ks) 
around s = 0 we find 

s '" (T - To)t as T-+ To-' (AI2) 

which is the mean-field result. Moreover, the second derivative of the free energy is 
discontinuous at To so that the transition is second order. 

Consider now the case Jl :j: O. Here there is a solution Sa. = S, sp = - s, with s 
satisfying 

s = -tanh{K(s- Jl)}. (Al3) 

However, this solution yields no critical point, as s is a continuously differentiable 
function of K for all K; it reduces to the null solution as Jl -+ O. From equations 
(AlO) with Jl ¥- 0 it is again readily shown (graphically) that there is a transition 
temperature, which depends on Jl. To determine the nature of the transition we 
expand equations (AlO) for small Srz and sp and find 

Sy '" (T - To{Jl»)t as T -+ To{Jl)- ()I = rx,P) , (A 14) 

from which it is clear that the transition is again second order. The result (A14) 
reduces to (AI2) as Jl -+ O. 

Manuscript received 15 December 1977 

332 C. H. J. Johnson 

These two conditions lead to the two equations 

Sp = tanh{K(s,,-Jl)}. (AI 0) 

Consider first the case Jl = O. There are three solutions to equations (AlO) for 
Jl = 0, namely the null solution So. = sp = 0 and the two solutions So. = sp = ± s, 
where s satisfies 

s = tanh(Ks). (All) 

The solution for -s is obtained from that for +s simply by interchanging the two 
sublattices L" and Lp. Equation (All) is the usual Bragg-Williams (1934) solution 
for the AB alloy, and it is readily shown (graphically) that there is a transition tem­
perature To corresponding in the present notation to K = 1. Expanding tanh(Ks) 
around s = 0 we find 

as (AI2) 

which is the mean-field result. Moreover, the second derivative of the free energy is 
discontinuous at To so that the transition is second order. 

Consider now the case Jl :j: O. Here there is a solution So. = s, sp = - s, with s 
satisfying 

s = -tanh{K(s- Jl)}. (Al3) 

However, this solution yields no critical point, as s is a continuously differentiable 
function of K for all K; it reduces to the null solution as Jl --+ O. From equations 
(AlO) with Jl ¥- 0 it is again readily shown (graphically) that there is a transition 
temperature, which depends on Jl. To determine the nature of the transition we 
expand equations (AlO) for small So. and sp and find 

as ()I = rx,P) , (A 14) 

from which it is clear that the transition is again second order. The result (A14) 
reduces to (AI2) as Jl --+ O. 

Manuscript received 15 December 1977 


