Aust. J. Phys., 1978, 31, 377-82

Determination of Maximum Safe Bombarding Energies and B(E3) Values in Reorientation Experiments with ²⁰⁴Pb, ²⁰⁶Pb and ²⁰⁸Pb

R. H. Spear,^A T. H. Zabel,^A A. M. Baxter,^B M. P. Fewell,^B S. Hinds,^B A. M. R. Joye^B and D. C. Kean^A

^A Department of Nuclear Physics, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600. ^B Physics Department, Australian National University.

Abstract

Data are presented which display the onset of Coulomb-nuclear interference in the inelastic scattering of ⁴He, ¹²C and ¹⁶O projectiles from ²⁰⁴Pb and ²⁰⁶Pb. These results have been used to determine maximum safe bombarding energies in a recent reorientation effect determination of the quadrupole moments of the first 2⁺ states in these nuclei. Similar data are also presented for the excitation by ¹⁶O projectiles of the first 3⁻ states in ²⁰⁴Pb, ²⁰⁶Pb and ²⁰⁸Pb. The results are used to determine $B(E3; 0^+ \rightarrow 3^-)$ values for the first 3⁻ states of ²⁰⁴Pb and ²⁰⁶Pb; these are found to be remarkably similar to each other and to the corresponding value for the first 3⁻ state in ²⁰⁸Pb.

Introduction

In a recent publication Spear *et al.* (1978) have shown that the maximum safe bombarding energy for any given experiment involving the reorientation effect in Coulomb excitation should always be determined by direct measurement rather than by calculation from some universal formula involving only the masses and charges of the interacting nuclei. Motivated by such considerations, we present herein data which display the onset of Coulomb-nuclear interference in the inelastic scattering of ⁴He, ¹²C and ¹⁶O projectiles from ²⁰⁴Pb and ²⁰⁶Pb. These results have been used by Joye *et al.* (1978) to determine maximum safe bombarding energies in a reorientation effect determination of the static quadrupole moments of the first 2⁺ states of these nuclei. We also present new results concerning the determination of the safe energy for excitation of the first 3⁻ state in ²⁰⁸Pb with ¹⁶O projectiles; these results are pertinent to the choice of bombarding energies made by Joye *et al.* (1977) to determine the quadrupole moment of this state. The data for excitation of the first 3⁻ states in ²⁰⁴Pb and ²⁰⁶Pb are used to extract *B*(E3) values for the transitions involved.

Experimental Procedure and Analysis

For each projectile-target combination, spectra were obtained for a range of bombarding energies using an annular surface-barrier detector at a mean laboratory scattering angle of 171.6° . Experimental details have been given previously (Esat *et al.* 1976; Joye *et al.* 1977, 1978). Some representative spectra are shown in Figs 1–3.

The areas of elastic and inelastic peaks were extracted from each spectrum to obtain the experimental excitation probability R_{exp} defined by

$$R_{\rm exp} = \left(\frac{{\rm d}\sigma}{{\rm d}\Omega}\right)_{\rm inel}^{\rm lab} / \left\{ \left(\frac{{\rm d}\sigma}{{\rm d}\Omega}\right)_{\rm inel}^{\rm lab} + \left(\frac{{\rm d}\sigma}{{\rm d}\Omega}\right)_{\rm el}^{\rm lab} \right\}.$$

Fig. 1. Spectrum of 60 MeV 16 O projectiles backscattered from 204 Pb, at a laboratory angle of $171 \cdot 6^{\circ}$. The curve is a fit to the spectrum, obtained as described by Esat *et al.* (1976) and Joye *et al.* (1977). The peaks correspond to elastic scattering (0⁺) and to inelastic scattering to the first 2⁺ and 4⁺ states of 204 Pb.

Fig. 2. Spectrum of 52 MeV ¹²C projectiles backscattered from ²⁰⁶Pb, at 171 · 6°. The peaks correspond to elastic scattering (0⁺) and to inelastic scattering to the first 2⁺ and 3⁻ states of ²⁰⁶Pb. Single-nucleon transfer peaks are also indicated, including those for the reaction ²⁰⁶Pb(¹²C, ¹³C)²⁰⁵Pb.

Fig. 3. Spectrum of 13.8 MeV ⁴He projectiles backscattered from ²⁰⁶Pb, at 171.6° . The curve is a fit to the spectrum, obtained as described by Esat *et al.* (1976) and Joye *et al.* (1977). The peaks correspond to elastic scattering (0⁺) and to inelastic scattering to the first 2⁺ excited state of ²⁰⁶Pb. The feature labelled ⁵Pile-up' is due to pulse pile-up arising from projectiles scattered from ²⁷Al and ¹⁶O in the target.

The effect of Coulomb-nuclear interference is manifested by deviation of R_{exp} from the excitation probability R_{comp} calculated assuming a pure Coulomb interaction; this calculation is performed using the de Boer-Winther program and known matrix elements (Joye *et al.* 1977, 1978). The double ratio R_{exp}/R_{comp} is then plotted as a function of laboratory bombarding energy *E* and of the distance of closest approach *S* between the nuclear surfaces in a head-on collision (assuming a nuclear radius parameter $r_0 = 1.25$ fm).

Results and Discussion

The results for excitation of the first excited 2^+ states are shown in Fig. 4*a* for 204 Pb ($E_x = 0.899$ MeV) and in Fig. 4*b* for 206 Pb ($E_x = 0.803$ MeV). In both cases 4 He, 12 C and 16 O projectiles were used. The 16 O data have been published previously by Spear *et al.* (1978) in another context, but are shown again here for the sake of completeness. The curves show fits to the data (for $S \ge 3$ fm) of the function $A + B \exp\{C(S-D)\}$. This function, and the fitting parameters *A*, *B*, *C* and *D*, have no fundamental significance but the fits provide a convenient guide to the eye and are useful for systematic comparisons among the various sets of data. The arrows on the diagrams indicate the maximum bombarding energies used by Joye *et al.* (1978) for data analysed to determine quadrupole moments Q_{2+} . It is evident that in each case the energies used are safe to the extent required by the accuracy of the data.

In Fig. 5*a* we show results for excitation by ¹⁶O projectiles of the first 3⁻ state in ²⁰⁸Pb at $E_x = 2.615$ MeV. These results represent an extension of those presented by Joye *et al.* (1977) in connection with their determination of the quadrupole

Fig. 4. Plots of the double ratio R_{exp}/R_{comp} for excitation by ⁴He, ¹²C and ¹⁶O projectiles of the first 2⁺ states in (a) ²⁰⁴Pb and (b) ²⁰⁶Pb. The data are plotted as a function of laboratory bombarding energy *E* and distance of closest approach *S*. The curves are fits to the data obtained as described in the text. The significance of the arrows is explained in the text.

moment Q_{3-} of the 3⁻ state. Joye *et al.* chose in their analysis to ignore data obtained at energies greater than 60 MeV, the energy indicated by the arrow in Fig. 5*a*. The new data confirm that interference effects are significant above 60 MeV. Indeed, it would be interesting to obtain quadrupole moment data at even lower energies than those used by Joye *et al.*; if nuclear interference is significant at ¹⁶O bombarding energies of 60 MeV and less, then the result of Joye *et al.* overestimates the magnitude of Q_{3-} , and correspondingly the true value of Q_{3-} will be closer to the theoretical predictions.

We also show (in Figs 5b and 5c) data for ¹⁶O excitation of the first 3⁻ states in ²⁰⁴Pb ($E_x = 2.634$ MeV) and ²⁰⁶Pb ($E_x = 2.648$ MeV). The values of Q_{3^-} are not

known for ²⁰⁴Pb and ²⁰⁶Pb, and were assumed to be zero when calculating R_{comp} for these nuclei. It is noteworthy that the three sets of data shown in Fig. 5 are remarkably similar to each other, which suggests that possible excitations of the 3⁻ states in ²⁰⁴Pb and ²⁰⁶Pb via the low-lying 2⁺ states which are present in these nuclei (but not in ²⁰⁸Pb) do not significantly change the energy dependence of R_{exp}/R_{comp} . This suggestion is supported by calculations made with the de Boer–Winther Coulomb excitation program; for example, it is found that, for 60 MeV ¹⁶O ions backscattered from ²⁰⁶Pb, effects involving the first excited 2⁺ state contribute less than 0.25% to the observed excitation probability of the 3⁻ state (assuming that $B(E2; 0^+ \rightarrow 2^+) = 0.10 \ e^2 \ b^2$ (Joye *et al.* 1978) and $B(E1; 3^- \rightarrow 2^+) = 8 \times 10^{-6} \ e^2 \ b$ (deduced from the lifetime measurement of Häusser *et al.* 1972)).

Fig. 5. Plots of the double ratio R_{exp}/R_{comp} for excitation by ¹⁶O projectiles of the first 3⁻ state in (a) ²⁰⁸Pb, (b) ²⁰⁴Pb and (c) ²⁰⁶Pb. The data are plotted as a function of laboratory energy *E* and distance of closest approach *S*. The curves are fits to the data obtained as described in the text. The significance of the arrow in (a) is explained in the text.

If we assume that $Q_{3^-} = 0$ for ²⁰⁴Pb and ²⁰⁶Pb, the present data for ¹⁶O projectiles, when taken in conjunction with similar but statistically poorer data for ⁴He and ¹²C (Joye 1977), yield $B(E3; 0^+ \rightarrow 3^-) = 0.61 \pm 0.04$ and 0.60 ± 0.04 $e^2 b^3$ for ²⁰⁴Pb and ²⁰⁶Pb respectively. If $Q_{3^-} = -0.42 e^2 b^2$ (the value obtained for ²⁰⁸Pb by Joye *et al.* 1977), then the value of B(E3) is increased by about $0.05 e^2 b^3$ for both ²⁰⁴Pb and ²⁰⁶Pb, giving results remarkably similar to the value $B(E3; 0^+ \rightarrow 3^-)$ $= 0.665 \pm 0.035 e^2 b^3$ obtained for ²⁰⁸Pb (Joye *et al.* 1977). The present result for B(E3) in ²⁰⁶Pb is in good agreement with previous results of $0.66 \pm 0.07 e^2 b^3$ by Grosse *et al.* (1971) and $0.64 \pm 0.04 e^2 b^3$ by Ziegler and Peterson (1968); it is in less satisfactory agreement with the value of $0.50 \pm 0.03 e^2 b^3$ reported by Häusser *et al.* (1972). We know of no previous B(E3) determination for ²⁰⁴Pb.

Conclusions

The results presented here demonstrate that the bombarding energies used by Joye *et al.* (1978) in their determination of Q_{2^+} for ²⁰⁴Pb and ²⁰⁶Pb were indeed 'safe', and in addition they lend some support to the selection of ¹⁶O bombarding energies made by Joye *et al.* (1977) in their determination of Q_{3^-} in ²⁰⁸Pb. The implications of the ¹⁶O data for the general problem of safe energy determinations have been discussed elsewhere (Spear *et al.* 1978). The similarity between the properties of the first 3⁻ states in ²⁰⁴Pb, ²⁰⁶Pb and ²⁰⁸Pb (that is, excitation energies and $B(E3; 0^+ \rightarrow 3^-)$ values) suggests that they have a common generic origin; it would therefore be interesting to locate and study the first 3⁻ states of other even-even nuclei in this mass region.

References

Esat, M. T., Kean, D. C., Spear, R. H., and Baxter, A. M. (1976). Nucl. Phys. A 274, 237.

Grosse, E., et al. (1971). Nucl. Phys. A 174, 525.

Häusser, O., Khanna, F. C., and Ward, D. (1972). Nucl. Phys. A 194, 113.

Joye, A. M. R. (1977). Ph.D. Thesis, Australian National University.

Joye, A. M. R., Baxter, A. M., Fewell, M. P., Kean, D. C., and Spear, R. H. (1977). *Phys. Rev. Lett.* 38, 807.

Joye, A. M. R., Baxter, A. M., Hinds, S., Kean, D. C., and Spear, R. H. (1978). *Phys. Lett.* B 72, 307. Spear, R. H., *et al.* (1978). *Phys. Lett.* B 76, 559.

Ziegler, J. T., and Peterson, G. A. (1968). Phys. Rev. 165, 1337.

Manuscript received 28 June 1978