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Abstract 

This note deals with steadily rotating nonaxisymmetric pulsar magnetospheres, with the effects of 
particle inertia fully incorporated. It is pointed out that the equations of motion for the component 
species of a relativistically streaming nondissipative plasma can be considerably simplified by using 
the steady-rotation constraint together with a fluxoid conservation law and Endean's Bernoulli-type 
integral. . 

The canoniCal pulsar model consists of a rotating magnetized neutron star with 
its magnetic axis inclined to the rotation axis, but a self-consistent model of the pulsar 
magnetosphere is still lacking. Both the vacuum model, in which the particles are 
regarded as test charges in the vacuum field, and the zero-inertia model are unaccept
able: the plasma is not only a source of the electromagnetic field, but also carries 
energy and angular momentum. 

For the axisymmetric vacuum model, Goldreich and Julian (1969) pointed out 
that the component Ell of the electric field E parallel to the magnetic field B is suffi
ciently powerful near the star to pull charges out of it, so creating a charged magneto
sphere. The solution for the nonaxisymmetric vacuum model with a dipolar magnetic 
field on. the stellar surface was obtained by Deutsch (1955), in the context of the 
theory of normal magnetic stars: This enabled Mestel (1971) and Cohen and Toton 
(1971) to extend the argument of Goldreich and Julian to the oblique rotator model, 
in which the magnetic and rotation axes are not aligned or anti parallel. Subsequent 
investigations of the physics of neutron star surfaces have suggested that, for 
most pulsars, the Goldreich-Julian mechanism might not be sufficiently powerful 
to extract positive ions (Ruderman 1971). 

The -argument of Goldreich and Julian (1969) poses the problem of studying 
magneto spheres that are sufficiently dense near the star to make Ell R! 0 there. 
Various authors have investigated charge-separated plasmas with inertial and other 
non-electromagnetic terms neglected, so that the equation of motion is just 

E+c-1 v x B R! 0, 

where c and v are the vacuum speed of light and the plasma's fluid velocity. But in 
the last few years it has become clear that inertial effects are crucial in pulsar magneto
spheres: the need for the fields to be nonsingular at the light cylinder leads to diffi
culties when inertial effects are neglected. 
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Mestel (1973) derived an equation for the magnetic field in a steadily rotating 
magnetosphere when the magnetohydrodynamic and force-free approximations are 
satisfied. Endean (1974) showed that the equation follows from just the steady-rotation 
and force-free conditions, together with the boundary condition of infinite conduc
tivity on the stellar surface; Endean commented that the magnetohydrodynamic 
condition is not required, which is true for non-charge-separated plasmas, but for 
charge-separated plasmas the magnetohydrodynamic and force-free conditions are 
equivalent. Mestel (1973) applied his equation for the magnetic field to the 'cylindrical 
pulsar' model, in which quantities do not vary in the direction of the rotation axis. 
Mestel showed that, if the equation is valid everywhere outside the star, then there is 
no flow of energy across the light cylinder; furthermore, the solutions between the 
light cylinder and infinity are standing waves and so require a reflector at infinity 
(Mestel et al. 1976). These results suggest that, with appropriate boundary conditions, 
the system does not reach a steady state until other forces besides the Lorentz force 
become significant, so that the particles are no longer tied to the field lines. 

The above considerations point t6 the importance of developing models that fully 
incorporate the relativistic inertial terms in the equations of motion of the plasma 
species. To focus attention on the problem of treating inertia, it is reasonable provi
sionally to ignore all dissipative forces, and to have inertia as the only non-electro
magnetic force. For the steadily rotating cylindrical model, the equations of motion 
of the species have been presented by Mestel et al. (1976). The purpose of the present 
note is to show how these equations. can be considerably simplified, without restriction 
to either the cylindrical or axisymmetric models. 

Let 1lJ, 4J and z be cylindrical polar coordinates with the z axis as the rotation axis 
of the pulsar. The system under consideration is steady in the rotating frame: the 
changes in time at points fixed in the inertial frame result only from the steady rotation 
of a nonaxisymmetric structure at angular frequency Q. Hence, it follows from 
Faraday's law and \1.B = 0 that E and B are connected by (MesteI1971) 

E +c-1 Q1lJt x B = - \1ff>, (1) 

where t is the unit toroidal vector and ff> is related to the familiar scalar and vector 
potentials 4J and A by the gauge-invariant relationship (Endean 1972a) 

ff> = 4J -(Q1lJ/c)Aq,. 

Within the star, the approximation of perfect conductivity is adequate for the present 
purposes, so that ff> can be put equal to zero there. 

In the vacuum model, the star emits an electromagnetic wave of frequency Q, 

except for the axisymmetric case in which the magnetic and rotation axes are either 
parallel or antiparallel; with or without axisymmetry we have \1ff> -# 0 and Ell 'oF O. 
In the zero-inertia model we have \1 ff> = 0, so that Ell = O. 

Endean (1972a, 1972b) pointed out that, under the steady-rotation constraint (1), 
there exists a constant of the motion 'Pk for particles of species k: 

'Pk == ff>+ Yk mkc2 (1_ n1lJVkq,) , 
ek c c 

(2) 

where the subscript k represents either electrons or ions, while ek, mk' Yk and Vkq, 
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represent the charge, rest mass, Lorentz factor and cp-component of velocity for the 
particles of the species concerned. Apart from Endean's (1972b) own analysis of 
particle motion and his later treatment (Endean 1976) of certain equilibrium solutions, 
corresponding to a rigidly corotating magnetosphere with no outwardly or inwardly 
streaming particles, not much use appears to have been made of Endean's integral. 
The potential usefulness of this integral becomes clear when one thinks in terms of 
fluid streamlines rather than magnetic field lines; Endean's (1972a, 1972b, 1976) 
work was expressed in the language of particle dynamics rather than that of fluid 
dynamics. 

The equation of motion for each species will now be simplified by using the steady
rotation constraint together with Endean's integral and a fluxoid conservation theorem. 
Since 

where IX is any vector, we have 

Vk' VPk = -Vk x (V XPk) +mkc2VYk (3) 

for each species, where Pk == Yk mk Vk , with Vk denoting the velocity of the species; the 
relation vf/c2 = l_y,;-2 has been used to eliminate vi from the last term in equation 
(3). For multi species relativistic plasmas, the flux conservation theorem of magneto
hydrodynamics can be generalized to a fluxoid conservation theorem, in order to 
incorporate the effects of particle inertia (Buckingham et al. 1972, 1973). A differ
ential form of the fluxoid theorem is obtained (Buckingham et al. 1973) by using 
equation (3) in the equation of motion for each species, and then taking the curl and 
eliminating E by use of Faraday's law: the quantity V x (Pk + ek A/ c) is 'frozen-in' to 
species k. Using the steady-rotation condition a/at = - Q %cp (MesteI1971; Endean 
1972a) which is valid for, in particular, cylindrical polar components of vectors, 
equation (3) becomes 

(a/at +vko V)Pk = -Uk x (V XPk) +V(Ykmkc2 -QmPk",) , (4) 

where Uk == Vk - Qmt. Equation (1) and B = V x A show that 

(5) 

From equations (4) and (5), the equation of motion for species k can be written in 
the simple form 

(6) 

This shows immediately that 'I'k is constant on lines of Uk and also on lines of 
V x (Pk +ekA/c). In the language of fluid dynamics, 'I'k is a Bernoulli-type integral, 
constant on streamlines of species k; the term 'streamlines' here refers to lines of Uk' 
not of Vk• 

If the particles are all nonrelativistic near the star, then 'I'k reduces to qj +mkc2/ek 
near the star, and the constant value mkc2/ek taken by 'I'k on the surface of the star 
is propagated indefinitely along streamlines of species k throughout whatever portion 
of the magnetosphere contains particles of that species. In this case, the definition (2) 
shows that 

(7) 
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and the equation of motion (6) for species k reduces to the very simple form 

(8) 

Thus it is seen that use of the steady-rotation constraint, together with the fluxoid 
conservation law and Endean's Bernoulli-type integral, enables the equation of 
motion for each species, with particle inertia fully incorporated, to be expressed in 
simple form. Application of the resulting equations to particular models is under 
investigation. 
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