Calculation of 3jm Factors and the Matrix Elements of \boldsymbol{E}_{7} Group Generators

P. H. Butler, R. W. Haase and B. G. Wybourne
Department of Physics, University of Canterbury, Christchurch 1, New Zealand.

Abstract

The matrix elements of the group generators of E_{7} have been calculated in an $E_{7} \supset S U_{6}^{\mathrm{fI}} \times S U_{3}^{\mathrm{C}} \supset$ $S U_{2}^{H} \times S U_{3}^{\mathrm{fl}} \times S U_{3}^{\mathrm{C}} \supset S U_{2}^{H} \times S U_{2}^{I} \times U_{1}^{Y} \times S U_{3}^{\mathrm{C}}$ basis for the fundamental and adjoint irreps of E_{7}. The results were obtained by first calculating the 3 jm factors for the various group-subgroup combinations. Tables of the relevant $3 j m$ factors for $E_{7} \supset S U_{6} \times S U_{3}, S U_{6} \supset S U_{2} \times S U_{3}$ and $S U_{3} \supset S U_{2} \times U_{1}$ are given.

1. Introduction

The group-subgroup structure $E_{7} \supset S U_{6}^{\mathrm{f1}} \times S U_{3}^{\mathrm{C}}$ has been used to develop unified theories of strong, electromagnetic and weak interactions (Gürsey et al. 1975; Gürsey and Sikivie 1976; Ramond 1976, 1977; Cung and Kim 1977; Saclioglu 1977; Sikivie and Gürsey 1977; Gell-Mann et al. 1978). In these theories the basic fermions (quarks, leptons and their antiparticles) are associated with the 56 -dimensional fundamental irreducible representation (irrep) of E_{7}, and the gauge vector bosons that mediate the interactions are associated with the 133 -dimensional adjoint irrep.

There are many possible schemes for breaking the E_{7} symmetry down to an appropriate $S U_{2}^{I} \times U_{1}^{Y} \times S U_{3}^{\mathrm{C}}$ subgroup (Ramond 1977; Sikivie and Gürsey 1977). The correct scheme, if indeed there is such a scheme, must be decided by a confrontation with experimental results. In this paper we set ourselves the somewhat modest task of calculating the various $3 j m$ factors associated with the group-subgroup structure

$$
E_{7} \supset S U_{6}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{C}} \supset S U_{2}^{H} \times S U_{3}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{C}} \supset S U_{2}^{H} \times S U_{2}^{I} \times U_{1}^{Y} \times S U_{3}^{\mathrm{C}} .
$$

These $3 j m$ factors are then used to calculate the matrix elements of the generators of E_{7} in the fermion and boson sectors. These calculations give added insight into two significant problems: (1) the properties of 3 jm factors and (2) the structure of the fermion and boson mass matrices.

A detailed discussion of the basic properties of the exceptional groups has been given by Wybourne and Bowick (1977) and we refer to that paper for matters of notation. Additional general information has been considered by Butler $(1975,1979)$ and by Butler and Wybourne (1976a, 1976b). The calculation of the relevant $6 j$ symbols for E_{7} has been reported by Butler et al. (1978). These $6 j$ symbols form the key to obtaining the $3 j m$ factors for $E_{7} \supset S U_{6} \times S U_{3}$.

2. Irreps of $\boldsymbol{S} \boldsymbol{U}_{\boldsymbol{n}}$ Groups

The irreps of E_{7} and their associated properties have already been given (Wybourne and Bowick 1977; Wybourne 1978; Butler et al. 1978) and need not be repeated here. We label the irreps of $S U_{n}$ by partitions $\{\lambda\}$ of integers into not more than $n-1$ nonzero parts (Wybourne 1970). For the irreps of $S U_{3}$ and $S U_{6}$ we shall omit the braces and use a dot to separate the irreps for the direct product group $S U_{6} \times S U_{3}$ (e.g. the $\{21\} \times\{32\}$ irrep of $S U_{6} \times S U_{3}$ will be designated as 21.32). In the case of $S U_{2}^{I}$ we shall usually label the irrep by $I \equiv \frac{1}{2} \lambda$ while for the product group $S U_{2}^{H} \times S U_{3}^{\mathrm{f} 1}$ we shall indicate the $S U_{2}^{H}$ irrep as a spectroscopic multiplicity $(H=\lambda+1)$ that appears as a left superscript attached to the $S U_{3}^{\mathrm{fl}}$ irrep (e.g. the 1.21 irrep of $S U_{2}^{H} \times S U_{2}^{\mathrm{fl}}$ will be designated as ${ }^{2} 21$).

Table 1. Some $S U_{6}$ and $S U_{3}$ irreps and their associated properties

Irrep λ	Dimension $\|\lambda\|$	Power p_{λ}	Phase ϕ_{λ}	$2 j_{\lambda}$ value
$($ a $) S U_{6}$ irreps				
0	1	0		
1	6	1	1	0
1^{2}	15	2	-1	1
2	21	2	1	0
21^{4}	35	2	1	2
1^{3}	20	3	1	2
3	56	3	-1	3
21	70	3	-1	3
21^{3}	84	3	-1	3
31^{4}	120	3	-1	3
21^{2}	105	4	-1	3
			1	2
0	1	0		
1	3	1	1	0
2	6	2	1	2
21	8	3	1	0
3	10	3	1	0
31	15	4	1	2
4			1	2

The dimensions $|\lambda|$, power p_{λ} and $2 j$ symbol ϕ_{λ} associated with each irrep of $S U_{6}$ or $S U_{3}$ arising in our calculations are given in Tables $1 a$ or $1 b$ respectively. In the case of contragredient pairs of irreps, we give only one member since the quantities listed are common to both members. All the irreps considered here are simple phase (Butler and King 1974) and may be associated with a j value such that

$$
\begin{equation*}
\phi_{\lambda}=(-1)^{2 j_{\lambda}} \tag{1}
\end{equation*}
$$

where j_{λ} is an integer if λ is orthogonal and a half-integer if λ is symplectic. We hasten to add that such a simple phase structure is not always possible (Butler 1975). The j_{λ} value to be associated with a given irrep λ is found from an analysis of the Kronecker square of λ. The appropriate values of $2 j_{\lambda}$ are included in Table 1. The relevant branching rules for $E_{7} \rightarrow S U_{6} \times S U_{3}$ are given in Table 2.

3. Basic Group Structure

The generators of E_{7} span the 21^{6} irrep of E_{7}. The various subgroup structures contained in E_{7} may be explored by systematically discarding sets of the E_{7} generators (cf. Wybourne 1973). Under $E_{7} \rightarrow S U_{6} \times S U_{3}$ we have (Wybourne and Bowick 1977)

$$
\begin{equation*}
21^{6} \rightarrow 21^{4} \cdot 0+1^{2} \cdot 1^{2}+1^{4} \cdot 1+0.21 \tag{2}
\end{equation*}
$$

The 35 vector bosons are associated with the $21^{4} .0$ and form the generators of the $S U_{6}$ subgroup. The 90 leptoquarks span the $1^{2} .1^{2}$ and $1^{4} .1$ irreps of $S U_{6} \times S U_{3}$ while the 8 gluons span the 0.21 irrep and form the generators of the presumably unbroken colour gauge group $S U_{3}^{\mathrm{C}}$.

Table 2. Some $E_{7} \rightarrow S U_{6} \times S U_{3}$ branching rules

E_{7} irrep	Branching to $S U_{6} \times S U_{3}$
(0)	0.0
$\left(1^{6}\right)$	$1.1+1^{5} .1^{2}+1^{3} .0$
$\left(21^{6}\right)$	$21^{4} .0+0.21+1^{2} .1^{2}+1^{4} .1$
$\left(2^{6}\right)$	$21^{4} .21+21^{4} .0+21^{2} .1+2^{3} 1^{2} .1^{2}+2^{3} .0+2.2+2^{5} .2^{2}$
	$\quad+1^{2} .1^{2}+1^{4} .1+0.0$
$\left(2^{5} 1^{2}\right)$	$21^{4} .21+21^{4} .0+21^{2} .1+2^{3} 1^{2} .1^{2}+0.21+2.1^{2}+2^{5} .1$
	$\quad+1^{2} .2+1^{4} .2^{2}+1^{2} .1^{2}+1^{4} .1+2^{2} 1^{2} .0+0.0$

The $S U_{6}$ subgroup may be broken in various ways. Under $S U_{6} \rightarrow S U_{2} \times S U_{3}$ we have

$$
\begin{equation*}
21^{4} \rightarrow{ }^{3} 0+{ }^{3} 21+{ }^{1} 21 \tag{3}
\end{equation*}
$$

In this case the three vector bosons associated with ${ }^{3} 0$ can be regarded as forming the generators of an $S U_{2}$ group and those with ${ }^{1} 21$ the generators of the $S U_{3}$ group. The $S U_{3}$ group may be reduced to $S U_{2}^{I} \times U_{1}^{Y}$ by noting that under $S U_{3} \rightarrow S U_{2}^{I} \times U_{1}^{Y}$

$$
\begin{equation*}
21 \rightarrow\left(\frac{1}{2}, 1\right)+(1,0)+(0,0)+\left(\frac{1}{2},-1\right), \tag{4}
\end{equation*}
$$

where we use (I, Y) to label irreps of $S U_{2}^{I} \times U_{1}^{Y}$. The three vector bosons transforming as the $(1,0)$ irrep of $S U_{2}^{I} \times U_{1}^{Y}$ form the generators of $S U_{2}^{I}$ while the $(0,0)$ gives the single generator of U_{1}^{Y}.

So far we have neglected to give any specific representation of the spin. The n-particle fermion states may be regarded as spanning the antisymmetric $\left\{1^{n}\right\}$ irreps and the n-particle bosons the symmetric $\{n\}$ irreps of $U_{112} \supset S U_{2} \times E_{7}$. Some relevant branching rules are given in Table 3.

We note that the basic fermions span the vector irrep of U_{112}. The objects spanning the $\left\{1^{2}\right\}$ and $\left\{1^{3}\right\}$ irreps of U_{112} can be constructed out of pairs and triplets of the basic fermions. Presumably only objects corresponding to colour singlets will be accessible to observation. This class of objects will include mesons, lepton pairs and massive leptoquark-antileptoquark states in the case of the $\left\{1^{2}\right\}$ irrep and the various baryons and lepton triplets for the $\left\{1^{3}\right\}$ irrep.

Objects spanning the symmetric $\{2\}$ irrep of U_{112} cannot be constructed from the basic fermions and they represent the scalar and vector bosons. These objects can be expected to contribute to the fermion and boson mass matrices.

4. $\mathbf{3 j}$ Symbols

The $3 j$ symbols $\left\{(\pi) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}$ give the permutational symmetries of the $3 j m$ factors (Butler 1975). For simple phase irreps the $3 j$ symbol is no more than a phase factor (Butler and King 1974) and we may write (Butler and Wybourne 1976a)

$$
\begin{align*}
& \left\{(123) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\left\{(132) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\delta_{r r^{\prime}} \tag{5}\\
& \left\{(12) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\left\{(23) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\left\{(13) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\left\{\lambda_{1} \lambda_{2} \lambda_{3} r\right\} \delta_{r r^{\prime}} \tag{6}
\end{align*}
$$

In the cases treated here it was always possible to cast the $3 j$ symbols of equation (6) into the form

$$
\begin{equation*}
\left\{\lambda_{1} \lambda_{2} \lambda_{3} r\right\}=(-1)^{j_{\lambda_{1}}+j_{\lambda_{2}}+j_{\lambda_{3}}+r} \tag{7}
\end{equation*}
$$

where r is the product multiplicity index. For the irreps considered here the multiplicity never exceeds 2 and we may restrict r to 0 and 1 . The relevant $3 j$ symbols may be readily evaluated using Tables $1 a$ and $1 b$ for $S U_{6}$ and $S U_{3}$ respectively, and the results given by Butler et al. (1978) for E_{7}.

Table 3. Some $\boldsymbol{U}_{112} \rightarrow \boldsymbol{S} \boldsymbol{U}_{\mathbf{2}} \times \boldsymbol{E}_{7}$ branching rules

Dimension $\|\lambda\|$	U_{112} irrep λ	Branching to $S U_{2} \times E_{7}$
1	0	${ }^{1} 0$
112	1	${ }^{2} 1^{6}$
6216	1^{2}	${ }^{3}\left(0+2^{5} 1^{2}\right)+{ }^{1}\left(21^{6}+2^{6}\right)$
6328	2	${ }^{1}\left(0+2^{5} 1^{2}\right)+{ }^{3}\left(21^{6}+2^{6}\right)$
227920	1^{3}	${ }^{2}\left(3^{5} 21+32^{5} 1+2^{7}+1^{6}\right)++^{4}\left(3^{4} 2^{3}+1^{6}\right)$
240464	3	${ }^{2}\left(3^{5} 21+32^{5} 1+2^{7}+1^{6}\right)+{ }^{4}\left(3^{6}+32^{5} 1+1^{6}\right)$
12543	21^{110}	${ }^{3}\left(2^{6}+21^{6}+2^{5} 1^{2}+0\right)+{ }^{1}\left(2^{6}+21^{6}+2^{5} 1^{2}\right)^{4}$

A The generators of U_{112} span this irrep.

5. 6j Symbols

The relevant $6 j$ symbols for E_{7} have been given by Butler et al. (1978). In addition, $6 j$ symbols for the direct product groups $S U_{6} \times S U_{3}$ and $S U_{2} \times S U_{3}$ were required. These $6 j$ symbols are simply products of those of the individual groups. The required $6 j$ symbols were calculated in a similar fashion to those for E_{7} using the orthogonality, Racah backcoupling and generalized Biedenharn-Elliott relations to construct sets of simultaneous equations which were then systematically solved. Very careful attention was given to the fixing of phases, ensuring that phase choices were made only when a clear freedom to choose them existed.

In some instances nonlinear equations were obtained and it was necessary to find the roots of a quadratic equation. In these cases it was sometimes possible to use the duality between $S U_{n}$ and S_{n} to relate the required $6 j$ symbol to an $S U_{2} 6 j$ symbol. This allowed the correct root to be obtained with the phase being determined by the solution of the quadratic equation.

The calculation of the $6 j$ symbols was greatly facilitated by a computer program that constructs all the required equations. In the process of carrying out the calculations reported here several hundred $6 j$ symbols for $S U_{6}$ and $S U_{3}$ were evaluated.

6. 2jm Factors

The 2jm factor is defined as (Butler and Wybourne 1976a)

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{\prime}}=|\lambda|^{\frac{1}{2}}|\sigma|^{-\frac{1}{2}}\left\langle 0 \mid \lambda a \sigma ; \lambda^{*} a^{\prime} \sigma^{\prime}\right\rangle \tag{8}
\end{equation*}
$$

giving the coupling of a representation and its complex conjugate to the identity irrep 0 . Here we use λ to denote the irreps of a group G, and σ the irreps of the subgroup H, with a being a branching multiplicity index. It follows from equation (8) that

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{\prime}}=(\lambda)_{a \sigma, a^{\prime} \sigma^{*}} \delta_{\sigma^{\prime} \sigma^{*}} \tag{9}
\end{equation*}
$$

and we have the symmetry

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{*}}=\phi_{\lambda} \phi_{\sigma}\left(\lambda^{*}\right)_{a^{\prime} \sigma^{*}, a \sigma} . \tag{10}
\end{equation*}
$$

We find $\phi_{\lambda} \phi_{\sigma}=+1$ for $E_{7} \supset S U_{6} \times S U_{3}$ and $S U_{6} \supset S U_{2} \times S U_{3}$ whereas for $S U_{3} \supset$ $S U_{2}^{I} \times U_{1}^{Y}$ we find $\phi_{\lambda} \phi_{\sigma}=(-1)^{2 I}$. For the first two cases we can choose

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{*}}=\delta_{a a^{\prime}} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{*}}=\left(\lambda^{*}\right)_{a^{\prime} \sigma^{*}, a \sigma}, \tag{12}
\end{equation*}
$$

remembering also that for E_{7} we have $\lambda \equiv \lambda^{*}$. In the case of $S U_{3} \supset S U_{2}^{I} \times U_{1}^{Y}$ we have

$$
\begin{equation*}
(\lambda)_{a \sigma, a^{\prime} \sigma^{*}}=(-1)^{2 I}\left(\lambda^{*}\right)_{a^{\prime} \sigma^{*}, a \sigma} . \tag{13}
\end{equation*}
$$

For I integral there is no difference from the previous cases. If I is a half-integer we can still maintain equation (11) provided we sequence the $a \sigma$ in a definite order.

7. 3jm Factors

A typical 3jm factor may be written symbolically as

$$
\left(\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}
\end{array}\right)_{s}^{r}
$$

where r and s are product multiplicity indices for G and H respectively. The $3 j$ symbols give the permutational symmetry relations for the $3 j m$ factors:
$\left(\begin{array}{ccc}\lambda_{a} & \lambda_{b} & \lambda_{c} \\ a_{a} \sigma_{a} & a_{b} \sigma_{b} & a_{c} \sigma_{c}\end{array}\right)_{s^{\prime}}^{r^{\prime}}=\sum_{r s}\left\{(\pi) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r^{\prime} r}\left\{\left(\pi^{-1}\right) \sigma_{1} \sigma_{2} \sigma_{3}\right\}_{s^{\prime} s}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}\end{array}\right)_{s}^{r}$.
In all cases considered here an odd permutation results in at most a change of sign. In Table 4 below we use a right superscript plus or minus sign to indicate whether or not a given $3 j m$ factor changes sign under an odd permutation.

Under complex conjugation we have

$$
\begin{gather*}
\left(\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}
\end{array}\right)_{s}^{r *}=\sum_{a_{1} \prime_{2}^{\prime} a_{2}^{\prime} a_{3^{\prime}}}\left(\lambda_{1}\right)_{a_{1} \sigma_{1} a_{1}{ }^{\prime} \sigma_{1^{\prime}}}\left(\lambda_{2}\right)_{a_{2} \sigma_{2} a_{2}{ }^{\prime} \sigma_{2^{*}}}\left(\lambda_{3}\right)_{a_{3} \sigma_{3} a_{3}^{\prime} \sigma_{3^{*}}} \\
 \tag{15}\\
\times\left(\begin{array}{ccc}
\lambda_{1}^{*} & \lambda_{2}^{*} & \lambda_{3}^{*} \\
a_{1}^{\prime} \sigma_{1}^{*} & a_{2}^{\prime} \sigma_{2}^{*} & a_{3}^{\prime} \sigma_{3}^{*}
\end{array}\right)_{s}^{r}
\end{gather*}
$$

Comparison of equations (14) and (15) often indicates that a given $3 j m$ factor is necessarily imaginary. For example, in the case of $E_{7} \supset S U_{6} \times S U_{3}$ we find from equation (14) that

$$
\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1.1 & 1^{5} \cdot 1^{2} & 0.21
\end{array}\right)=-\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1^{5} \cdot 1^{2} & 1.1 & 0.21
\end{array}\right)
$$

whereas (15) gives

$$
\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1.1 & 1^{5} \cdot 1^{2} & 0.21
\end{array}\right)^{*}=\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1^{5} \cdot 1^{2} & 1.1 & 0.21
\end{array}\right)=-\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1.1 & 1^{5} \cdot 1^{2} & 0.21
\end{array}\right),
$$

leading to the conclusion that this 3 jm factor is imaginary.
The $3 j m$ factors satisfy the orthogonality relations
$\sum_{\lambda_{3} a_{3}} \frac{\left|\lambda_{3}\right|}{\left|\sigma_{3}\right|}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}\end{array}\right)_{s}^{r *}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ a_{1}^{\prime} \sigma_{1}^{\prime} & a_{2}^{\prime} \sigma_{2}^{\prime} & a_{3} \sigma_{3} / s^{\prime}\end{array}\right)^{r}=\delta_{a_{1} a_{1}}, \delta_{a_{2} a_{2}}, \delta_{\sigma_{1} \sigma_{1}}, \delta_{\sigma_{2} \sigma_{2}}, \delta_{s s^{\prime}}$
and
$\sum_{a_{1} \sigma_{1} a_{2} \sigma_{2} s} \frac{\left|\lambda_{3}\right|}{\left|\sigma_{3}\right|}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}\end{array}\right)_{s}^{r *}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3}^{\prime} \\ a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3}^{\prime} \sigma_{3}\end{array}\right)_{s}^{r^{\prime}}=\delta_{a_{3} a_{3}} \delta_{\lambda_{3} \lambda_{3}{ }^{\prime}} \delta_{r r^{\prime}}$.
The orthogonality conditions give equations that will often yield the magnitudes of $3 j m$ factors and some phase information but by themselves cannot lead to a complete evaluation of the $3 j m$ factors.

Two further equations that relate the $3 j m$ factors to the $6 j$ symbols of the group G and its subgroup H play a crucial role in the calculation of 3jm factors. Firstly (Butler and Wybourne 1976a)
$\sum_{r_{4}}\left(\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ a_{1} \sigma_{1} & a_{2} \sigma_{2} & a_{3} \sigma_{3}\end{array}\right)_{s_{4}}^{r_{4}}\left\{\begin{array}{lll}\lambda_{1} & \lambda_{2} & \lambda_{3} \\ \mu_{1} & \mu_{2} & \mu_{3}\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}}=\sum\left(\mu_{1}\right)_{b_{1} \rho_{1} b_{1} \rho_{1} \rho_{1} *}\left(\mu_{2}\right)_{b_{2} \rho_{2} b_{2} \rho_{2} 2^{*}}\left(\mu_{3}\right)_{b_{3} \rho_{3} b_{3} \rho_{3} 3^{*}}$
$\times\left(\begin{array}{ccc}\lambda_{1} & \mu_{2}^{*} & \mu_{3} \\ a_{1} \sigma_{1} & b_{2}^{\prime} \rho_{2}^{*} & b_{3} \rho_{3}\end{array}\right)_{s_{1}}^{r_{1}}\left(\begin{array}{ccc}\mu_{1} & \lambda_{2} & \mu_{3}^{*} \\ b_{1} \rho_{1} & a_{2} & \sigma_{2} \\ b_{3}^{\prime} & \rho_{3}^{*}\end{array}\right)_{s_{2}}^{r_{2}}\left(\begin{array}{ccc}\mu_{1}^{*} & \mu_{2} & \lambda_{3} \\ b_{1}^{\prime} & \rho_{1}^{*} & b_{2} \rho_{2}\end{array} a_{3} \sigma_{3}\right)_{s_{3}}^{r_{3}}\left\{\begin{array}{lll}\sigma_{1} & \sigma_{2} & \sigma_{3} \\ \rho_{1} & \rho_{2} & \rho_{3}\end{array}\right)_{s_{1} s_{2} s_{3} s_{4}}$,
where the right-hand summation is over all $b_{i} b_{i}^{\prime} \rho_{i} s_{i}(i=1,2,3)$. It is convenient to rearrange the above equation to obtain the second equation

$$
\begin{align*}
& \left.\sum_{\lambda_{3} r_{3} r_{4}} \frac{\left|\lambda_{3}\right|}{\left|\rho_{3}\right|} \left\lvert\, \begin{array}{ccc}
\mu_{1}^{*} & \mu_{2} & \lambda_{3} \\
a_{1}^{\prime} \sigma_{1}^{*} & a_{2} & \sigma_{2}
\end{array} b_{3} \rho_{3}\right.\right)_{s_{3}}^{r_{3} *}\left(\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
b_{1} \rho_{1} & b_{2} \rho_{2} & b_{3} \rho_{3}
\end{array}\right)_{s_{4}}^{r_{4}}\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}} \\
& =\sum_{\sigma_{3} s_{1} s_{2}} \phi_{\mu_{1}} \phi_{\sigma_{1}}\left(\mu_{1}^{*}\right)_{a_{1} \sigma_{1} \sigma_{1} a_{1} \sigma_{1}}\left(\mu_{2}\right)_{a_{2} \sigma_{2} a_{2} \cdot \sigma_{2}}\left(\mu_{3}\right)_{a_{3} \sigma_{3} a_{3} \cdot \sigma_{3^{*}}} \\
& \times\left(\begin{array}{ccc}
\lambda_{1} & \mu_{2}^{*} & \mu_{3} \\
b_{1} \rho_{1} & a_{2}^{\prime} \sigma_{2}^{*} & a_{3} \sigma_{3}
\end{array}\right)_{s_{1}}^{r_{1}}\left(\begin{array}{ccc}
\mu_{1} & \lambda_{2} & \mu_{3}^{*} \\
a_{1} \sigma_{1} & b_{2} & \rho_{2} \\
a_{3}^{\prime} & \sigma_{3}^{*}
\end{array}\right)_{s_{2}}^{r_{2}}\left(\begin{array}{lll}
\rho_{1} & \rho_{2} & \rho_{3} \\
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}\right\}_{s_{1} s_{2} s_{3} s_{4}} . \tag{18}
\end{align*}
$$

The two equations (17) and (18) contain all the information that can be extracted from the orthogonality relations together with additional phase and magnitude information.

The trivial $3 j m$ factors that involve the identity irrep 0 in the group G follow immediately from equation (8) to give

$$
\left(\begin{array}{ccc}
\lambda & \lambda^{*} & 0 \tag{19}\\
a \sigma & a^{\prime} \sigma^{*} & 0
\end{array}\right)=+|\sigma|^{\frac{1}{2}}|\lambda|^{-\frac{1}{2}} \delta_{a a^{\prime}} .
$$

To proceed to the practical calculation of $3 j m$ factors we first calculate the required $6 j$ symbols of the group G and its subgroup H. In the case of G only primitive $6 j$ symbols are required while for H a somewhat larger set is needed. The trivial $3 j m$ factors are then found via equation (19).

The next stage is to systematically calculate the primitive 3jm factors (Butler and Wybourne 1976a). Here it is essential to give careful attention to the choice of phases associated with each primitive $3 j m$ factor. Once these phases are chosen, those of the non-primitive $3 j m$ factors are implied via equation (17). Some of the phases of the primitive $3 j m$ factors may be freely chosen while others may not. These latter must be determined by use of equations (16)-(18). It is important to note that the orthogonality relations alone do not give sufficent phase information. In fixing the phases of the primitive 3 jm factors we note that there is a free choice for each new ket vector.

The calculation of the primitive $3 j m$ factors proceeds by first determining the permutational symmetry of each of the $3 j m$ factors followed by use of equation (15) to determine which 3jm factors are necessarily imaginary. The orthogonality relations are used to establish a set of simultaneous equations in the $3 j m$ factors. In many cases these equations together with the phase freedom allow us to fix a number of $3 j m$ factors, but not all of them. Additional equations are required and these are found by a judicious use of equations (17) or (18). For example, the magnitude of the $E_{7} \supset S U_{6} \times S U_{3} 3 j m$ factor

$$
\left(\begin{array}{ccc}
1 & 1 & 21^{6} \\
1.1 & 1.1 & 1^{4} .1
\end{array}\right)^{+}
$$

was determined by first evaluating the $3 j m$ factors

$$
\left(\begin{array}{ccc}
1^{6} & 1^{6} & \lambda \\
1.1 & 1^{5} \cdot 1^{2} & 0.21
\end{array}\right)
$$

and then choosing in equation (18) $\mu_{1}=\mu_{2}=\lambda_{1}=\lambda_{2} \equiv 1^{6}, \mu_{3} \equiv 21^{6}$ and $\sigma_{1}=$ $\sigma_{2}^{*}=\rho_{1}^{*}=\rho_{2} \equiv 1.1$. This choice then made $\rho_{3} \equiv 0.21$ and $\sigma_{3} \equiv 1^{4} .1$, leading to

$$
\left|\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1.1 & 1.1 & 1^{4} .1
\end{array}\right)^{+}\right|^{2}=\frac{15}{133} .
$$

Since the $\left|21^{6}, 1^{4} .1\right\rangle$ ket arose here for the first time, we used our phase freedom to fix the $3 j m$ factor as real and positive. This then allowed the magnitudes of all the remaining primitive $3 j m$ factors to be immediately determined. Where a phase freedom existed it was chosen. The remaining phases were found by again making a

Table 4. $3 \mathbf{j m}$ factors for \boldsymbol{E}_{7} group generators

$3 j m$ factor	Value	$3 j m$ factor Value	$3 j m$ factor	Value
		(a) $E_{7} \supset S U_{6} \times S U_{3}$		
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 0 \\ 1^{3} .0 & 1^{3} .0 & 0.0\end{array}\right)^{+}$	$\sqrt{ } \frac{5}{14}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 0 \\ 1.1 & 1^{5} .1^{2} & 0.0\end{array}\right)^{+} \quad \frac{3}{2} \sqrt{ } \frac{1}{7}$		
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 21^{6} \\ 1^{3} .0 & 1^{3} .0 & 21^{4} .0\end{array}\right)^{+}$	$-\sqrt{\frac{5}{38}}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 21^{6} \\ 1.1 & 1^{5} .1^{2} & 21^{4.0}\end{array}\right)^{+} \quad \frac{1}{2} \sqrt{\frac{5}{19}}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 21^{6} \\ 1.1 & 1^{5} .1^{2} & 0.21\end{array}\right)^{-}$	$2 \mathrm{i} \sqrt{\frac{1}{133}}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 21^{6} \\ 1^{3} .0 & 1^{5} .1^{2} & 1^{4} .1\end{array}\right)^{+}$	$\sqrt{ } \frac{15}{133}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 21^{6} \\ 1.1 & 1.1 & 1^{4} .1\end{array}\right)^{+} \quad \sqrt{ } \frac{15}{133}$		
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1^{3} .0 & 1^{3} .0 & 0.0\end{array}\right)^{-}$	0	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1.1 & 1^{5} .1^{2} & 0.0\end{array}\right)^{-} \mathrm{i} \sqrt{ } \frac{1}{2926}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1.1 & 1^{5} .1^{2} & 21^{4} .21\end{array}\right)^{+}$	$2 \sqrt{ } \frac{5}{209}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1^{3} .0 & 1^{3} .0 & 21^{4} .0\end{array}\right)^{+}$	$\sqrt{ } \frac{5}{418}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1.1 & 1^{5.1} 1^{2} & 21^{4} .0\end{array}\right)^{+} \quad \frac{1}{2} \sqrt{ } \frac{5}{209}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1.1 & 1.1 & 2.2\end{array}\right)^{+}$	$3 \sqrt{\frac{2}{209}}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{66} \\ 1^{3} .0 & 1^{3.0} & 2^{3.0}\end{array}\right)^{+}$	$5 \sqrt{ } \frac{1}{209}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1.1 & 1.1 & 1^{4.1}\end{array}\right)^{+} \sqrt{ } \frac{30}{1463}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1^{3} .0 & 1^{5} .1^{2} & 212^{2} .1\end{array}\right)^{+}$	$\sqrt{\frac{5}{418}}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{6} \\ 1^{3} .0 & 1^{5} .1^{2} & 1^{4.1}\end{array}\right)^{+}$	$\sqrt{\frac{15}{2926}}$			
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{51^{2}} \\ 1^{3} .0 & 1^{3} .0 & 0.0\end{array}\right)^{+}$	$\frac{1}{3} \sqrt{ } \frac{1}{266}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{5} 1^{2} \\ 1.1 & 1^{5.11^{2}} & 0.0\end{array}\right)^{+} \frac{1}{18} \sqrt{ } \frac{5}{133}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{5} 1^{2} \\ 1.1 & 1^{5} .1^{2} & 21^{4} .21\end{array}\right)^{-}$	$\frac{2}{9} \mathrm{i} \sqrt{ } \frac{35}{19}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{51^{2}} \\ 1^{3} .0 & 1^{3} .0 & 21^{4.0}\end{array}\right)^{-}$	0	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{5} 1^{2} \\ 1.1 & 1^{5} .1^{2} & 21^{4} .0\end{array}\right)^{-} \quad \frac{1}{9} \mathrm{i} \sqrt{ } \frac{35}{38}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{512} \\ 1.1 & 1^{5} .1^{2} & 0.21\end{array}\right)^{+}$	$\frac{2}{9} \sqrt{ } \frac{1}{19}$
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{5} 1^{2} \\ 1^{3} .0 & 1^{3} .0 & 2^{21^{2} .0}\end{array}\right)^{+}$	$\sqrt{\frac{7}{57}}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{512} \\ 1^{3} .0 & 1^{5} .1^{2} & 1^{4} .1\end{array}\right)^{-} \quad \frac{1}{3} \sqrt{ } \frac{5}{38}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{51} 1^{2} \\ 1.1 & 1.1 & 1^{4} .1\end{array}\right)^{-}$	0
$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{51} 1^{2} \\ 1^{3} .0 & 1^{5} .1^{2} & 21^{2} .1\end{array}\right)^{+}$	$\frac{1}{3} \sqrt{ } \frac{35}{38}$	$\left(\begin{array}{ccc}1^{6} & 1^{6} & 2^{511^{2}} \\ 1.1 & 1.1 & 2^{5.1}\end{array}\right)^{+} \quad \frac{1}{3} \sqrt{ } \frac{7}{19}$	$\left(\begin{array}{lll}1^{6} & 1^{6} & 2^{511^{2}} \\ 1.1 & 1.1 & 1^{4.2}\end{array}\right)^{+}$	$\frac{1}{3} \sqrt{10} 19$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 21^{4.0} & 21^{4.0} & 21^{4.0}\end{array}\right)_{1}^{-}$	0	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 21^{4} .0 & 21^{4} .0 & 21^{4.0}\end{array}\right)_{0}^{+} \quad \sqrt{ } \frac{5}{57}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 0.21 & 0.21 & 0.21\end{array}\right)_{0}^{-}$	0
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 0.21 & 0.21 & 0.21\end{array}\right)_{1}^{+}$	$2 \sqrt{ } \frac{1}{399}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 1^{2} .1^{2} & 1^{2} .1^{2} & 1^{2} .1^{2}\end{array}\right)^{+}-\sqrt{\frac{15}{133}}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 21^{4.0} & 1^{2} .1^{2} & 1^{4} .1\end{array}\right)^{+}$	$\sqrt{ } \frac{5}{57}$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 21^{6} \\ 0.21 & 1^{2} .1^{2} & 1^{4} .1\end{array}\right)^{-}$	$-\sqrt{\frac{10}{399}}$			
$\left(\begin{array}{lll}21^{6} & 21^{6} & 2^{5} 1^{2} \\ 0.21 & 0.21 & 0.21\end{array}\right)_{1}^{-}$	0	$\left(\begin{array}{lll}21^{6} & 21^{6} & 2^{5} 1^{2} \\ 0.21 & 0.21 & 0.21\end{array}\right)_{0}^{+}-\frac{2}{9} \sqrt{\frac{1}{19}}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{512} \\ 0.21 & 0.21 & 0.0\end{array}\right)^{+}$	$\frac{2}{9} \sqrt{ } \frac{1}{13} 3$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{55} 1^{2} \\ 0.21 & 1^{2} .1^{2} & 1^{4.1}\end{array}\right)^{+}$	$\frac{2}{3} \mathrm{i} \sqrt{ } \frac{1}{57}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{5} 1^{2} \\ 0.21 & 1^{2} .1^{2} & 1^{4.2}\end{array}\right)^{-} \quad \frac{1}{3} \mathrm{i} \sqrt{ } \frac{2}{19}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{512} \\ 0.21 & 21^{4} .0 & 21^{4.21}\end{array}\right)^{+}$	$\frac{2}{9} \sqrt{\frac{7}{19}}$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{55} 1^{2} \\ 21^{4.0} & 21^{4} .0 & 21^{4} .0\end{array}\right)_{1}^{+}$	$\frac{2}{9} \sqrt{ } \frac{7}{19}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{55} 1^{2} \\ 21^{4.0} & 21^{4.0} & 21^{4.0}\end{array}\right)_{0}^{-} \quad 0$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{51^{2}} \\ 21^{4.0} & 21^{4.0} & 0.0\end{array}\right)^{+}$	$-\frac{2}{9} \sqrt{1} \frac{1}{190}$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{51^{2}} \\ 21^{4.0} & 21^{4.0} & 2^{21^{2} .0}\end{array}\right)^{+}$	$\sqrt{ } \frac{14}{285}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{5} 1^{2} \\ 21^{4.0} & 1^{2.11^{2}} & 2^{5.1}\end{array}\right)^{+}-\frac{1}{3} \sqrt{ } \frac{7}{38}$	$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{51^{2}} \\ 21^{4.0} & 1^{4.1} & 2^{31^{12} .1^{2}}\end{array}\right)^{+}$	$\frac{1}{3} \sqrt{ } \frac{21}{38}$
$\left(\begin{array}{ccc}21^{6} & 21^{6} & 2^{51} 1^{2} \\ 21^{4.0} & 1^{2} .1^{2} & 1^{4.1}\end{array}\right)^{-}$	$\frac{1}{3} \sqrt{\frac{7}{114}}$			

Table 4 (Continued)

Table 4 (Continued)

$3 j m$ factor	Value	$3 j m$ factor Value	$3 j m$ factor	Value
(c) $S U_{3} \supset S U_{2}^{I} \times U_{1}^{Y}$				
$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0.0 & 0.0 & 0.0\end{array}\right)^{+}$	$\frac{1}{2}$			
$\left(\begin{array}{ccc}1 & 12 & 0 \\ \frac{1}{2} \cdot \frac{1}{3} & \frac{1}{2} \cdot \frac{1}{3} & 0.0\end{array}\right)^{-}$	$\sqrt{ } \frac{2}{3}$	$\left(\begin{array}{ccc}1 & 12 & 0 \\ 0 .-\frac{2}{3} & 0 . \frac{2}{3} & 0.0\end{array}\right)^{+} \quad \sqrt{ } \frac{1}{3}$		
$\left(\begin{array}{ccc}1 & 12 & 21 \\ \frac{1}{2} \cdot \frac{1}{3} & \frac{1}{2} \cdot-\frac{1}{3} & 0.0\end{array}\right)^{-}$	$\frac{1}{2} \sqrt{\frac{1}{6}}$	$\left(\begin{array}{ccc}1 & 12 & 21 \\ \frac{1}{2} \cdot \frac{1}{3} & \frac{1}{2} \cdot-\frac{1}{3} & 1.0\end{array}\right)^{+}{ }^{\frac{1}{4} i \sqrt{ } 6}$	$\left(\begin{array}{ccc}1 & 12 & 21 \\ 0 .-\frac{2}{3} & 0 . \frac{2}{3} & 0.0\end{array}\right)^{+}$	$-\frac{1}{2} \sqrt{\frac{1}{3}}$
$\left(\begin{array}{ccc}1 & 12 & 21 \\ \frac{1}{2} \cdot \frac{1}{3} & 0 . \frac{2}{3} & \frac{1}{2} .-1\end{array}\right)^{-}$	$\frac{1}{2}$	$\left(\begin{array}{ccc}1 & 12 & 21 \\ 0 .-\frac{2}{3} \frac{1}{2} \cdot-\frac{1}{3} & \frac{1}{2} \cdot 1\end{array}\right)^{-}$		
$\left(\begin{array}{ccc}1 & 1 & 2^{2} \\ \frac{1}{2} \cdot \frac{1}{3} & \frac{1}{2} \cdot \frac{1}{3} & 1 .-\frac{2}{3}\end{array}\right)^{+}$	$\sqrt{ } \frac{1}{2}$	$\left(\begin{array}{ccc}1 & 1 & 2^{2} \\ \frac{1}{2} \cdot \frac{1}{3} & 0 .-\frac{2}{3} & \frac{1}{2} \cdot \frac{1}{3}\end{array}\right)^{-} \quad \sqrt{ } \frac{1}{3}$	$\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 .-\frac{2}{3} & 0 .-\frac{2}{3} & 0.4\end{array}\right)^{+}$	$\sqrt{ } \frac{1}{6}$
$\left(\begin{array}{ccc}21 & 21 & 0 \\ \frac{1}{2} .1 & \frac{1}{2} \cdot-1 & 0.0\end{array}\right)^{-}$	$\frac{1}{2}$	$\left(\begin{array}{ccc}21 & 21 & 0 \\ 1.0 & 1.0 & 0.0\end{array}\right)^{+} \quad \frac{1}{4} \sqrt{ } 6$	$\left(\begin{array}{ccc}21 & 21 & 0 \\ 0.0 & 0.0 & 0.0\end{array}\right)^{+}$	$\frac{1}{2} \sqrt{\frac{1}{2}}$
$\left(\begin{array}{ccc}21 & 21 & 21 \\ 0.0 & 0.0 & 0.0\end{array}\right)^{1-}$	0	$\left(\begin{array}{ccc}21 & 21 & 21 \\ 0.0 & 0.0 & 0.0\end{array}\right)^{0+}-\frac{1}{2} \sqrt{\frac{1}{10}}$		
$\left(\begin{array}{ccc}21 & 21 & 21 \\ 1.0 & 1.0 & 0.0\end{array}\right)^{1-}$	0	$\left(\begin{array}{ccc}21 & 21 & 21 \\ 1.0 & 1.0 & 0.0\end{array}\right)^{0+} \frac{1}{2} \sqrt{\frac{3}{10}}$		
$\left(\begin{array}{ccc}21 & 21 & 21 \\ 1.0 & 1.0 & 1.0\end{array}\right)^{1+}$	$\frac{1}{2}$	$\left(\begin{array}{lll}21 & 21 & 21 \\ 1.0 & 1.0 & 1.0\end{array}\right)^{0-} \quad 0$		
$\left(\begin{array}{ccc}21 & 21 & 21 \\ \frac{1}{2} .1 & \frac{1}{2} \cdot-1 & 0.0\end{array}\right)^{1+}$	$-\frac{1}{4} \mathrm{i}$	$\left(\begin{array}{ccc}21 & 21 & 21 \\ \frac{1}{2} \cdot 1 & \frac{1}{2} \cdot-1 & 0.0\end{array}\right)^{0-}-\frac{1}{4} \sqrt{\frac{1}{5}}$		
$\underline{\left(\begin{array}{ccc}21 & 21 & 21 \\ \frac{1}{2}, 1 & \frac{1}{2},-1 & 1.0\end{array}\right)^{1-}}$	$\frac{1}{4}$	$\left(\begin{array}{ccc}21 & 21 & 21 \\ \frac{1}{2} \cdot 1 & \frac{1}{2} \cdot-1 & 1.0\end{array}\right)^{0+}{ }^{\frac{3}{4} i \sqrt{\frac{1}{5}}}$		

judicious use of equation (18), arriving at the important result that the phases of the $3 j m$ factors

$$
\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1^{3} .0 & 1^{3} .0 & 21^{4} .0
\end{array}\right)^{+} \quad \text { and } \quad\left(\begin{array}{ccc}
1^{6} & 1^{6} & 21^{6} \\
1.1 & 1^{5} .1^{2} & 21^{4} .0
\end{array}\right)^{+}
$$

must be chosen to be of opposite sign. Such a result would not be implied by simple use of the orthogonality relations (16).

With the primitive 3 jm factors evaluated, it is a comparatively simple task to calculate the non-primitive $3 j m$ factors by use of equation (17). Each non-primitive $3 j m$ factor is calculated separately and then the resulting sets of $3 j m$ factors are checked by demanding that they form orthonormal sets.

The $3 j m$ factors evaluated for $E_{7} \supset S U_{6} \times S U_{3}$ are given in Table $4 a$ while those for $S U_{6} \supset S U_{2} \times S U_{3}$ and $S U_{3} \supset S U_{2}^{I} \times U_{1}^{Y}$ are given in Tables $4 b$ and $4 c$ respectively. These tables suffice to calculate the matrix elements of all the generators of E_{7} within the fundamental and adjoint irreps of E_{7}.

8. Matrix Elements of $\boldsymbol{E}_{\mathbf{7}}$ Group Generators

With the $2 j m$ and $3 j m$ factors determined it is a comparatively simple task to use the Wigner-Eckart theorem (Butler 1975) to calculate the matrix elements of the group generators. The symmetry classification of the group generators has already been
considered in Section 3. The group generators will be necessarily diagonal in the E_{7} irreps but will not be so in the subgroup irreps.

If Q_{i}^{λ} is a tensor operator belonging to a tensorial set \mathbf{Q}^{λ}, where λ labels an irrep of the group G, and i the components of the irrep, then it follows from the WignerEckart theorem that

$$
\left\langle x_{1} \lambda_{1} i_{1}\right| Q_{i}^{\lambda}\left|x_{2} \lambda_{2} i_{2}\right\rangle=\sum_{r}\left(\lambda_{1}\right)_{i_{1} i_{1}{ }^{*}}\left(\begin{array}{lll}
\lambda_{1}^{*} & \lambda & \lambda_{2} \tag{20}\\
i_{1}^{*} & i & i_{2}
\end{array}\right)^{r}\left\langle x_{1} \lambda_{1}\left\|Q^{2 r}\right\| x_{2} \lambda_{2}\right\rangle,
$$

where $\left\langle x_{1} \lambda_{1}\left\|Q^{\lambda_{r}}\right\| x_{2} \lambda_{2}\right\rangle$ is a reduced matrix.
Table 5. Reduced kets

$\begin{gathered} E_{7} \\ \text { irrep } \end{gathered}$	$\begin{gathered} S U_{6}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{c}} \\ \text { irrep } \end{gathered}$	$\begin{aligned} & S U_{2}^{H} \times S U_{3}^{\mathrm{fI}} \\ & \quad \text { irrep } \end{aligned}$	Reduced ket	$\begin{gathered} E_{7} \\ \text { irrep } \end{gathered}$	$\begin{gathered} S U_{6}^{\mathrm{fI}} \times S U_{3}^{\mathrm{c}} \\ \text { irrep } \end{gathered}$	$\begin{aligned} & S U_{2}^{H} \times S U_{3}^{\mathrm{fI}} \\ & \text { irrep } \end{aligned}$	Reduced ket
$1{ }^{6}$	$1^{3} .0$	${ }^{4} 0$	$\begin{aligned} & \left\|\mathrm{L}^{4} 0\right\rangle \\ & \left\|\mathrm{L}^{2} 21\right\rangle \end{aligned}$	21^{6}	$21^{4} .0$	${ }^{3} 0$	$\mid \mathrm{VB}^{3} 0{ }^{\text {\% }}$ >
		${ }^{2} 21$				${ }^{3} 21$	$\left\|V B B^{3} 21\right\rangle$
						${ }^{1} 21$	\| $\mathrm{VB}^{121}{ }^{\text {2 }}$ >
	1.1	${ }^{2} 1$	$\left\|Q^{2} 1\right\rangle$		0.21	${ }^{1} 0$	$\mid \mathrm{G}^{10} 0$
	$1^{5} .1^{2}$	${ }^{2} 1^{2}$	$\left\|\bar{Q}^{2} 1^{2}\right\rangle$		$1^{4} .1$	${ }^{3} 1$	$\left\|\overline{\mathbf{L}} \overline{\mathbf{Q}}^{\mathbf{3}}{ }^{1}\right\rangle$
						${ }^{12}{ }^{2}$	$\mid \overline{\mathrm{L}} \overline{\mathrm{Q}}^{1} \mathbf{2}^{\mathbf{2}}{ }^{\text {/ }}$
					$1^{2} .1^{2}$	${ }^{3} 1^{2}$	$\left\|L^{3}{ }^{3}{ }^{2}\right\rangle$
						12	$\mid L Q^{12}{ }^{1}$

Consider now the case where we have an operator $Q^{\lambda a \sigma}$ that is a tensor operator with respect to the group G and its subgroup H. Applying the Wigner-Eckart theorem to both groups (Butler 1975), we obtain

$$
\begin{align*}
& \left\langle x_{1} \lambda_{1} a_{1} \sigma_{1}\left\|Q^{\lambda a \sigma s}\right\| x_{2} \lambda_{2} a_{2} \sigma_{2}\right\rangle \\
& \quad=\sum_{r}\left(\lambda_{1}\right)_{a_{1} \sigma_{1}, a_{1} \sigma_{1} \sigma^{*}}\left(\begin{array}{ccc}
\lambda_{1}^{*} & \lambda & \lambda_{2} \\
a_{1}^{\prime} \sigma_{1}^{*} & a \sigma & a_{2} \sigma_{2}
\end{array}\right)_{s}^{r}\left\langle x_{1} \lambda_{1}\left\|Q^{\lambda r}\right\| x_{2} \lambda_{2}\right\rangle . \tag{21}
\end{align*}
$$

This result can be used along an entire group chain. The dependence of the matrix elements on the various subgroup irreps is fully contained in the relevant groupsubgroup $2 j m$ and $3 j m$ factors.

There are 133 group generators for E_{7} and clearly a table of the matrix elements of these generators even for just the 1^{6} and 21^{6} irreps would be very large. In order to restrict the size of the tabulation we shall assume that the Wigner-Eckart theorem has been used to factor off the dependence on the $S U_{2}^{I} \times U_{1}^{Y}$ subgroups of the $S U_{3}^{\mathrm{f} 1}$ and $S U_{3}^{\mathrm{C}}$ groups and the U_{1} subgroup of the $S U_{2}^{H}$ group. The present calculation has thus been reduced to the calculation of the $S U_{2}^{H} \times S U_{3}^{\mathrm{fl}} \times S U_{3}^{\mathrm{C}}$ reduced matrix elements, for which we introduce a set of reduced kets to describe the ket states associated with the group-subgroup chain

$$
\begin{equation*}
E_{7} \supset S U_{6}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{C}} \supset S U_{2}^{H} \times S U_{3}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{C}} . \tag{22}
\end{equation*}
$$

These reduced kets are fully specified in the fermion sector (i.e. in the $\left(1^{6}\right)$ irrep of E_{7}) and the boson sector (i.e. in the $\left(21^{6}\right)$ irrep of E_{7}) by specifying the appropriate $S U_{2}^{H} \times S U_{3}^{\mathrm{fl}}$ irrep together with a descriptive label indicating whether the ket corresponds to a lepton (L), quark (Q), vector boson (VB), gluon (G) or leptoquark
(LQ), as shown in Table 5. The reduced ket labels serve equally as well to designate the reduced operators corresponding to the group generators of E_{7}. An example of a typical $S U_{2}^{H} \times S U_{3}^{\mathrm{fl}} \times S U_{3}^{\mathrm{C}}$ reduced matrix element would be

$$
\begin{equation*}
\left\langle\mathrm{L}^{2} 21\left\|\mathrm{VB}^{1} 21\right\| \mathrm{L}^{2} 21\right\rangle_{1}, \tag{23}
\end{equation*}
$$

where here the subscript 1 is a product multiplicity index for the $S U_{3}^{\mathrm{fI}}$ product $21 \times 21 \times 21$. An expanded description in accord with the breakdown (22) would be

$$
\begin{equation*}
\left\langle 1^{6} 1^{3} \cdot 0^{2} 21\left\|21^{6} 21^{4} \cdot 0^{1} 21\right\| 1^{6} 1^{3} \cdot 0^{2} 21\right\rangle_{1}\left(S U_{2}^{H} \times S U_{3}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{C}}\right) . \tag{24}
\end{equation*}
$$

(Note that in both descriptions (23) and (24) the $S U_{3}^{\mathrm{C}}$ label at the $S U_{2}^{H} \times S U_{3}^{\mathrm{fI}} \times S U_{3}^{\mathrm{C}}$ level has been suppressed because all states are colour singlets.)

To obtain the actual matrix elements of the generators of E_{7} in the fermion or boson sectors it is necessary to determine their dependence on the quantum numbers $\left(I, Y, I_{z}\right)$ for $S U_{3}^{\mathrm{fl}},\left(I^{\mathrm{C}}, Y^{\mathrm{C}}, I_{z}^{\mathrm{C}}\right)$ for $S U_{3}^{\mathrm{C}}$, and H_{z} for $S U_{2}^{H}$.

The dependences of the matrix elements on the azimuthal quantum numbers I_{z}, I_{z}^{C} and H_{z} all follow by noting that the matrix elements of a tensor operator $k q$ in the angular momentum basis $|\alpha J M\rangle$ is given by (Judd 1963)

$$
\left\langle\alpha_{1} J_{1} M_{1}\right| k q\left|\alpha_{2} J_{2} M_{2}\right\rangle=(-1)^{J_{1}-M_{1}}\left(\begin{array}{ccc}
J_{1} & k & J_{2} \tag{25}\\
-M_{1} & q & M_{2}
\end{array}\right)\left\langle\alpha_{1} J_{1}\|k\| \alpha_{2} J_{2}\right\rangle .
$$

The $3 j m$ factor can be readily obtained from tables (e.g. Rotenberg et al. 1959).
The dependence of the matrix elements on I and Y follows by noting that if λ_{i} labels irreps of the appropriate $S U_{3}$ group then we have from equation (21)

$$
\begin{align*}
\left\langle\alpha_{1} \lambda_{1} I_{1} Y_{1} \|\right. & \left.\alpha \lambda I Y \| \alpha_{2} \lambda_{2} I_{2} Y_{2}\right\rangle \\
& =\sum_{r}\left(\lambda_{1}\right)_{I_{1} Y_{1}, I_{1}-Y_{1}}\left(\begin{array}{ccc}
\lambda_{1}^{*} & \lambda & \lambda_{2} \\
I_{1} .-Y_{1} & I . Y & I_{2} . Y_{2}
\end{array}\right)^{r}\left\langle\alpha_{1} \lambda_{1}\|\alpha \lambda r\| \alpha_{2} \lambda_{2}\right\rangle . \tag{26}
\end{align*}
$$

The $3 j m$ factors this time may be found in Table $4 c$. Thus we have given all the information required to calculate the matrix elements of all the generators of E_{7} in the fermion and boson sectors.

For illustration let us calculate the $S U_{2}^{H} \times S U_{3}^{\mathrm{f}} \times S U_{3}^{\mathrm{C}}$ reduced matrix element (23). To do this we are required to fix the normalization of the group operators, which we do by choosing below the corresponding E_{7} reduced matrix elements $\left\langle 1^{6}\left\|21^{6}\right\| 1^{6}\right\rangle$. Consider the E_{7} generator I_{z}. Since I_{z} is a generator of $S U_{6}^{\mathrm{f1}}, S U_{3}^{\mathrm{f1}}, S U_{2}^{I}$ and U_{1}^{I}, it transforms as the adjoint irrep of each of these groups. I_{z} is scalar under the other groups $S U_{2}^{H}, S U_{3}^{\mathrm{C}} U_{1}^{Y}$, and their various subgroups, and thus transforms like the ket

$$
\left|\right\rangle 0\left(U_{1}^{\left.Y^{\mathrm{C}}\right)}\right\}
$$

From the list of reduced kets in Table 5 we see that I_{z} transforms as one of the set of partners | $\left.\mathrm{VB}^{1} 21\right\rangle$.

The action of the operator I_{z} on any ket is known, its eigenvalue being the value of I_{z} of the ket. Take as an example a particular 1 of the $\left|\mathrm{L}^{2} 21\right\rangle$ set. We have

$$
\begin{align*}
& 1=\left\langle\begin{array}{c|c|c}
1^{6} & 21^{6} & 1^{6} \\
1^{3} \cdot 0 & 21^{4} \cdot 0 & 1^{3} \cdot 0 \\
\frac{1}{2} \cdot 21 & 0.21 & \frac{1}{2} \cdot 21 \\
\frac{1}{2} \cdot 1.0 .0 .0 & 0.1 \cdot 0 \cdot 0.0 & \frac{1}{2} \cdot 1 \cdot 0 \cdot 0.0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right\rangle \\
& =\sum_{r}\left(1^{6}\right)_{1^{3.0,1^{3} .0}}\left(1^{3}\right)_{221.221}(0)_{0.0,0.0}\left(\frac{1}{2}\right)_{\frac{1}{2},-\frac{1}{2}}(21)_{1.0,1.0}(1)_{1,-1} \\
& \times\left\langle 1^{6}\left\|21^{6}\right\| 1^{6}\right\rangle\left(\begin{array}{ccc}
1^{6} & 21^{6} & 1^{6} \\
1^{3} .0 & 21^{4} .0 & 1^{3} .0
\end{array}\right)\left(\begin{array}{ccc}
1^{3} & 21^{4} & 1^{3} \\
221 & { }^{2} & 21
\end{array} 2_{21}\right)_{r} \\
& \times\left(\begin{array}{ccc}
0 & 0 & 0 \\
0.0 & 0.0 & 0.0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
21 & 21 & 21 \\
1.0 & 1.0 & 1.0
\end{array}\right)^{r}\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right) \\
& =-\frac{1}{21 \sqrt{ }(3.133)}\left\langle 1^{6}\left\|21^{6}\right\| 1^{6}\right\rangle, \tag{27a}
\end{align*}
$$

that is, we have

$$
\begin{equation*}
\left\langle 1^{6}\left\|21^{6}\right\| 1^{6}\right\rangle=-\sqrt{ }(3.133) \tag{27b}
\end{equation*}
$$

In obtaining the value of this reduced matrix element we could equally have employed the irrep tensor operators H_{z} of $S U_{2}^{H}$ or I_{Z}^{C} of $S U_{2}^{I \mathrm{C}}$ and arrived at different numerical values. However, the renormalization of tensor operators is completely arbitrary and the above value may be chosen; a proviso being that we adhere to this choice in subsequent calculations. In a completely analogous fashion the E_{7} reduced matrix element $\left\langle 21^{6}\left\|21^{6}\right\| 21^{6}\right\rangle$ can be determined as $3 \sqrt{ }(6.133)$.

The $S U_{2}^{H} \times S U_{3}^{\mathrm{f1}} \times S U_{3}^{\mathrm{C}}$ reduced matrix elements for the generators of E_{7} can be readily evaluated. An example would be:

$$
\left\langle\mathrm{L}^{2} 21\left\|\mathrm{VB}^{1} 21\right\| \mathrm{L}^{2} 21\right\rangle_{1}=\left\langle 1^{6} 1^{3} \cdot 0^{2} 21\left\|21^{6} 21^{4} \cdot 0^{1} 21\right\| 1^{6} 1^{3} \cdot 0^{2} 21\right\rangle_{1} ;
$$

by equation (21), the right-hand side becomes

$$
\left.\left(1^{3}\right)_{221,221}\left(\begin{array}{ccc}
1^{3} & 21^{4} & 1^{3} \\
221 & 1 & 21
\end{array}\right)^{2} 21\right)_{1}\left\langle 1^{6} 1^{3} .0\left\|21^{6} 21^{4} .0\right\| 1^{6} 1^{3} .0\right\rangle
$$

and use of equation (11) and Table $4 b$ gives this as

$$
2 \sqrt{ } \frac{2}{35}\left\langle 1^{6} 1^{3} .0\left\|21^{6} 21^{4} .0\right\| 1^{6} 1^{3} .0\right\rangle
$$

then by equation (21) again we have

$$
2 \sqrt{\frac{2}{35}}\left(1^{6}\right)_{1^{3.0,1^{3} .0}}\left(\begin{array}{ccc}
1^{6} & 21^{6} & 1^{6} \\
1^{3} .0 & 21^{4} .0 & 1^{3} .0
\end{array}\right)\left\langle 1^{6}\left\|21^{6}\right\| 1^{6}\right\rangle
$$

Table 6. Nonzero reduced matrix elements of \boldsymbol{E}_{7} generators
Where a product multiplicity r arises in the $S U_{3}$ subgroup, the value of r is given as a right subscript attached to the value of the matrix element
(a) Fermion sector

$\mathrm{VB}^{3} 0$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$	$\mathrm{VB}^{3} 21$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$
$\begin{gathered} \left\langle\mathbf{L}^{4} 0\right\| \\ \left\langle\mathbf{L}^{2} 21\right\| \\ \left\langle\mathbf{Q}^{2} 1\right\| \\ \left\langle\overline{\mathbf{Q}}^{2} \mathbf{1}^{2}\right\| \end{gathered}$	$\left[{ }^{\sqrt{ } 10}\right.$	$-2 \sqrt{ } 2$	-3	-3 ${ }^{-3}$	$\left\langle\mathbf{L}^{\mathbf{4}} \mathbf{0}\right\|$ $\left\langle\mathbf{L}^{2} 21\right\|$ $\left\langle\mathbf{Q}^{2} 1\right\|$ $\left\langle\overline{\mathbf{Q}}^{\mathbf{2}} \mathbf{1}^{\mathbf{2}}\right\|$	$[-4 \sqrt{ } 2$	$-4 \sqrt{ } 2$ $-4 \sqrt{ } 50$	$-6 \sqrt{ } 2$	- $\left.{ }^{-6 \sqrt{ } 2}\right]$
VB^{121}	$\left\|L^{4} 0\right\rangle$	\|L $\left.{ }^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathbf{Q}}^{2} 1^{2}\right\rangle$	G^{10}	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$
$\begin{gathered} \hline\left\langle\mathbf{L}^{4} 0\right\| \\ \left\langle\mathbf{L}^{2} 21\right\| \\ \left\langle\mathbf{Q}^{2} 1\right\| \\ \left\langle\overline{\mathbf{Q}}^{2} 1^{2}\right\| \end{gathered}$		$4 \sqrt{ } 3_{1}$	$-2 \mathrm{i} \sqrt{ } 6$	2iv 6$]$	$\left\langle\mathbf{L}^{4} 0\right\|$ $\left\langle\mathbf{L}^{2} 21\right\|$ $\left\langle\mathbf{Q}^{2} 1\right\|$ $\left\langle\overline{\mathbf{Q}}^{\mathbf{2}} \mathbf{1}^{2}\right\|$	[$-4 i \sqrt{ } 3$	4i, 3]
$\overline{\mathbf{L}} \overline{\mathbf{Q}}^{3} 1$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$	$\overline{\mathbf{L}} \overline{\mathbf{Q}}^{1}{ }^{2}$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathbf{Q}}^{2} 1^{2}\right\rangle$
$\begin{gathered} \hline\left\langle\mathbf{L}^{4} 0\right\| \\ \left\langle\mathbf{L}^{2} 21\right\| \\ \left\langle\mathbf{Q}^{2} 1\right\| \\ \left\langle\overline{\mathbf{Q}}^{2} \mathbf{1}^{2}\right\| \end{gathered}$	$[-6$	$-6 \sqrt{ } 2$	$-6 \sqrt{ } 3$	$\left.\begin{array}{c}6 \\ -6 \sqrt{ } 2\end{array}\right]$	$\left\langle\mathbf{L}^{4} 0\right\|$ $\left\langle\mathbf{L}^{2} 21\right\|$ $\left\langle\mathbf{Q}^{2} 1\right\|$ $\left\langle\overline{\mathbf{Q}}^{\mathbf{2}} \mathbf{1}^{2}\right\|$		$-6 \sqrt{ } 2$	$-6 \sqrt{ } 2$	$-6 \sqrt{ } 2]$
$\mathrm{LQ}^{3} 1^{2}$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$	LQ ${ }^{12}$	$\left\|L^{4} 0\right\rangle$	$\left\|L^{2} 21\right\rangle$	$\left\|Q^{2} 1\right\rangle$	$\left\|\overline{\mathrm{Q}}^{2} 1^{2}\right\rangle$
$\begin{gathered} \hline\left\langle\mathbf{L}^{4} 0\right\| \\ \left\langle\mathbf{L}^{2} 21\right\| \\ \left\langle\mathbf{Q}^{2} 1\right\| \\ \left\langle\overline{\mathbf{Q}}^{2} 1^{2}\right\| \end{gathered}$	$\left[\begin{array}{l} \\ -6\end{array}\right.$	$-6 \sqrt{ } 2$	${ }_{-6}^{6} 2$	$-6 \sqrt{ } 3]$	$\left\langle\mathbf{L}^{4} 0\right\|$ $\left\langle\mathbf{L}^{2} 21\right\|$ $\left\langle\mathbf{Q}^{2} 1\right\|$ $\left\langle\overline{\mathbf{Q}}^{\mathbf{2}} \mathbf{1}^{2}\right\|$		$-6 \sqrt{ } 2$	$-6 \sqrt{ } 2$	$-6 \sqrt{ } 2$

(b) Boson sector

$\mathrm{VB}^{3} 0$	$\mid \mathrm{VB}^{3} 0{ }^{\text {\% }}$	$\left\|\mathrm{VB}^{3} 21\right\rangle$	$\mid V^{121}{ }^{12}$	$\mid \mathrm{G}^{10} 0$	$\left\|\overline{\mathbf{L}} \overline{\mathbf{Q}}^{\mathbf{3}} 1\right\rangle$	$\mid \overline{\mathbf{L}} \overline{\mathbf{Q}}^{12^{2}}{ }^{\mathbf{~}}$]	$\left\|L^{3} \mathbf{1}^{3}{ }^{2}\right\rangle$	$\mid L Q^{12}{ }^{\text {] }}$
$\left\langle\mathrm{VB}^{3} 0\right\|$	$\left[-2 \sqrt{ } 3_{0}\right.$							
$\left\langle\mathrm{VB}^{3} 21\right.$		$-4 \sqrt{ } 6$						
$\left\langle\mathrm{VB}^{121}\right.$ 21								
$\left\langle\underline{G}^{1} 0\right\|$								
$\left\langle\overline{\mathbf{L}} \overline{\mathrm{Q}}^{3} 1\right\|$					$6 \sqrt{ } 2$			
$\left\langle{\overline{\mathbf{L}} \overline{\mathbf{Q}}^{1} 2^{2}}^{\mathbf{L}}\right.$								
$\left\langle\mathbf{L Q}^{\mathbf{3} \mathbf{1}^{2}}{ }^{\text {2 }}\right.$							$6 \sqrt{ } 2$	
< $\mathbf{L Q}^{2}$ 2\|								

$\mathrm{VB}^{3} 21$	$\mid \mathrm{VB}^{3} 0{ }^{\text {¢ }}$	$\left\|\mathrm{VB}^{3} 21\right\rangle$	\|VB ${ }^{121}{ }^{\text {1 }}$	$\mid \mathbf{G}^{10} \mathbf{0}$	$\left\|\bar{L}^{\mathbf{Q}}{ }^{3} 1\right\rangle$	$\mid \overline{\mathrm{L}} \overline{\mathbf{1}}^{\mathbf{1}}{ }^{\mathbf{2}}{ }^{\mathbf{~}}$)	$\left\|L^{(1)}{ }^{\mathbf{3}}{ }^{\mathbf{2}}\right\rangle$	$\mid L Q^{12}{ }^{\text {¢ }}$
$\left\langle\mathrm{VB}^{3} 0\right\|$		$-4 \sqrt{ } 6$						
$\left\langle\mathrm{VB}^{3} 21\right.$	$-4 \sqrt{ } 6$	$-4 \sqrt{ } 15_{0}$	$6 \sqrt{ } 6_{1}$					
$\left\langle\mathrm{VB}^{121}\right.$		$6 \sqrt{ } 6_{1}$						
$\left\langle\mathrm{G}^{1} 0\right\|$								
$\left\langle\overline{\mathrm{L}} \overline{\mathrm{Q}}^{\mathbf{3}} 1{ }^{\text {d }}\right.$					$-6 \sqrt{ } 6$	18		
$\left\langle\overline{\mathbf{L}} \overline{\mathbf{Q}}^{\mathbf{1}} \mathbf{2}^{\mathbf{2}}{ }^{\text {\| }}\right.$					18			
$\left\langle\mathbf{L Q}^{\mathbf{3}} \mathbf{1}^{\mathbf{2}}\right.$							$-6 \sqrt{ } 6$	18
$\left\langle\mathrm{LQ}^{12}{ }^{\text {\| }}\right.$							18	

Table 6b (Continued)

$\overline{\mathrm{L}} \overline{\mathrm{Q}}^{3} 1$	$\left\|V B^{3} 0\right\rangle$	$\left\|V B B^{3} 21\right\rangle$	$\left\|V B^{121}{ }^{1}\right\rangle$	$\left\|G^{1} 0\right\rangle$	$\left\|\overline{\mathrm{L}} \overline{\mathrm{Q}}^{3} 1\right\rangle$	$\left\|\overline{\mathbf{L}} \overline{\mathbf{Q}}^{1} 2^{2}\right\rangle$	$\left\|L Q^{3} 1^{2}\right\rangle$	$\mid L Q^{12}{ }^{1}$
$\begin{gathered} \left\langle\mathrm{VB}^{3} 0\right. \\ \left\langle\mathrm{VB}^{3} 21\right. \\ \left\langle\mathrm{VB}^{1} 21\right. \\ \left\langle\mathrm{G}^{1} 0\right\| \\ \left\langle\left\langle\overline{\mathrm{L}}^{3} 1\right\|\right. \\ \left\langle\overline{\mathbf{L Q}^{1} 2^{2}}\right. \\ \left\langle\mathrm{LQ}^{3} 1^{2}\right. \\ \left\langle\mathrm{LQ}^{1} 2\right. \end{gathered}$	$\begin{aligned} & 6 \sqrt{ } 3 \\ & \end{aligned}$	$-6 \sqrt{ } 6$ 18	$-6 \mathrm{i} \sqrt{ } 3$	$-6 \sqrt{ } 6$	$\begin{array}{r} 18 \\ -18 \end{array}$	-18	$\begin{gathered} 6 \sqrt{ } 3 \\ -6 \sqrt{ } 6 \\ 6 i \sqrt{ } 3 \\ 6 \sqrt{ } 6 \end{gathered}$	18
$\overline{\mathbf{L}} \overline{\mathrm{Q}}^{1} 2^{2}$	$\left\|\mathrm{VB}^{3} 0\right\rangle$	$\left\|\mathrm{VB}^{3} 21\right\rangle$	$\mid \mathrm{VB}^{121}{ }^{\text {2 }}$ >	$\mid \mathrm{G}^{10} 0$	$\mid \overline{\mathbf{L}}^{\mathbf{3}} \mathbf{1} \mathbf{}$ >	$\left\|\overline{\mathbf{L}} \overline{\mathbf{Q}}^{1} \mathbf{2}^{2}\right\rangle$	$\left\|L^{3} \mathbf{3}^{\mathbf{2}}\right\rangle$	$\mid L Q^{12}{ }^{\text {2 }}$
$\begin{gathered} \left\langle\mathrm{VB}^{3} 0\right. \\ \left\langle\mathrm{VB}^{3} \mathbf{2 1}\right. \\ \left\langle\mathrm{VBB}^{121}\right. \\ \left\langle\mathbf{G}^{10}\right\| \\ \left\langle\left\langle\overline{\mathrm{L}}^{3} 1\right\|\right. \\ \left\langle\overline{\mathrm{LQ}}^{1} 2^{2}\right. \\ \left\langle\mathbf{L Q}^{3} 1^{2}\right. \\ \left\langle\mathbf{L Q}^{1} 2\right. \end{gathered}$		18	$6 \mathrm{i} \sqrt{ } 5$	-12	-18	18	18	$\begin{gathered} -6 \mathrm{i} \sqrt{ } 5 \\ 12 \end{gathered}$
LQ ${ }^{3} 1^{2}$	$\left\|\mathrm{VB}^{3} 0\right\rangle$	$\left\|V B^{3} 21\right\rangle$	$\mid \mathrm{VB}^{121}{ }^{\text {2 }}$	$\left\|G^{1} 0\right\rangle$	$\left\|\overline{\mathrm{LQ}}^{3} 1\right\rangle$	$\mid \overline{\mathbf{L}} \overline{\mathbf{Q}}^{12^{2}}{ }^{\text {¢ }}$	$\left\|\mathrm{LQ}^{3} 1^{2}\right\rangle$	$\left\|L^{1}{ }^{12}\right\rangle$
	$6 \sqrt{ } 3$	$-6 \sqrt{ } 6$ 18	$6 i \sqrt{ } 3$	$6 \sqrt{ } 6$	$\begin{gathered} 6 \sqrt{ } 3 \\ -6 \sqrt{ } 6 \\ -6 \mathrm{i} \sqrt{ } 3 \\ -6 \sqrt{ } 6 \end{gathered}$	18	$\begin{gathered} 18 \\ -18 \end{gathered}$	-18
LQ ${ }^{12}$	$\left\|\mathrm{VB}^{3} 0\right\rangle$	$\left\|V B^{3} 21\right\rangle$	$\mid \mathrm{VB}^{121}{ }^{\text {2 }}$	$\left\|\mathbf{G}^{1} 0\right\rangle$	$\mid{\left.\overline{\mathbf{L}} \overline{\mathbf{Q}}^{3} 1\right\rangle}$	$\mid \overline{\mathbf{L}} \overline{\mathbf{Q}}^{12^{2}}{ }^{\mathbf{2}}$	$\left\|L^{3} 1^{3}\right\rangle$	$\mid L Q^{12}{ }^{\text {] }}$
		18	$-6 \mathrm{i} \sqrt{ } 5$	12	18	$\begin{gathered} 6 \mathrm{i} \sqrt{ } 5 \\ -12 \end{gathered}$	-18	18
VB^{121}	$\left\|\mathrm{VB}^{3} 0\right\rangle$	$\left\|\mathrm{VB}^{3} 21\right\rangle$	$\mid \mathrm{VB}^{121}{ }^{\text {2 }}$ >	$\left\|\mathrm{G}^{1} 0\right\rangle$	$\left\|\overline{\mathbf{L}} \overline{\mathbf{Q}}^{3} 1\right\rangle$	$\left\|\overline{\mathrm{L}} \overline{\mathrm{Q}}^{1} 2^{2}\right\rangle$	$\left\|L^{2} 1^{3}{ }^{2}\right\rangle$	$\left\|L^{1}{ }^{12}\right\rangle$
$\begin{gathered} \left\langle\mathrm{VB}^{3} 0\right. \\ \left\langle\mathrm{VB}^{3} 21\right. \\ \left\langle\mathrm{VB}^{12} 2\right\| \\ \left\langle\mathbf{G}^{1} 0\right\| \\ \left\langle\overline{\mathbf{L Q}}^{3} 1\right\| \\ \left\langle\overline{\mathrm{L}} \overline{\mathrm{Q}}^{\mathbf{1}}{ }^{2}\right. \\ \left\langle\mathbf{L Q}^{3} 1^{2}\right\| \\ \left\langle\mathbf{L Q}^{12}\right. \end{gathered}$		$6 \sqrt{ } 6_{1}$	$6 \sqrt{ } 2_{1}$		$6 i \sqrt{ } 3$	$-6 i \sqrt{ } 5$	$-6 i \sqrt{ } 3$	$6 i \sqrt{ } 5$

Table $6 b$ (Continued)

G^{10}	$\left\|\mathrm{VB}^{3} 0\right\rangle$	$\left\|\mathrm{VB}^{3} 21\right\rangle$	$\mid \mathrm{VB}^{121}{ }^{\text {2 }}$	$\mid \mathrm{G}^{10}{ }^{\text {d }}$	$\left\|\overline{\mathrm{L}} \overline{\mathrm{Q}}^{3}{ }^{1}\right\rangle$	$\mid \overline{\mathrm{L}} \overline{\mathbf{Q}}^{12^{2}}{ }^{\text {¢ }}$	$\left\|L^{3} \mathbf{1}^{2}\right\rangle$	$\left\|L^{1}{ }^{12}\right\rangle$
$\stackrel{V^{3}}{ }{ }^{3}$	[
< B $^{12} 21$								
$\left\langle\mathrm{G}^{1}{ }^{\text {0 }}\right.$				12_{1}				
< $\overline{\mathrm{LQ}}{ }^{3} 1$					$6 \sqrt{ } 6$			
$\left\langle\overline{\mathbf{L}} \bar{Q}^{12}{ }^{2}{ }^{2}\right.$						$6 \sqrt{ } 6$		
< $\mathrm{LQ}^{3} 1^{2}{ }^{2}$							$-6 \sqrt{6}$	
<LQ ${ }^{12}$ \|	L							$-6 \sqrt{ } 6$

whence we use equation (11), Table $4 a$ and equation (27b) to finally obtain

$$
\left\langle\mathrm{L}^{2} 21\left\|\mathrm{VB}^{1} 21\right\| \mathrm{L}^{2} 21\right\rangle_{1}=4 \sqrt{ } 3
$$

We attach to the numerical value of the matrix element the $S U_{3}^{\mathrm{f} 1}$ product multiplicity as a right subscript. This is important in the further use of the reduced matrix elements of the group generators.

The reduced matrix elements of the generators of E_{7} are given in Table $6 a$ for the fermion sector and in Table $6 b$ for the boson sector.

9. E_{7} Symmetrized Operators

It is sometimes useful in developing models of symmetry breaking to construct operators that transform as tensor operators with respect to a group G and a chain of its subgroups. If these operators are constructed from products of the generators of G, they will have the property of preserving the irreps of G while at the same time coupling different irreps of the subgroups. Thus these operators will allow one to introduce a symmetry breaking in a given irrep of G without at the same time coupling the irreps of G.

In the case of E_{7}, the generators can be regarded as forming the 133 components of a tensor operator $\mathbf{T}^{(216)}$. The matrix elements of this tensor operator have already been evaluated. New tensor operators $\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(\lambda)}$ can be formally constructed from bilinear products of the group generators. These operators will be symmetric in the generators for $(\lambda)=(0)$ and $\left(2^{5} 1^{2}\right)$. The operator $\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(0)}$ will have matrix elements proportional to those for the second-order Casimir invariant for E_{7} (Wybourne 1974). The reduced matrix elements of these operators may be found by noting that (cf. Butler 1975, equation 19.5)

$$
\begin{align*}
\left\langle x_{1} \lambda_{1} \|\left[\mathbf{T}^{(216)}\right.\right. & \left.\left.\mathbf{T}^{(216)}\right]^{(\lambda) r} \| x_{2} \lambda_{2}\right\rangle \\
= & \delta_{x_{1} x_{2}} \delta_{\lambda_{1} \lambda_{2}}|\lambda|^{\frac{1}{2}} \phi_{\lambda_{1}}\left\{(12) \lambda_{1} 21^{6} \lambda_{1}\right\}_{r_{2} r_{2} \prime^{\prime}}\left\{(23) \lambda_{1} 21^{6} \lambda_{1}\right\}_{r_{1} r_{1}{ }^{\prime}} \\
& \times\left\{(123) 21^{6} 21^{6} \lambda\right\}_{r r^{\prime}}\left\{\begin{array}{ccc}
21^{6} & \lambda & 21^{6} \\
\lambda_{1} & \lambda_{1} & \lambda_{1}
\end{array}\right\}_{r_{2}{ }^{\prime} 0 r_{1} r^{\prime}} \\
& \times\left\langle x_{1} \lambda_{1} \| T^{\left.(216) r_{1} \| x_{1} \lambda_{1}\right\rangle\left\langle x_{1} \lambda_{1}\left\|T^{(216) r_{2}}\right\| x_{1} \lambda_{1}\right\rangle},\right. \tag{28}
\end{align*}
$$

where there is a summation over repeated product multiplicity indices. If λ_{1} is identified with the fermion or boson irreps of E_{7} then the reduced matrix elements on the right-hand side of equation (28) follow from equation (27b) and we find

$$
\left\langle 1^{6}\left\|\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(2)}\right\| 1^{6}\right\rangle=-1596|\lambda|^{\frac{1}{2}}\left\{\begin{array}{ccc}
21^{6} & \lambda & 21^{6} \tag{29}\\
1^{6} & 1^{6} & 1^{6}
\end{array}\right\}
$$

for the fermion sector and

$$
\left.\left\langle 21^{6}\left\|\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(\lambda)}\right\| 21^{6}\right\rangle=2394|\lambda|^{\frac{1}{2}} 21^{1^{6}} \begin{array}{ll}
& 21^{6} \tag{30}\\
21^{6} & 21^{6} \\
21^{6}
\end{array}\right\}
$$

for the boson sector. The $6 j$ symbols follow directly from the work of Butler et al. (1978).

The eigenvalues of the operator $\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(0)}$ may be placed into correspondence with those of the second-order Casimir operator I_{2} by writing

$$
\begin{equation*}
I_{2}=-\frac{1}{18} \sqrt{ } 133\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(0)} \tag{31}
\end{equation*}
$$

with (Wybourne 1974)

$$
\begin{equation*}
I_{2}=(\Lambda, \Lambda+2 g), \tag{32}
\end{equation*}
$$

where Λ is the highest weight of the E_{7} irrep and $2 g$ is the sum of the positive roots of the E_{7} Lie algebra. The eigenvalues of I_{2} may be read from Table 1 of Wybourne and Bowick (1977) by noting that the eigenvalues of their Dynkin index $B(\lambda)$ are related to those of I_{2} by

$$
\begin{equation*}
I_{2}=\frac{1}{3} \sqrt{ } 133 B(\lambda) / N(\lambda), \tag{33}
\end{equation*}
$$

where $N(\lambda)$ is the dimension of the E_{7} irrep (λ).
The other symmetric bilinear operator $\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(2512)}$ has couplings both within the fermion sector and in the boson sector. These matrix elements can be found by using equations (29) and (30) to calculate the E_{7} reduced matrix elements together with the tables of $3 j m$ factors. We note that the $\left(2^{5} 1^{2}\right)$ irrep, also often designated as the 1539 irrep, has been used as a possible candidate for the Higgs field to give superheavy masses to the leptoquarks (Ramond 1977; Sikivie and Gürsey 1977).

An operator having eigenvalues proportional to those of the sixth-order Casimir invariant of E_{7} can be constructed by first constructing the tensor operator

$$
\begin{equation*}
\mathbf{U}^{(26)} \equiv\left[\left[\mathbf{T}^{(216)} \mathbf{T}^{(216)}\right]^{(2512)} \mathbf{T}^{(216)}\right]^{(26)} \tag{34}
\end{equation*}
$$

and then the operator

$$
\begin{equation*}
\left[\mathbf{U}^{(26)} \mathbf{U}^{(26)}\right]^{(0)} \tag{35}
\end{equation*}
$$

The $E_{7} \operatorname{irrep}\left(2^{7}\right)$ (often designated as the 912 irrep) has also been considered as a candidate for the Higgs field to give superheavy masses to the leptoquarks (Ramond 1977; Sikivie and Gürsey 1977). It is interesting to note that to construct a tensor operator transforming as (2^{7}) from the group generators of E_{7} we must go to operators that are certainly higher than third order in the generators. Of course such an operator will necessarily be null in the fermion and boson sectors.

10. Concluding Remarks

The 3jm factors given here have been systematically evaluated, paying unusual care in the assignment of phases. The entire calculation has been made within a particular E_{7} group chain, avoiding the need to resort to Gelfand basis states as is frequently done. The calculations required a knowledge of the character theory of the relevant group chain and little more, other than the dimensions of the group representations. There would be little difficulty in extending the tables to include other E_{7} triads such as $\left\{1^{6}, 21^{6}, 2^{6}\right\}$ and $\left\{1^{6}, 21^{6}, 32^{5} 1\right\}$ or to obtain $3 j m$ factors for the triads $\left\{\lambda_{1} \lambda_{2} \lambda_{3}\right\}$ where $\lambda_{i}=1^{6}, 21^{6}, 2^{6}$ or $2^{5} 1^{2}$. The necessary character theory already exists.

The examples we have discussed expose most of the problems that arise in the evaluation of $3 j m$ factors and encourage the view that it is comparatively simple to evaluate $6 j$ symbols and $3 j m$ factors directly in the physical group structure without transforming to nonphysical canonical group structures.

The $3 j m$ factors given here are fully symmetrized and permit full use of the WignerRacah calculus to be made. These $3 j m$ factors have been used to compute the matrix elements of the generators of E_{7} in a particular basis for the fermion and boson sectors. It does not appear difficult to obtain the results for other bases. The calculations reported here will form the basis for a more detailed study of symmetry breaking in E_{7} models.

References

Butler, P. H. (1975). Philos. Trans. R. Soc. London A 277, 545.
Butler, P. H. (1979). In 'Recent Advances in Group Theory' (Ed. J. C. Donini) (Plenum: New York).
Butler, P. H., Haase, R. W., and Wybourne, B. G. (1978). Aust. J. Phys. 31, 131.
Butler, P. H., and King, R. C. (1974). Can. J. Math. 26, 328.
Butler, P. H., and Wybourne, B. G. (1976a). Int. J. Quantum Chem. 10, 581.
Butler, P. H., and Wybourne, B. G. (1976b). Int. J. Quantum Chem. 10, 615.
Cung, V. K., and Kim, C. W. (1977). Phys. Lett. B 69, 359.
Gell-Mann, M., Ramond, P., and Slansky, R. (1978). Rev. Mod. Phys. 50, 721.
Gürsey, F., Ramond, P., and Sikivie, P. (1975). Phys. Rev. Lett. 12, 2166.
Gürsey, F., and Sikivie, P. (1976). Phys. Rev. Lett. 36, 775.
Judd, B. R. (1963). 'Operator Techniques in Atomic Spectroscopy' (McGraw-Hill: New York).
Ramond, P. (1976). Nucl. Phys. B 110, 214.
Ramond, P. (1977). Nucl. Phys. B 126, 509.
Rotenberg, M., Bivins, R., Metropolis, N., and Wooten, J. K. (1959). 'The 3-j and 6-j Symbols' (M.I.T. Press: Boston, Mass.).

Saclioglu, C. (1977). Phys. Rev. D 15, 2267.
Sikivie, P., and Gürsey, F. (1977). Phys. Rev. D 16, 816.
Wybourne, B. G. (1970). 'Symmetry Principles and Atomic Spectroscopy' (with an Appendix of Tables by P. H. Butler) (Wiley-Interscience: New York).
Wybourne, B. G. (1973). Int. J. Quantum Chem. 7, 1117.
Wybourne, B. G. (1974). 'Classical Groups for Physicists' (Wiley-Interscience: New York).
Wybourne, B. G. (1978). J. Math. Phys. (New York) 19, 529.
Wybourne, B. G., and Bowick, M. J. (1977). Aust. J. Phys. 30, 259.

