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Abstract 

A comparison of the spatial and fourier components of a number of effective two-nucleon interactions, 
suitable for use in analyses of inelastic nucleon scattering data, is complemented by a comparison 
of their use in a variety of distorted wave analyses. Specifically, a set of effective interactions derived 
from 'realistic' potentials have been compared, not only with each other, but also with a semi
phenomenological valence interaction that has been developed over recent years and has been used 
extensively in reaction data analyses. 

1. Introduction 

A prime objective of analyses of direct reaction scattering from nuclei is to 
ascertain what details are valid for any model spectroscopy that is applicable to the 
nuclei involved. Analyses of nucleon inelastic scattering data in particular afford 
useful tests of microscopic models of nuclear structure, not only because a variety 
of data can be obtained in these experiments, including spin-dependent data such 
as analysing powers, but also because such reactions reflect the single-particle 
transition densities of the spectroscopy and are therefore complementary as tests. of 
that spectroscopy to the predictions of electromagnetic transition rates. Indeed 
recent studies (Amos et al. 1978; Kennedy et al. 1978) have demonstrated that 
proton inelastic scattering is particularly sensitive to neutron excitations in the 
target and therefore can be more instructive than the B(EL) predictions of the same 
spectroscopy. 

To take advantage of the stringent test of spectroscopy that is offered by analyses 
of inelastic nucleon scattering, it is essential that all signifLcant components of the 
reaction mechanism be known and that an appropriate representation of each such 
attribute of the reaction mechanism be specified. A number of data analyses, 
particularly those for transitions involving excitations of unnatural parity states, 
have established the important components of the direct interaction mechanism 
(Love and Satchler 1971; Geramb et al. 1975, and references cited therein; Bertsch 
et al. 1977; Smith et al. 1978). These studies have shown that an effective two
nucleon (valence) interaction comprising at least central and tensor force parts, 
and possibly also a two-body spin-orbit force term, is required in analyses of all 
data in the direct reaction energy range (,...., 10-200 MeV nucleons). Additionally, 
for most natural parity transitions, and since microscopic models of spectroscopy 
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of the electromagnetic properties of such transitions invariably require polarization 
charges to match observed data, core polarization corrections must be included 
in inelastic scattering data analyses. By analogy with the electromagnetic transition 
corrections, inelastic scattering core polarization corrections have been represented 
usually by a collective model prescription of the form factors involved (Love and 
Satchler 1971; Nesci and Amos 1977). In fact the correlation between effective 
charges and core polarization corrections to inelastic scattering transition amplitudes 
has been useful in predicting B(EL) values. The connection between the two is 
broken, however, if the transition spectroscopy is dominated by neutron excitations 
(Amos et al. 1978; Kennedy et al. 1978). Thus transition data whose analyses 
require little core polarization correction are required in order to test with least 
uncertainty the character of the valence contributions. 

It may also be necessary to account for other reaction mechanism components 
in analyses and these must be treated appropriately, or conditions selected specifically 
to minimize their roles, in order that inelastic scattering data may be used most 
effectively to test various valence interactions. Of all such components one may 
contemplate, two seem most likely. The first involves formation of virtual particles 
(a deutron in particular). However, while there have been claims of significant 
effects from this component, our studies (Geramb et al. 1975; Nesci and Amos 1977; 
Rikus et al. 1977; Smith et al. 1978) have revealed little need to include such effects in 
(p, p') analyses, but some need, although by no means a major one, in (p, n) data 
analyses. Indeed far more important than these higher order corrections are those in 
which giant resonances of the target act as doorway states (Geramb et al. 1975) in 
processes by which the projectile is captured and a nucleon, bound initially in the 
target, is ejected. These resonance processes are all quite energy dependent so that by 
selecting 'non-collective' data taken with sufficiently high projectile energy (> 30 MeV 
for heavy nuclei) only the valence interaction components in transition amplitudes 
should be important. 

Of all the important reaction processes (for inelastic nucleon scattering) noted 
above, only the valence interaction component yields transition amplitudes free 
from any of the uncertainties implicit in the use of collective model representations 
and their attendant form factors. Thus, for any circumstances under which only 
valence interaction contributions are important, transition data give the most 
significant test of details of the chosen microscopic model of spectroscopy. Conversely, 
given transitions for which microscopic models of spectroscopy are well established 
(little or no core polarization correction required) and for conditions that make 
virtual particle and resonance effects insignificant (sufficiently high projectile energies, 
for example) then transition data can be used to test the characteristics of any 
appropriate valence interaction. Such was the case in recent work by Bertsch et al. 
(1977) and Borysowicz et al. (1977), although their choice of reaction data for analysis 
was more for illustrative purposes than for use as a critical assessment of the various 
effective interactions that they derived from an assortment of realistic two-nucleon 
potentials. 

It is the purpose of the present study to use inelastic scattering data as a more 
critical test of these various effective valence interactions and to compare their 
general characteristics, as well as their specific effects in inelastic scattering analyses, 
with those of a standard (and perhaps simpler) semi-phenomenological effective 
interaction that has been used with considerable success in a number of previous 
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analyses of inelastic scattering data (Geramb et al. 1975; Nesci and Amos 1977; 
Amos et al. 1978; Kennedy et al. 1978; Smith et al. 1978, and references cited 
therein). 

Details of the various effective valence interactions are given in the next section 
while the specifics of the reaction analyses are presented in Section 3. Finally the 
results of these analyses are discussed in Section 4. 

2. Effective Interactions 

All the effective interactions considered herein can be expanded generally in the 
form 

t(Ol) = L Vc~~(OI)PSpT + L ~!~(OI)SOlPT + L Vs~T(OI)L.SpT, (1) 
ST T T 

where the quantities Vcen' Vten and Vso are functional forms of the (local) central, 
tensor and two-body spin-orbit forces respectively. The superscripts S (T) assume 
values 0 or 1 according to the projection operators P selecting singlet or triplet spin 
(isospin) two-body channels, and we identify the operators by expectation values, 
whence for 

SOl = 3(crO.r)(cr1.r)jr 2 -(crO ·cr1) (2) 
we have 

(3S1 1 SOl 1 3D1> = .J8, (3) 
whilst for 

L.S = (rxp).(cro+cr1)j2h (4) 
we have 

(3Po lL.SI 3p o> = -2. (5) 

In these equations r is the relative coordinate vector and the states in the expectation 
values are two-particle spin-angle functions: 

1 (2S+1)LJ> = L (LSMLMsIJMJ>YLML(Q01)I-H.-SMs>' (6) 
MLMS 

A variety of forms are considered herein for the radial functions in equation (1); 
specifically those used in a number of inelastic scattering analyses (e.g. Geramb et al. 
1975; Smith et al. 1978) and those derived from fitting G-matrix elements of 'realistic' 
forces (e.g. Borysowicz et al. 1977).* These sets of effective interactions are listed in 
Table 1, together with the strengths of various components in each two-body channel. 
This table classifies the effective interaction by a prefix (the first letter of which 
indicates the nature of the force and the next two letters give the two-body spin-isospin 
channel in which it acts) followed in parentheses by an abbreviation for the authors 
of the original effective interaction or realistic potential. Thus, for example, CSE (WW) 
denotes the central singlet-even potential of the effective interaction due to Wong 
and Wong (1967). The symbolism is fully detailed in the footnote to Table 1. 

* The effective interactions of Borysowicz et al. (1977) differ from their subsequently published 
results (Bertsch et al. 1977) in that the latter set uses only three Yukawa ranges compared with the 
four ranges used by Borysowicz et al. In the present paper we have chosen to make comparisons 
with the effective interactions of Borysowicz et al. The slightly simpler (fewer ranges) Bertsch et al. 
set produces an almost identical variation in coordinate space and in the low momentum fourier 
transforms. 
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Table 1. Classification and strengths of effective interactions 

Classification Strengths (MeV) 
No. NameA ST Type Vi V2 V3 V4 

Standard interaction 

1 CSE(WW) 01 Central -25·0 
2 CTE(WW) 10 Central -47·0 
3 TTE(EH) 10 Tensor -105·25 -1·9481 
4 TTO(EH) 11 Tensor 17·918 -2·3085 0·3831 
5 STE(EH) 10 Spin-orbit -213·91 
6 STO(EH) 11 Spin-orbit -282·41 -5·1793 

RD interaction 

7 CSE(RD) 01 Central -5294·5 -3007·8 2419·2 
8 CTE(RD) 10 Central -12040·9 -2776·3 3012·9 
9 TTE(RD) 10 Tensor 28717·7 -537·0 421·4 28·3 

10 STO(RD) 11 Spin-orbit 30001·5 -10·6 -1·2 

HJ interaction 

11 CSE(HJ) 01 Central -493·3 -2716·1 1754·3 10·463 
12 CTE(HJ) 10 Central -11418·0 1131·1 597·0 10·463 
13 TTE(HJ) 10 Tensor -981·6 -947·8 800·95 

EL interaction 

14 TTO(EL) 11 Tensor -3884·4 245·6 -210·5 
15 STE(EL) 10 Spin-orbit 2033·4 643·4 -103·8 
16 STO(EL) 11 Spin-orbit 26803·7 195·6 -38·9 

A The first letter of the name indicates the nature of the force (C, central; T, tensor; S, spin-orbit), 
the next two letters give the two-body spin-isospin channel (S, singlet; T, triplet; E, even; 0, odd) 
and the abbreviation in parentheses gives the origin of the effective interaction (WW, Wong and 
Wong 1967; EH, Eikemeier and Hackenbroich 1971; RD, Reid 1968; HJ, Hamada and Johnston 
1962; EL, Elliott et al. 1968). 

The radial functions in the effective interactions of Table 1 have the form 

V(r) = L ~f(rfRj) (7) 
j 

for the central and spin-orbit components and 

V(r) = L ~ r2 f(rfR j) (8) 
j 

for the tensor force part. The precise nature of these forms and the ranges involved 
are given in Table 2. 

The effective interaction defined hereafter as the Standard interaction (Wong 
and Wong 1967; Eikemeier and Hackenbroich 1971) involves a mixture of gaussian 
functions and is composed of terms 1-6 in Tables 1 and 2. This form has been used 
extensively, and with considerable success, in a variety of inelastic nucleon scattering 
analyses and will be compared here with interactions derived from fitting a sum of 
Yukawa forms to the G-matrix elements of the 'realistic' interactions due to Reid 
(1968; terms 7-10 in Tables 1 and 2) and Hamada and Johnston (1962; terms 
11-13). Neither of these effective interactions, to be referred to henceforth as RD 
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Table 2. Character and ranges of radial functional forms in effective interactions 

The functions f(r/Ri) of equations (7) and (8) are specified 

Character Range (fm) 
No. Name Form Rl R2 R3 R4 

Standard interaction 

1 CSE(WW) Gaussian 1·907 
2 CTE(WW) Gaussian 1·721 
3 TTE(EH) Gaussian 0·960 2·034 
4 TTO(EH) Gaussian 1·146 1·383 2·234 
5 STE(EH) Gaussian 0·747 
6 STO(EH) Gaussian 0·756 1·021 

RD interaction 

7 CSE(RD) Yukawa 0·2 0·4 0·5 
8 CTE(RD) Yukawa 0·2 0·4 0·5 
9 TTE(RD) Yukawa 0·2 0·4 0·5 0·7 

10 STO(RD) Yukawa 0·2 0·4 0·5 

HJ interaction 

11 CSE(HJ) Yukawa 0·2 0·4 0·5 1·414 
12 CTE(HJ) Yukawa 0·2 0·4 0·5 1·414 
13 TTE(HJ) Yukawa 0·2 0·4 0·5 

EL interaction 

14 TTO(EL) Yukawa 0·2 0·4 0·5 
15 STE(EL) Yukawa 0·2 0·4 0·5 
16 STO(EL) Yukawa 0·2 0·4 0·5 

and HJ respectively, has a contribution in the triplet-odd tensor (TTO) channel 
and so both forms have been supplemented by the addition of that component from 
the interaction (EL) due to Elliott et al. (1968; term 14). 

At this point a comment should be made concerning the absence of central 
odd-state potentials from Tables 1 and 2. It has often been observed that, whilst 
direct and exchange distorted wave amplitudes are constructive for the even-state 
parts of the central force, those for the odd states are destructive (Love and Satchler 
1970; Satchler 1973). In fact the calculations of Bertsch et al. (1977) using central 
odd-state potentials derived from the EL interaction indicated that the inclusion of 
odd-state components had typically only a 2 % or 3 % effect on cross-section pre
dictions for inelastic nucleon scattering. Since most data are accurate to only 5 % 
it is not surprising that the effective interactions in common use, including that we 
have referred to as the Standard interaction, have seen no need to include such 
components. Indeed, heavy ion analyses, which may be sensitive only to the direct 
terms, may offer the only means of investigating such components. 

We have then three prescriptions for the effective interactions to be used in inelastic 
nucleon scattering analyses, with the one recommended by Borysowicz et al. (1977) 
being that we have classified as RD. In Fig. 1 therefore we compare the configuration 
space variations (labelled by R) and fourier transforms (labelled by K) of the RD 
interaction (dashed curves) with those of the Standard interaction (solid curves). 
It is evident that the general trends are the same although the short-range properties 
of the RD interaction are quite different in the central components, with a sign 
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Fig. 1. Comparison of the properties in coordinate space R and momentum space K of the Standard 
effective interaction (solid curves) with those of the RD effective interaction (dashed curves). The 
effective interactions and components are as defined in Table 1. The RD triplet-odd tensor force 
used is the TTO (EL) component in Table 1 and the triplet-even spin-orbit force is STE (EL). The 
arrows shown on four of the RD interaction curves indicate a decreasing value that changes sign at 
smaIIer arguments. 
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change occurring (i.e. a lOIlg-range attraction and a short-range repulsion). The 
short-range repulsion dominates such forces for large momentum components 
(k> 2 fm- 1) where it produces a relatively large repulsive tail in momentum space, 
in sharp contrast to the uniformly attractive tail of the Standard interaction form. 
The importance of such high momentum components in distorted wave calculations 
is by no means understood and these differences should be borne in mind in the 
comparison of the different central force distorted wave predictions to'follow. It is 
apparent, however, that the fourier transforms for all other terms, and for the central 
terms for components in momentum space <2 fm-t, compare very closely. 

Table 3. Multipole moment integrals of effective interactions 
All values for the h integrals are in units of MeV fm2+L. The values in parentheses 
are obtained using the alternative effective interaction expansion of Bertsch 

et al. (1977) 

Name Jo J2 J4 

CSE(yVW) -965 -5265 -47867 
CSE(RD) -849 (-1011) - 3250( - 6503) - 20967 (-186600) 
CSE(HJ) -893 (-868) - 6484( - 5929) -192259( -184300) 

CTE(WW) -1335 -5932 -43944 
CTE(RD) -1290( -1530) - 4665( - 8009) -28403 (-192700) 
CTE(HJ) -1072( -1068) - 6464( - 6343) -187920( -185900) 

TTE(EH) -1281 -7502 -90097 
TTE(RD) -1630( -1333) -7707( - 6640) -116471( -93515) 
TTE(HJ) -1132( -1234) -7075( - 8943) - 83310 (-162900) 

TTO(EH) 376 2726 40118 
TTO(EL) 400 (391) 1948(2390) 22087 (39500) 

STE(EH) -496 -416 -580 
STE(EL) -559 (-654) -301 (-628) -406 (-2009) 

STO(EH) -710 -630 -957 
STO(RD) - 3OO5( -1 077) -713 (-605) -539 (-1399) 
STO(EL) - 2790(- 1023) -706 (-675) -542 (-1778) 

An alternative, and perhaps more significant, measure of the effects of any force 
in reaction analyses is given by the low multipole moments, defined by 

h = 4n f: rL+2 V(r) dr, (9) 

where the V (r) are the radial parts of the forces obtained by omitting the operators 
SOl and L.S in equation (1). The JL results for the effective interactions considered 
here are given in Table 3. The corresponding Jo and J2 values of all force components 
for, the different models are very similar and the structural differences of the forces 
begin to show up significantly only in the J4 values, which highlight the configura
tion space differences at distances greater than 2 fm. 

As a final comparison, which has also been used in previous analyses (Bertsch et al. 
1977; Borysowicz et al. 1977), we consider the oscillator matrix elements of the 
effective interactions. Borysowicz et al. compared 10 harmonic oscillator matrix 
elements calculated from the separated HJ potential with the matrix elements 
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calculated from their Yukawa fit. To these values we have appended the expectations 
from our Standard interaction, and the results are given in Table 4, from which a 
generally good agreement is immediately apparent (typically 5-10 % disparity). 

In summary then, significant differences between the effective interactions derived 
from realistic potentials and the extensively used semi-phenomenological effective 
interaction are seen only in the high momentum components and high (J4 ) moments 
of the interactions. It remains to be seen if such differences can be distinguished 
in distorted wave analyses of inelastic nucleon scattering data. 

Table 4. Comparison of S-wave oscillator matrix elements 
for single-even components 

The results are obtained using an oscillator energy of 14 MeV 

Matrix elements calculated from: 
n n' separated Yukawa Standard 

HJ potentialA fitA interaction 

0 0 -5·61 -5·69 -5·86 
1 0 -4·70 -4·72 -4·46 
1 1 -4·53 -4·55 -4·22 
2 0 -3·61 -3·60 -3·08 
2 1 -3·72 -3·76 -3·51 
2 2 -3·34 -3·40 -3·37 
3 0 -2·62 -2·61 -2·06 
3 1 -2·84 -2·89 -2·75 
3 2 -2·71 -2·76 -2·97 
3 3 -2·38 -2-45 -2·88 

A Values as tabulated previously by Bertsch et al. (1977) 
and Borysowicz et al. (1977). 

3. Distorted Wave Analyses 

In the microscopic distorted wave approximation (DW A) the measurables 
associated with direct reaction nucleon scattering from nuclei are all related to 
transition amplitudes of the form (Geramb and Amos 1971) 

Tri = A<X~-)(O)I/IJrMf(1, ... ,A) I t(Ol) I d 01 {xl+)(0)l/IhM.(1, ... ,A)}) 

= L S(j1,j2; Ji,Jr; I).4(j1,j2; Ji,Jr; I), 
ithI 

where the spectroscopic amplitudes are defined by the reduced matrix element 

S(j1,j2; Ji,Jr; I) = <1/1 Jr II [a}2 x a itrill/l J) 

and the two-particle amplitudes are 

.4 = L (-)it-ml(j1,j2,m1' -m2II-N)(2Jr+1)-t 
mlm2N 

(10) 

(11) 

x <Ji , I, M i , N I Jr, Mr) <x~ -)(0) <Phm2(1) I t (01) I d 01 {xl + )(0) <Pitm.(l)}). (12) 

Here the x(±) are the distorted waves, the single-nucleon bound states <Pjm are obtained 
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by cofactor expansions of the many-particle nuclear states Il/I JM), and d 01 is the 
two-particle antisymmetrization operator. 

All details of the derivation of the above equations, of the notation and of their 
evaluation when the effective interaction t(OI) takes the central, tensor and spin-orbit 
operator forms of equations (1)-(5) are given in earlier publications (Geramb and 
Amos 1971; Geramb et al. 1975; Smith 1976). We wish to draw one selection rule 
from these publications, however. The radial forms of the effective interaction of 
equation (1), expressed generally in two-nucleon spin and isospin channels by 

t(Ol) = L ASrCr01)pS pT, (13) 
ST 

can be expanded in multipoles, whence 

AST(r01 ) = L 4nAfT(rO' r1) YLM(Qo) YlM(Q1)' (14) 
LM 

The standard vector coupling techniques for the direct matrix elements then identify 
the interaction multipole L for the central component with the orbital angular 
momentum transfer quantum number. Thus L is constrained by the following 
relationships between angular momentum transfer and parity: 

1= li-/r, 

1= L+S, 

S = 0,1, 

ni nr = (_)L. 

(15a) 

(15b) 

The multipole selection rules for the tensor and two-body spin-orbit operators are 
more complex, however, with the direct amplitudes for each being determined by a 
number of multipoles with values equal to or near the total angular momentum 
transfer quantum number. No such identifications exist for the exchange amplitudes 
which can receive contributions from all multipoles of the interaction but, to the 
extent that the data prediction is sensitive to the direct amplitudes, a judicious choice 
of the reaction will allow the selective investigation of specific multipoles of the 
interaction. 

The multipole selection facility discussed above together with the two reaction 
constraints discussed in the Introduction (namely reliable available spectroscopy 
to reduce or eliminate the core polarization amplitude, and data taken for transitions 
with sufficient energy that competing reaction mechanisms are not significant) have 
guided the selection of the four sets of data, detailed below, for analysis as a reliable 
basis to compare the interactions of Tables 1 and 2. 

Inelastic proton scattering to the first and second excited states of 89y will allow 
us to investigate the triplet two-body isospin components of the effective interactions, 
as both excitations are well described by single-proton transitions. The ground 
state of 89y is considered to be a 2P1/2 proton plus an 88Sr core and the states studied 
are the 9/2+ state at 0·908 MeV and the 3/T state at 1·5 MeV. A zero-order shell 
model description assumes for the 9/2+ state a 199/2 proton outside an 88Sr core 
whilst the 3/T state is considered to be a 2P3/2 hole plus an additional proton in 
the already half-filled 2P1/2 subshell. This description of the 9/2+ state (Morrison 
et al. 1977) has been used extensively in previous inelastic scattering analyses (Geramb 
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and Amos 1971; Geramb 1972) and has required only minor core polarization 
corrections, in agreement with the prediction of the model that the 9/2 + state should 
decay to the ground state via an M4-E5 y-ray with a transition rate of 5-6 s, compared 
with the experimental y-ray transition rate of 13-16 s. The description of the 3/T 
state is certainly poorer and will consequently require a significant core polarization 
correction to describe the transition, but it does represent the dominant part of the 
wavefunction (Vergados and Kuo 1971). 

Specifically therefore, the scattering of 24· 5 MeV protons to the 3/2- (1' 5 MeV) 
state of 89y has been analysed as a test of the low multipoles (L = 0,2 for the 
central direct component). The single-particle bound states were described by a 
Woods-Saxon well which has been deemed appropriate in previous work (Geramb 
1972), with the continuum particle optical model parameters and data being taken 
from the work of Benenson et al. (1968). 

Table 5. Spectroscopic factors used in reaction analyses 
The spectroscopic factors are as defined in equation (11). Proton and neutron 

bound states are indicated by n and v respectively 

Target r 1 
In r h h I S (j"jz; hJr ; l) 

89y 1/2- 3/2- 2p3/2(n) 2pl/2(n) 1 1·7321 
2 -2·2361 

89y 1/2- 9/2+ 2pl/2(n) Ig9/2(n) 4 3·0 
5 3·3166 

90Zr 0+ 0+ (IASA) 2pl/2(V) 2pl/2(n) 0 0·2475 
Ig9dv) Ig9/2(n) 0 0·8877 

28Si 0+ 6-(T = 0) Ids/2(n) If7/2(n) 6 1·7388 
Ids/2(v) If7/2(V) 6 1·7388 

28Si 0+ 6-(T = 1) Ids/2(n) If7/2(n) 6 1·7388 
Ids/2(v) If7/2(V) 6 -1·7388 

A Isobaric analogue of the ground state. 

The higher multipoles (L = 3,5) have been examined using the scattering of 
61·4 MeV protons to the 9/2+ state of 89y, the data being those of Scott et al. (1969), 
the optical model parameters being taken from the work of Fulmer et al. (1969) 
and the bound states being described by a harmonic oscillator well of strength 
9·18 MeV. 

The single-proton transition descriptions used above limit the usefulness of reaction 
analyses to an investigation of only the triplet isospin two-body components. In 
order to study the singlet isospin channels therefore we have also analysed (p, n) data 
to the isobaric analogue of the ground state of 90Zr and (p, pi) data to the high spin 
(6-; T = 0,1) unnatural parity states in 28Si, both of which involve significant 
neutron excitations in the full spectroscopic descriptions. 

Specifically, direct reaction (p, n) data initiated by 35 MeV protons (Doering 
et al. 1975) to the isobaric analogue of the ground state of 90Zr will be sensitive to 
the L = 0· central multipole. The ground state of 90Zr is well described by two 
(valence) protons weakly coupled to an 88Sr core constrained to the 2Pl/2-1g9/2 
'shell' and the final state in the reaction, namely the 0+ state in 90Nb, is taken as 
the isobaric analogue, the details of this description and the resultant spectroscopic 
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factors being given in a previous paper (Rikus et al. 1977). For simplicity and because 
all relevant elastic scattering data have not been obtained, all optical model potential 
parameters were derived from the Bechetti and Greenlees (1969) prescription, and 
the bound states are represented by harmonic oscillator wavefunctions evaluated 
using an oscillator energy of 9 . 16 MeV. 

The higher multipoles (L = 5 for central direct) have been investigated using the 
inelastic scattering of 135 MeV protons (Adams et al. 1977) to two 6- states in 28Si 
(T = 0, 11·6 MeV; T = 1,14'4 MeV). A transition spectroscopy of (lds/2)-1(lf7/2) 
particle-hole excitations from a projected Hartree-Fock intrinsic ground state is 
used (Smith et al. 1978) with the bound states generated in a 13· 5 MeV harmonic 
oscillator well and the optical model taken from fits to the elastic scattering of 155 
and 100 MeV protons from 28Si for the entrance and exit channels respectively 
(Willis et al. 1968; Horowitz 1972). 

For completeness, the spectroscopic factors derived from the nuclear state descrip
tions detailed above and the optical model parameters used in all analyses are listed 
in Tables 5 and 6 respectively. 

Table 6. Optical model parameters 

Target Elab Vo ro ao Wo 4Wn rn an Vso rso aso r. 
nucleus (MeV) (MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) 

B9Y 24'5 46'57 1·232 0·627 () 43·68 1·275 ()'627 0 1·31 

B9Y 61·4 39·5 1·2 0·69 5 ·12 1()'16 1'4()3 ()'53 6'59 1'027 0·83 1'25 

90Zr 35'0 49·04 1·17 0'75 5·0 17·53 1·32 0'51 6·2 1·01 0·75 1·25 
22·97 46'97 1·17 0·75 3 '52 24·63 1·26 0'58 6·2 1·01 0·75 

28Si 135 22'7 1·29 0·7 11·0 0 1·26 0·67 2'78 0'95 0'62 1·25 
ExitA 21·7 1·27 0·68 618 0 1'55 0·42 9·54 1'08 0·61 1·29 

AT = 0 and 1 states at 11·6 and 14·4 MeV respectively. 

4. Results 

The results of our reaction analyses are presented in Figs 2-5 below, where in 
each case we compare the predictions of the Standard, RD and HJ effective interactions 
for each of the central and tensor components separately and for the total (central 
plus tensor) prediction. In all figures the Standard interaction prediction is depicted 
by the solid curve, the RD prediction by the dashed curve and the HJ prediction 
by the dot-dash curve. Also shown separately is the prediction of the TTO (EL) 
tensor component (dotted curve) which is common to both the RD and HJ effective 
interaction prescriptions. 

No attempt has been made here to further investigate the two-body spin-orbit 
components beyond the comparisons made in Section 2. Those comparisons indicated 
that the RD and HJ forms are very similar in configuration and momentum space 
to the Standard form and, as the Standard form has been found to make only negligible 
contribution in previous analyses of the reactions under examination here (Rikus 
et al. 1977; Smith et al. 1978), we have not pursued the spin-orbit comparisons 
further. One exception to this is the analysis of transitions to high spin states, for 
example, the 28Si 6- states (Smith et al. 1978), where the Standard spin-orbit form 
produced non-negligible results but gave incorrect relative magnitude predictions 
for the isovector and isoscalar transitions, a result which led us to infer that the role 
of an L. S force should be small. Indeed the only way to delineate the role of a 
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two-body L. S component may be to analyse the spin-dependent measurables 
(asymmetry, polarization and spin-flip probability) for transitions for which reliable 
spectroscopy is available (Lebrun et al. 1976). 
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Fig. 2. Comparison between the Standard, RD and HJ effective interaction results for the differential 
cross section from DWA analyses of the inelastic scattering of 24· 5 MeV protons leading to the 
3/2- (1·5 MeV) state in s9 y. In (b) the RD and HJ results found by using only their tensor force 
components are identical (only the triplet-odd channel) and are of the EL interaction form. The 
total (central plus tensor) cross section predictions in (c) are supplemented by a small core polarization 
correction to give the satisfactory fit to the experimental data shown in (d). 

The analyses of the excitation of the 3jr (1. 5 MeV) state in 89y by 24· 5 MeV 
protons are shown in Fig. 2. This excitation, which is described by a single-proton 
transition and hence is sensitive only to the T = 1 two-body components of the 
effective interactions, and is selective of the low multipoles of the interaction (L = 0,2 
for the central direct component), is dominated by the central components for which 
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it is seen that all three effective interaction prescriptions predict essentially identical 
cross section structure. The Standard and HJ forms predict comparable magnitudes 
also and exceed the RD predictions by a factor of approximately 1·5 at forward 
angles. It should be noted that we also compared the HJ central prediction shown 
in Fig. 2 with the DW A cross section prediction using an alternative effective 
interaction, also derived from the long-range part of the Hamada-Johnston 
potential (Love et al. 1969). The DW A cross section prediction obtained using 
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Fig. 3. Comparison of central, tensor and total force effective interaction results from DWA analyses 
of the inelastic scattering of 61·4 MeV protons exciting the 9/2+ (0·908 MeV) state in 89y. 

this alternative Hamada-Johnston form was found to be almost identical with 
that shown as the HJ central result in Fig. 2. The tensor components act 
only in the triplet-odd channel and, while they are significantly less than the 
central prediction and hence have only a minor influence on the total cross section, 
it is clear that the low multipoles of the TTO (EL) form have a quite different 
character from the Standard TO term. Specifically the TTO (EL) cross section 
prediction exceeds that of the Standard interaction by a factor of approximately 
2 at forward angles and has different falloff characteristics with angle. 

All three effective interactions yield almost identical total cross section predictions 
and all are in excellent agreement with the experimentally observed structure and 
magnitude at forward angles. The back angle discrepancies of all interactions are 
removed if a small core polarization correction is included -(Fig. 2d); a stiffness 
parameter C 2 of 600 MeV is appropriate, in agreement with previous analyses using 
this spectroscopic description (Geramb 1972). 
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The higher triplet isospin multipoles of the force are examined in Fig. 3 which 
compares the predictions of the scattering of 61·4 MeV protons to the 9/2+ 
(0' 908 MeV) state in 89y' As for the low multipole comparison, the Standard and HJ 
central form predictions compare closely and are significantly larger andin better 
agreement with the data than the RD. Unlike the case for the lower multipoles, 
however, the Standard tensor form predicts a forward peaked cross section which 
exceeds that of the EL form and has a structure in better agreement with the data. 
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Fig. 4, Comparison of central and tensor force effective interaction results from 
DWA analyses of the charge exchange scattering of 35 MeV protons exciting the 
isobaric analogue of the ground state of90Zr. The central interaction components 
so dominate in these analyses that the total results are indistinguishable from 
those shown for the central force, which are compared with the experimental data. 

These differences in structure and magnitude are reflected in the total force com
parisons, where the tensor component makes a significant contribution and produces 
a total prediction for the Standard interaction in excellent agreement with the data. 
The prediction of the total HJ form is acceptable, the small discrepancy at forward 
angles in part being attributable to the need to add a core polarization correction, 
albeit small, to all predictions, but the RD form underestimates the magnitude of the 
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forward angle cross section by a factor of approximately I· 5. All three forms, 
however, produce results in agreement with the data for scattering angles in excess 
of 40°. 

To this point we have investigated only the two-body triplet isospin interaction 
components. To extend this to the singlet isospin channels we must analyse transitions 
promoted by the excitation of bound neutrons. The analysis of the charge exchange 
scattering of 35 MeV protons exciting the isobaric analogue of the ground state 
of 90Zr, which· is shown in Fig. 4, will be sensitive to the low multipoles of both 
the T= 0 and I two-body channels. The tensor force predictions of all three inter
actions are three orders of magnitude smaller than the data, and in fact the analysis 
is so dominated by the central component that the total results are indistinguishable 
from the central and so are not shown separately in Fig. 4. 

Unlike the preceding analyses (i.e. those sensitive only to the T = 1 channels), 
the 90Zr(p, n) analysis yields significant differences in the predictions of all three 
central effective interaction forms. The RD interaction again underestimates the 
cross section magnitude by a factor of approximately I . 5 but now the HJ form, which 
has produced results in agreement with the Standard form for the analyses limited 
to the T = I channel, underestimates the data by a factor of approximately 2. By 
comparison the Standard form provides an excellent fit to the data over the full 
angular range. 

The prediction of the Standard force is also seen to .be superior to that of the other 
two forms for the analyses of 135 MeV proton scattering to the 6- states (T = 0, 
11 . 6 MeV; T = I, 14· 4 MeV) of 28Si, as shown in Fig. 5. This transition, promoted 
by both T = 0 and 1 high multipole components, is dominated by the tensor terms 
and all tensor interactions reproduce the bell-shaped angular distribution required 
by the data and have comparable magnitudes. The central components, on the 
other hand, predict very different magnitudes for the different interaction forms and 
distinctly different structures. The Standard central prediction is quite small for 
transitions to both the T = 0 and I states and consequently has little effect on the 
total prediction, but structurally the Standard central form reproduces the experiment
ally observed cross section. This is certainly not true of the other two forms where, 
in the most extreme case of the transition to the T = 1 (14·4 MeV) state, the RD 
central predicted cross section magnitude is comparable with the data and peaks at a 
scattering angle of 50° instead of the experimentally observed 350, and the HJ central 
prediction, although an order of magnitude smaller than the RD, predicts a two
peaked structure not exhibited by the data. 

Whilst in the other analyses reported in this paper we have seen different cross 
section magnitude predictions from the three different central forms, the higher 
multipole study of Fig. 5 is the only time that distinctly different cross sectional 
structure has been predicted, an observation which suggests that analyses of transitions 
to high spin states of natural parity may be instructive. Such transitions, which 

. should be promoted largely by the central interaction components and should involve 
both proton and neutron transitions, may allow a definitive test of the different 
cross section structures predicted by the three forms defined here. Unfortunately, 
because the currently available spectroscopic descriptions of such states would 
probably also require that reaction analyses involve a significant core polarization 
amplitude which would severely reduce the sensitivity of the reaction as a test of 
effective interactions, such analyses must await more refined spectroscopic models. 
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Fig. 5. Comparison of central, tensor and total force effective interaction results from DW A analyses 
of the inelastic scattering of 135 MeV protons exciting the isoscalar and isovector (T = 0,1) 6-
states in 28Si. 
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The total predictions shown in Fig, 5c all reflect the structure predicted by the 
tensor components, Each form produces a general cross section structure that is 
consistent with the experimentally observed one but all overestimate the magnitude, 
The Standard form, however, is superior, particularly for the excitation of the T = 1 
(14·4 MeV) state, in which it overestimates the peak cross section by a factor of 2 
compared with a factor of approximately 3 by the RD and HJ forms. Also, for 
the transition to the T = 0 (11· 6 MeV) state, the Standard form predicts the peak 
cross section magnitude at 40°, in agreement with the data and in contrast to the 
48° peak of the RD and HJ forms. 

5. Conclusions 

The effective interactions derived from 'realistic' potentials and the extensively 
used semi-phenomenological effective interaction have been subjected to a number of 
comparisons and have been applied to distorted wave analyses of a variety of trans
itions chosen to highlight different parts of the forces. Few significant differences 
between the forms have been observed, a result which supports the large body of 
work that has employed the semi-phenomenological (Standard) effective interaction 
in nucleon scattering analyses, and makes more credible the information (spectro
scopy, effective charges, B(EL) values and giant resonance details) extracted from 
those analyses. 

The significant differences in the forms, seen clearly only in the high momentum 
components of the central force and high (J4 ) moments of the interactions, are not as 
clearly distinguished in distorted wave analyses. Indeed all three forms examined 
produce comparable results for the distorted wave analyses of data in the 90Zr region, 
when the reaction proceeds dominantly or exclusively via the two-body triplet isospin 
components. For analyses sensitive to both isoscalar and isovector two-body channels 
there seems to be a preference for the Standard form above those derived from the 
Reid and Hamada-Johnston potentials, a preference based on both agreement with 
cross section magnitude and some observed differences in predicted structure. 
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