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Abstract 

Dynamic deformation theory based on a pairing plus quadrupole model (DPPQ model) is extended 
to 25 levels belonging to various multi phonon vibrational bands in 154 Gd. Although the calculated 
excited band energies are too high by factors of 1·4-1·7, there is generally reasonable agreement 
with the experimental energies, B(E2) values, magnetic moments, E2-Ml mixing ratios and EO 
moments. Many new values are predicted. A brief comparison with some results derived from a 
new version of dynamic deformation theory, the so-called DNSB model, is also given. 

1. Introduction 

Recently Sousa et al. (1975) and Gupta et al. (1977a) have extended experimental 
studies of the nucleus 154Gd to 25 even-parity states lying below 2·3 MeV. As these 
states include three 0 +, seven 2 +, two 3 +, seven 4 +, two 5 + and four 6 + levels, they 
cannot all be fitted into the three rotation-vibration bands normally considered for 
even--even nuclei; namely (with spins restricted to I ~ 6) the g band (0+,2+,4+,6+), 
the p band (0+, 2+, 4 +, 6+) and the y band (2+, 3 +, 4+, 5+, 6+). For this reason, 
in the present paper we have attempted to extend microscopic theory of collective 
motion in order to seek the answers to two questions: (1) Can these 'extra' states be 
classified into muItiphonon bands (two p-vibrational phonons, two y-vibrational 
phonons etc.)? (2) Can existing microscopic theory produce results that are in reason
able agreement with the large amount of new experimental data for B(E2) values and 
branching ratios of transitions connecting these states? 

In this study we have employed two different versions of the so-called dynamic 
deformation theory (Kumar 1978); these versions are designated the dynamic pairing 
plus quadrupole model (DPPQ) and the dynamic Nilsson, Strutinsky and Belyaev 
model (DNSB). The former model is the same as that used previously for samarium 
nuclei (Kumar 1971, 1974) and for gadolinium nuclei (Gupta 1973; Gupta et al. 1973, 
1977b), except that the calculation has been extended here to a much larger number 
of states (25 compared with only the lowest 11 states previously). The present DNSB 
model is an impro{Jed version of the one used earlier in calculations for the three 
well-deformed nuclei 24Mg, 102Zr and 168Er (Kumar et al. 1977). 

A brief comparison of the DPPQ and DNSB methods used here is made in Section 
2. The calculated results obtained by these two methods are compared with the 
experimental data for 154Gd in Section 3. A few of the DPPQ results presented in 
Section 3 (less than 1 %) have been published previously (Gupta et al. 1977b) but 
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the DNSB results are all new. The conclusions to be drawn from the study are given 
in Section 4. 

2. Comparison of DPPQ and DNSB Methods 
The five main steps of a calculation based on the dynamic deformation theory are 

as follows (see Kumar 1975 and Kumar et af. 1977 for details and definitions). 

(1) Calculation of the single-particle basis. In addition to the single-particle 
energies, one needs the matrix elements of two quadrupole operators (for sub
sequent calculation of the mass parameters for /3, ')' and /3')' vibrations; and 
for the calculation of the E2 moments), three angular momentum operators 
(for the three moments of inertia), three spin operators (these together with 
the angular momentum matrix elements are needed for the calculation of the 
Ml moments) and one radius operator (for the EO moments). 

(2) Calculation of the U, V factors of the pairing theory. 

(3) Calculation of the collective potential energy function V(/3, ')'). 

(4) Calculation of six inertial functions Bpp(/3,')'), Bpy(/3,')'), Byy(/3,')'), J 1(/3,')'), 
J 2(/3,')') and J 3(/3,')'), and six moment functions Qo(/3,')'), Q2(/3,')'), gl(/3,')'), 
gZ{/3, ')'), g3(/3, ')') and r2(/3, ')'). 

(5) Solution of the collective Schrodinger equation based on Bohr's (1952) collec-
tive hamiltonian for the energy levels and wavefunctions. 

All these five steps in the DPPQ calculation have been modified for the present 
DNSB calculation. The most important differences are in steps 1 and 3, but the other 
differences are also listed below. 

Step 1. In the DPPQ method, the single-particle field is identified with the Hartree 
field due to the quadrupole (J = 2, T = 0) component of the nucleon-nucleon force. 
Since the exchange part of the quadrupole force is neglected, it is possible to write 
the average potential analytically and it is not necessary to perform a Hartree type 
of iteration. However, such a quadrupole field leads to instability against large defor
mations, if a large configuration space is employed. Hence, the configuration space 
has to be limited to two major shells near the Fermi surface. In the DNSB method, 
a Nilsson (1955) type of anisotropic oscillator potential is employed to calculate the 
deformed single-particle basis; no attempt is made to relate this potential to a nucleon
nucleon force. In the DNSB version of the Nilsson method, the parameters of the 
potential are determined in such a way that the single-particle wavefunctions are 
independent of Z and A (Kumar et af. 1977). A large configuration space including 
.;V = 0-8 major shells is employed. The various matrix elements required for step 1 
had been computed previously and stored on magnetic tape. 

Step 2. The modification in the DNSB method for the calculation of the U, V 
factors arises not from the difference in approach of the two methods, but from an 
improvement in the pairing theory. This improvement comes about by including 
the particle-hole matrix elements of the pairing force on the same footing as the 
particle-particle matrix elements (Kumar et af. 1977). 'It removes the divergence in 
the moments of inertia and the mass parameters in a situation when two single
particle levels cross the Fermi surface and the energy gap vanishes. 

Step 3. In the DPPQ method, the potential energy of deformation is calculated 
via an expression obtained in the time-dependent Hartree-Bogolyubov treatment of 
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the pairing plus quadrupole hamiltonian; this is an approximation to the self-con
sistent Hartree-Fock approach. On the other hand, in the DNSB method the potential 
energy of deformation is calculated via the Strutinsky (1966) method; that is, instead 
of simply adding the energies of the occupied single-particle states, one calculates 
the potential energy as a sum of two parts: a macroscopic part arising from the 
deformation of the liquid drop or droplet (representing the contribution of single
particle levels far from the Fermi surface), and a microscopic part attributed to the 
nonuniform energy distribution of single-particle levels. While the liquid drop model 
(as parameterized by Seeger and Howard 1975) was employed in the first DNSB 
calculations (Kumar 1977; Kumar et al. 1977), the improved droplet model of Myers 
and Swiatecki (1974) and Myers (1976) has been employed in a recent calculation 
(Kumar 1978) and in the present one. 

Step 4. Expressions for the six inertial functions and the six moment functions 
are obtained in the DPPQ model via the time-dependent Hartree-Bogolyubov treat
ment, and in the DNSB model via the cranking plus pairing method of Belyaev 
(1959). Although both methods give identical expressions, the final results are quite 
different because of different configuration spaces and also different pairing theories. 

Step 5. The DPPQ calculation employs the Kumar (1971) version of the Kumar 
and Baranger (1967) method of solving the collective Schrodinger equation, while 
the DNSB calculation employs the Kumar (1979) version of this same method, in 
which equation (3 . 159C) of Kumar (1975) is modified to obtain better wavefunction 
convergence. 

As a final comparison between the two methods, we consider the parameters 
required for each calculation. In the DPPQ method there are four parameters: 
namely the strength of the quadrupole force, whose value is determined by fitting 
the ratio E4 +/E2+; a renormalization factor, which multiplies all six inertial functions 
and whose value is determined by fitting the energy E2 +; an effective charge param
eter, whose value is determined by fitting the B(E2; 0+ --+2+) value; and a renormali
zation factor for the three gyromagnetic ratio functions, whose value is determined 
by fitting the magnetic moment /12 +. These parameters can be identical for several 
nuclei of the same mass region, but sometimes they are quite different (Kumar 1971, 
1974). Furthermore, one must search for the 'best' spherical single-particle energies, 
for each mass region. In contrast to the DPPQ requirements, the DNSB method is 
almost parameter free. It was shown previously that the same single-particle basis 
and parameters could be used for well-deformed nuclei ranging from 24Mg to 168Er 
(Kumar 1977; Kumar et al. 1977). Subsequently, in the case of the transitional 
germanium nuclei, only one parameter (the Strutinsky width parameter) was required 
to be varied from nucleus to nucleus (Kumar 1978). Now, in a more recent study 
of nuclei ranging from 12C to240pu (Kumar 1979), even this parameter freedom has 
been removed. Thus no parameter has been varied to fit the properties of 154Gd in 
the DNSB results reported in Section 3 below. 

3. Results 

The level characteristics for 154Gd as calculated by the present theoretical methods 
are given in Tables 1-12, where they are compared with the available experimental 
data. Brief comments on the results and their consistency with the data follow. 
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Table 1. K structures and level energies of positive parity states in 154Gd 

Classification K component (%) Level energy (MeV) 
Band K I K=O K=2 K=4 Exp.A DPPQ DNSB 

g 0 0 100 0·0 0·0 0·0 
2 99·9 0·1 0·123 0·126 0·167 
4 99·81 0·15 0·04 0·371 0·313 0·450 
6 99·36 0·60 0·02 0·718 0·585 0·821 

P 0 0 100 0·680 0·985 0·528 
2 99·0 1·0 0·815 1·180 0·725 
4 96·3 3·6 0·1 1·047 1·391 1·155 
6 93·0 6·7 0·3 1·366 1·680 1·705 

y 2 2 1·6 98·4 0·996 1·506 0·604 
3 100 1·128 1·603 0·729 
4 3·8 95·5 0·7 1·264 1·776 0·888 
5 99·5 0·5 1·433 1·896 1·052 
6 6·5 89·2 4·2 1·607 2·176 1·275 

2P 0 0 100 1·295 1·842 1·093 
2 81·3 18·7 1·418 2·156 1·463 
4 69·6 21·9 8·5 1·698 2·49 2·035 

py 2 2 21 79 1·531 2·522 1·210 
3 100 1·661 2·687 1·527 
4 8 62 30 1·790 3·082 1·624 

2y 4 4 22·5 14·0 63·5 1·646 2·843 1·398 
5 56 44 1·770 2·986 1·619 
6 27.38 48.88 20.88 1·912 3·398 1·870 

2y 0 0 100 2·723 1·434 
2 95·7 4·3 2·081 c 3·042 1·635 
4 94·5 4·3 1·2 2·230c 3·367 1·941 

3p 0 0 100 2·969 2·233 
2 44 56 2·277c 3·317 2·762 
4 38·4 40 21 3·620 3·441 

y+2P 2 2 36 64 3·903 2·096 
3 100 3·749 2·481 
4 36·7 58·9 4·4 4·585 2·852 

2y+p 4 4 16 4 79 4·263 

A Experimental values from Sousa et al. (1975) and Gupta et al. (1977a). 
8 Remaining contribution belongs to the K = 6 component. 
c See text for discussion of these assignments. 

Table 2. DPPQ calculated average shapes, intrinsic quadrupole moments 
and g values for levels in 154Gd 

Classification Shape factors Q g value 
Band K I Prms )'rms (eb) (nm) 

g 0 0 0·262 13 ·7° 
2 0·270 13·2 6·29 0·42 
4 0·275 12·9 6·35 0·41 
6 0·284 12·5 6·45 0·41 

P 0 0 0·279 10·4 
2 0·289 9·9 6·18 0·38 
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Table 2 (Continued) 

Classification Shape factors Q 9 value 
Band K I Prms )'rms (eb) (nm) 

P 0 4 0·310 9·8 6·45 0·37 
6 0·327 10·0 6·64 0·35 

Y 2 2 0·255 21·9° 5·68 0·43 
3 0·265 21·0 0·42 
4 0·274 20·0 6·13 0·42 
5 0·278 19·7 6·07 0·43 
6 0·293 18·5 6·26 0·42 

2P 0 0 0·286 2·1 
2 0·317 6·4 5·97 0·37 
4 0·317 9·3 5·55 0·37 

Pl' 2 2 0·307 14·5 4·79 0·42 
3 0·297 16·8 0·42 
4 0·317 17·8 3·9 0·40 

2y 4 4 0·300 17·5 4·32 0·39 
5 0·293 19·6 4·01 0·41 
6 0·344 14·4 7·31 

2y 0 0 0·305 7·8 
2 0·265 24·4 5·48 0·42 
4 0·281 23·4 5·59 0·42 

3p 0 2 0·318 11·7 15·2 0·43 
4 0·325 12·7 3·38 0·39 

y+2P 2 2 0·330 14·1 7 ·13 0·45 
3 0·336 15 ·1 0·42 
4 0·345 15·3 8·2 
5 0·330 16·8 5·4 

2y+P 4 4 0·315 20·6 6·68 0·43 

Table 3. Absolute H(E2) values, H(E2) ratios and 9 values for levels in 154 Gd 
Note that here and in the following tables, the errors in the experimental values are given by number 
in parentheses which are the uncertainties in the corresponding last digits, e.g. 3·85(15) is to be read 

as 3 ·85 ± 0·15 while 0·015(4) means 0·015 ± 0·004 

Transition H(E2) values (e 2 b2) Transition H(E2) values (e 2 b2) 

Ii If Exp.A DPPQ DNSB 

o. 2_ 3·85(15) 3·86 3·32 
0_ 2, 0·143(11) 0·139 0·132 
0. 2p 0·015(4) 0·019 0·020 
0_ 22P 0·007 0·027 

Transition H(E2) ratios 
ratio Exp.B DPPQc DNSB 

(4_-+2_)/(2.-+0.) 1· 52(10) 1·51 1·64 
(6_-+4.)/(4.-+2.) 1 ·17(8) 1·16 1·27 

A Experimental results from Ronningen et al. (1977). 
B Experimental results from Ward et al. (1975) 

Ii If Exp .. B DPPQ 

0_ 2p, 0·0002 
4_ 2. 1·178(39) 1·162 
6_ 4_ 1·376(60) 1·344 

g-band 9 values (nm) 
level Exp.D DPPQ 

2. 0·427(114) 0·42 
4. 0·41 

C The rotational model values for these R(E2) ratios are 1·41 and 1·10 respectively. 
D Experimental 9 value from Ben-Zvi et al. (1970). 

DNSB 

0·007 
1·086 
1·379 

DNSB 

0·49 
0·50 
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Table 4. Absolute B(E2) values for p-+g band transitions in 154 Gd 

Transition B(E2) values (10- 2 e2 b2)A Transition B(E2) values (10- 2 e2 b2 )A 
Ip I. Exp. (a) Exp. (b) Exp. (c) DPPQ Ip I_ Exp. (a) DPPQ 

0 2 21(3) 31 22 4 2 O· 35(8) 0·60 
2 0 0·48(4) 0·48(4) 0·30(8) 0·37 4 4 3·8(6) 3·37 
2 2 4·0(4) 4·0 3·3 4 6 11·9(25) 8·57 
2 4 11·9(8) 12·0 8·66 6 4 0·27(10) 0·09 

6 6 3 ·3(10) 3·52 

A Experimental values: (a) deduced from the branching ratios given by Rud et al. (1971) and the 
B(E2; 0.-+2p) value from Riedinger et al. (1969); (b) from Riedinger et al. (1969); (c) from Hamilton 
(1976). 

Table 5. B(E2) ratios for transitions from p and y bands in 154 Gd 

Transition ratio Exp. E, (keY) B(E2) ratios 
II If/I; ratio Exp.A RyB DPPQ 

2p 4_/2_ 444·4/692·4 2· 75(8)a 1·80 2·61 
0_/2_ 815·6/692·4 0·121(4)a 0·70 0·11 
0./4. 815·6/444·4 0·045(4)a 0·39 0·043 

4p 6./4_ 329·5/676·6 2· 38(8)a .• 1·75 2·54 
2_/4_ 924·6/676·6 0·086(3)a 1·10 0·18 
2./6. 924·6/329·5 0·032(2)a 0·63 0·07 

6p 4_/6_ 995/648 0·08(3)C 0·024 

2p Op/O. 134·8/815·5 125(W 205 

4p 2p/2_ 232·2/924·6 410(25)a 200 

2, 4./2_ 625 . 2/873 ·2 0·144(5)a., 0·05 0·09 
0_/2. 996·3/873·2 0·46(1)a 0·70 0·56 
0_/4_ 996·3/625·2 3 ·2(2)a., 13·9 6·3 

Op/O. 315·6/996·3 0·140(7)d 0·03 
2p/2. 180·7/873·2 1·03(2W 1·47 
Op/2p 315·6/180·7 0·063(14)d 0·01 

3, 2./4_ 1004·8/756·9 1·06(4)a 2·5 1·41 
2p/2. 312·3/1004·8 0·289(13)d 0·035 
4p/4_ 80·4/756·9 50(25)d 1·6 
4p/2p 80·4/312·3 182(91)d 34 
2,/2. 131·6/1004·8 17(1)d 26 

4, 6./4_ 545·6/892·7 0·27(4)a.f 0·09 0·37 
2./4. 1140·9/982·7 0·14(1)a 0·34 0·32 

5, 4./6. 1061·2/714·6 O· 74(15)' 1·75 0·78 

6, 4./6. 1235·6/888·8 0·08(2)- 0·27 0·14 

A Experimental ratios: (a) weighted average of the values given by Meyer 
(1968) and Riedinger et al. (1970); (b) Meyer's (1968) value of 5·91 was in 
error (Gupta et al. 1977a); (c) Rud et al. (1971); (d) Zolnowski et al. (1971); 
except that they gave the reciprocal ratio by mistake for B(E2; 3,-+4p/4.); 
(e) Sousa et al. (1975); cf. their values of 0·114(22) for B(E2; 2,-+4./2.) and 
4 ·13(83) for B(E2; 2,-+0./4.); (I) intensity of the 545·6 keY y ray given by 
Gupta et al. (1977a). 
B Calculated values from the rotation-vibration model. 
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Level energies and wavefunctions 

The percentage of the K components in the wavefunctions and the calculated 
level energies from both theoretical models are given in Table 1. The levels have been 
grouped into different 'rotational' bands according to the largest K components and 
E2 decay characteristics (discussed below). The comparison with the experimental 
values shows that the DPPQ calculated excitation energies of the vibrational bands 
are too high by factors of 1·4-1,7. On the other hand, in the DNSB calculation 
the vibrational bandhead energies are too low by 0·1-0·4 MeV, but the agreement 
improves for the higher spin band members. 

Average shapes, intrinsic quadrupole moments and gyromagnetic ratios 

The characteristic Prm.. Yrm.. intrinsic quadrupole moments Q and gyromag
netic ratios /11/1 (g values) as calculated by the DPPQ method for the various bands 
are given in Table 2. The quantities Prms and Yrms provide rough measures of the 
average nuclear shape when the nucleus is in the state (IX, l) and are defined via the 
equations 

<IX'!I p2 11X,!) = P;m .. <IX, 1 I p3 cos 3y I IX, I) = P;ms cos 3y rms . (1) 

B(E2) values for g-band transitions 

The calculated absolute B(E2) values, B(E2) ratios and g values involving the 
ground (g) band are compared with the experimental results in Table 3. In each case 
the calculated DPPQ values agree with experiment within the experimental errors. 
There is not such good agreement with the DNSB values, although the results are 
still reasonable, particularly considering that no effective charge has been included 
in the calculations and that no theoretical parameter has been varied to fit the proper
ties of 154Gd. 

B(E2) values, B(E2) ratios and g values 

The calculated absolute B(E2) values for p~g band transitions are given in Table 4, 
which shows that the DPPQ method gives reasonable agreement with experiment up 
to the highest spins (I = 6) considered in this study. A similar comparison for the 
B(E2) ratios for transitions from the P and Y bands is given in Table 5. For p-band 
decay, the agreement with experiment is good for the 2/1 and 4/1 states, while it is fair 
for the 6/1 state; the large ratios for intraband (P~P) to interband (P~g) transitions 
are also reproduced. For y-band decay, the experimental values for y~ g transitions 
are reproduced within a factor of 2, but the comparison is not as good as this for 
Y~P transitions. The largest discrepancy occurs for the ratio (3y~4/1)/(3y~4g). 
However, in this case the 3y~4/1 transition has an energy of only 80 keV and a relative 
intensity of 0·01 ± O· 01 (Meyer 1968) and it would be hard to resolve in experiment 
from the strong Compton background. (Note that the B(E2) ratio for (3y~4/1)/(3y~4g) 
reported by Zolnowski et al. (1971) is mistakenly given as the reciprocal ratio.) 

For the higher lying bands considered below, both the experimental y-ray energies 
and intensities used to derive the B(E2) ratios are given for the sake of clarity (Tables 
6-9). 
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Table 6. B(E2) ratios for transitions from third Kn = 0+ (2fJ) band in 154 Gd 

Transition ratio Exp. I, Exp. E, (keV) B(E2) ratios 
Ii If/I; ratioA ratio Exp.A DPPQ 

22 " 
0_/2. 0·02/0·01 1418·4/1295·5 >1.48 29·5 
4_/2. 0·13/0·01 1047 ·4/1295·5 >388 54 

0"/2,, 0·021/0·096 737·7/602· 8 0·06(1) 0·01 
4"/2,, 0·015/0·096 371/602·8 2·0(7) 2·7 
0,,/0_ 0·021/0·02 737·7/1418·4 26(5) 0·6 
2,,/2_ 0·096/0·01 602·8/1295·5 4508 2210 

2,,/2, 0·096/0·003 602·8/422·1 >4·8 4·4 
2,/2_ 0·003/0·01 422 ·1/1295·5 >968 505 
4,,/4. 0·015/0·13 371/1047 ·4 20(5) 110 

O2,,/0,, 0·02/0·021 125·4/737·7 6(3) x 103 8x 103 

O2,,/2_ 0·02/0·01 125 ·4/1295·5 2.4x 103 8 1.4x 104 

42 " 
4,,/4_ 0·03/0·005 650·6/1327 > 176C 1·3x105 

A Experimental ratios from the I, results of Meyer (1968), except for 1,(1295·5 keY) 
= 0·01 (cf. 0·026 from Meyer) and 1,(737·7 keY) = 0·021(3) from Gupta (1973). 
8 A 75% M1 content in the 22 p-.2. transition JI ray of 1295·5 keY (see Table 11) would 
increase these ratios four times. 
c The 1327 keY transition is predicted to be pure M1 (E2 ~ 0·25 %), which would 
increase the B(E2) ratio to 7 x 104 • 

Table 7. B(E2) ratios for transitions from second Kn = 2+(fJJI) band in 154Gd 

Transition ratio Exp. I, Exp. E, (keV) B(E2) ratios 
Ii If/I; ratioA ratio Exp.A DPPQ 

2", 0./2_ 0·017/0·06 1531·4/1408 ·1 0·17(4) 0·013 
4_/2_ 0·124/0·06 1160·0/1408 ·1 4·86(73) 0·09 

0"/2,, 0·65/0·5 850·6/715 ·8 o· 55(2) 1·0 
4"/2,, 0·014/0·5 483· 7j7l5·8 0·20(5) 1·6 

3,/4, 0·08/0·04 403·5/267·4 0.258 0·95 
0,,/0. 0·65/0·017 850·6/1531·4 713(51) 550 
2,,/2_ 0·5/0·06 715·8/1408 ·1 246(36) 7·1 

3", 4./2_ 0·032/0·14 1290·0/1537·8 O· 55(13) 1·9 
4"/2,, 0·26/1·55 613·3/845·4 0·84(4) 0·7 
2,,/2_ 1·55/0·14 845·4/1537·8 219(11) 375 
4,,/4_ 0·26/0·032 613·3/1290·0 333(19) 134 
4,/2, 0·087/0·082 397·1/664·7 13·6(8)C 13 
4,/4_ 0·087/0·032 397 ·1/1290·0 943(53)C 350 
4,,/4, 0·26/0·087 613·3/397 ·1 0·35(2) 0·38 
2,,/2, 1·55/0·082 845·4/664·7 5 ·7(3) 7·25 
2,/2_ 0·082/0·14 664· 7/1537·8 38·4 51 

4", 2./4_ 0·006/0·01 1667·3/1419·2 0·26(5) 0·30 
6_/4_ :;;;0·11/0·01 1072·2/1419·2 :;;;5·7 0·8 

A Experimental ratios from the I, results of Meyer (1968) and the B(E2) values 
from Zolnowski et at. (1971), except that Meyer's incorrect result for 1,(1419·2 keY) 
has been replaced by Gupta's (1973) value. Note also that Meyer obtained his I, 
results for the 483·7 and 1531·4 keY transitions by peak shape fitting, but these 
transitions were not observed by Sousa et at. (1975). 
8 The 267·4 keY JI ray was assigned by Meyer (1968) to two alternative transitions, 
namely 2---+4 and 4---+2. 
C If the 397·1 keY JI ray is from a doublet (Meyer 1968), the B(E2) ratio will be reduced. 
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Third K" = 0+(2P) band 

As can be seen from Table 6, the preferential decay from the 2P band to the one
phonon P band rather than to the y band or the g band is reproduced qualitatively 
by the present DPPQ calculations, but the B(E2) ratios to different members of the 
p and g bands agree with experiment in some cases and not in others. The 22P -+ 2g 
(1295 keY) transition is only 25 % E2 and the 42P-+4g (1327 keY) transition is almost 
pure Ml, according to our calculated values for (j(E2/Ml) (see Table 11; note that 
these transitions are too weak for an angular correlation experiment). Now, in 156Gd 
the 22P-+2g transition is known to be only 13±3 % E2 (Hamilton 1976) and the 
calculated 42P-+4g transition is almost pure Ml (Gupta et al. 1 977b). Thus the large 
Ml components predicted for the similar transitions in 154Gd appear to be quite 
reliable. If such large Ml components had been taken into account in Table 6, the 
agreement between theory and experiment would have been much better. 

From the above results we can note that the Ip-+Ig transitions are predominantly 
E2 in both 154Gd and 156Gd while the 12P -+Ig transitions have large Ml components, 
and this difference between the two K" = 0+ vibrational bands is reproduced correctly 
by the dynamic deformation theory. However, although the bandhead energy of the 
2P band for 154Gd is almost twice that of the p band and a preferential decay to the 
p band is observed, a two-phonon description of this band does not provide a complete 
picture, for the energy ratio differs considerably as we move through the gadolinium 
nuclei: it is 1·7,1·9 at N = 88,90 but only 1·1,1· 2 at N = 92,94 (Sakai and Rester 
1977). 

Second K" = 2+(Py) band 

The 2+ state at 1531·4 keY decays primarily to the 0+ and 2+ members of the 
P band. The calculated B(E2) branching ratio agrees qualitatively with experiment, 
as can be seen from Table 7. Meyer (1968) obtained the experimental intensity of 
the 483·7 keY 2py-+4p transition by a peak shape fit, but this transition has not been 
observed in later experiments. The relative intensity of the 2py-+2g (1408 keY) trans
ition obtained by Sousa et al. (1975) was 0·17 compared with the value of 0·06 
from Meyer (1968). 

None of the experimental B(E2) ratios given in Table 7 have been corrected for 
possible Ml admixtures and hence they cannot be properly compared with the theor
etical values at present. However, the py(2+) character of the 2+ and 3+ members 
of the band is well supported by both the theoretical and experimental values in 
Table 7. These states decay predominantly to the P band or the y band and rarely 
to the g band. The assignment of the 4 + member is somewhat tentative because, 
although the 4py-+4g transition has been confirmed in coincidence experiments (Gupta 
et al. 1977a), only an upper limit has been obtained for the intensity of the 4py-+6g 

transition. 

First K" = 4 + (2y) band 

Sousa et al. (1975) determined the B(E2) ratios for transitions to the g band in 
154Tb decay and found poor agreement with the values predicted by a rotation-vibra
tion model. First-order mixing with the y band improved the model values but the 
need for a more complicated mixing was evident. Considerable band mixing with 
sizable K = 0 and 2 contributions is predicted by the present theory (Table 1). The 
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Table 8. B(E2) ratios for transitions from first Kft = 4 +(2)1) band in 154Gd 

Transition ratio Exp.ly Exp. Ey (keY) B(E2) ratios 
I, 1,11; ratio ratio Exp.A RyB DPPQ 

42y 3y/2y 0·56/1-() 518·0/649·5 1·72(17) 0·56 1·3 
4y/2y 0·09/1·0 382·1/649·5 1·33(22) 0·20 1·0 
2,/4, 0·06/0·13 830·4/598·2 0·10(3) 1·6 
3y/4y 0·56/0·09 518·0/382·1 1·30(22) 2·8 1·3 
2g/4. 0·03/0·03 1522·8/1274·7 0·43(15) 0·8 
6./4. 0·03/0·03 928·2/1274·7 4·9(16) 0·6 
2y/2, 1·0/0·06 649·5/830·4 56·5(80) 13 
2y/2. 1·0/0·03 649·5/1522·8 2220 44 
4y/4, 0·09/0·13 382·1/598·2 6·6(10) 20 
4y/4. 0·09/0·03 382 ·1/1274·7 750 30 

52y 4y/3y 3·1/3·5 506·4/642·3 2·82(56) 1·0 2·1 
5,/3y 1·6/3·5 337·9/642·3 7 ·07(216) 0·49 2·8 
4y/4, 3·1/1·9 506 . 4/722· 5 9 ·1(40) 1·6 
44/4y 2·5/3·1 124·4/506·4 850 17 

62y 6y/5y 0·37/1·0 304·8/479·2 3 ·5(8) 0·59 1·6 

A Experimental ratios from Sousa et al. (1975). 
B Calculated values from rotation-vibration model. 

Table 9. B(E2) ratios for transitions from possible KX = 0+(2)1) band in 154Gd 

Transition ratio Exp.ly Exp. Ey (keY) B(E2) ratios 
I, 1,11; ratio ratio Exp.A DPPQ 

22y 3y/2y 1·0/0·66 953·1/1084·3 2·9 5·0, 
4,/2, 0·83/0·14 1033·3/1265·3 16 159 
2y/2, 0·66/0·14 1048· 3/1265·3 10·2 690 

42y 2./4. 0·6/0·79 2106·9/1858·8 0·4 1·9 
3y/2y 1·0/0·43 1101·9/1234·0 4 56 
3y/2. 1·0/0·6 1102/2107 42 15 
3y/4. 1·0/0·79 1102/1859 17 30 

A Experimental ratios derived for the 2081·0 and 2230 keY levels from Sousa et 
al. (1975), with the present assignments of 2ty and 4ty respectively to these levels. 

calculated R(E2) ratios given in Table 8 show reasonable agreement for most transitions. 
A preferential decay to the y band rather than the p band is indicated, but there is also 
significant decay to the g band. This type of decay reminds one of the Davydov
Filippov (1958) model, where the lowest K" = O+, 2+, 4 +, ... bands arise from the 
rotation of an asymmetric top. Indeed, it may be noted here that such a decay pattern 
is also allowed in the present theory since, although we have adopted the Bohr
Mottelson (1953, 1975) classification of bands in terms of P and y phonons, we have 
not taken the nucleus to be an axially symmetric rotor with p-y vibrations but rather, 
via the collective Schrodinger equation, have placed no restraints on the shape that 
the nucleus may assume. 

Fourth K" = 0+(2y) band 

Meyer (1968) proposed that two states at 1838·0 and 2093·8 keY were the 2+ and 
4 + members of a 0+(2y) band. However, this classification was not confirmed in the 
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later experiments by Sousa et al. (1975), who instead proposed several levels with 
I" = 1 +, 2 +, 3 + and 4 + in the 2· 0-2· 4 MeV region. The lowest of these, the 2081 ·0 
keY level, was established through energy fits of decays to 2y and 3y states and possible 
decays to 2p and 4p states. We have assigned this level to be 2;1 on the basis of a 
comparison between the calculated and experimental B(E2) ratios (see Table 9); in 
particular the fact that it decays preferentially to the 2y level rather than to 2p. For 
similar reasons, we have assigned the 2230 keY level, which was established by Sousa 
et al. through coincidences for transitions to 2g, 4g and 31 states with a weak transition 
to the 21 state, to be a 4;1 level. 

Fifth Kft. = 0+(3P) band 

Sousa et al. (1975) proposed the 2119·7 and 2187·2 keY levels as I" = 1+ and 
2 + and the 2266, 2277 and 2305 ke V levels as I" = 2 +, 3 + and 4 +, on the basis of the 
observed appropriate coincidences, except for the 2266 keY level which was proposed 
on the basis of its energy. Excluding the first two levels which we regard as belonging 
to a Kft. = 1 + band, we propose the latter three states as possible members of a 
0+(3P) band. The experimental B(E2) ratios for decay from these levels are compared 
in Table 10 with those corresponding to decay from the calculated 2+ and 4+ states 
(classified as 3p-band members in Table 1). From the relatively better agreement for 
the experimental 2277 keY level with the calculated 2+ state we assign this level as 
2jp. However,· the absence of a strong transition from the 2277 ke V level to a 2p-band 
member makes the present assignment somewhat tentative. 

E2/M 1 mixing ratios 

The mixing ratios c5(E2/Ml) derived from the calculated E2 and Ml matrix elements 
and the experimental transition energies are compared with experiment in Table 11. 
The general feature that p-+g and y-+g transitions are largely E2 even in the case of 
transitional nuclei is shown by both the theoretical and experimental results. The 
DPPQ calculated c5 values for y-+g transitions are too large (or the calculated Ml 
components are too small), but the signs and the general trends are given correctly. 
This is encouraging, and we have therefore also included in Table 11 theoretical 
predictions for a number of unknown cases, in the hope that these might provide 
further guidance in elucidating the structure of the higher bands which generally 
decay via low intensity transitions, for which angular correlation experiments are 
almost impossible. Although the DNSB calculation provides better agreement with 
the c5 values for y-+g transitions, it is much worse for p-+g transitions, where even 
the sign is wrong in one case. This discrepancy probably could be removed by 
improving the theory. 

Electric monopole transitions and X(EO/E2) values 

The calculated EO matrix elements and the ratios X(EO/E2) for both 154Gd and 
156Gd are compared with experiment in Table 12. The results of a similar calculation 
for 156Gd have been reported previously (Gupta et al. 1977b) but the EO matrix 
elements were not given at that time. The matrix elements in Table 120 are· of the 
form p(EO; i-+/) = </1 r2/R21 i), where the nuclear radius R = 1·2At fm. The 
theoretical values have been calculated using Reiner's (1961) relation for r2/R2, which 
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Table 10. B(E2) ratios for transitions from possible Kn = 0+(3P) band in 154Gd 

Transition ratio 
11 If/I; 

23/1,43 /1 4./2. 
4/1/2/1 
3,/2, 
4,/2, 
2/1/2. 
4/1/4. 
4,/2. 

Exp. B(E2) ratios for Ex (key)A 
Ex = 2266 2277 2305 . 8 

1·4 0·3 7·5 
NC 3·7 

9·3 4·3 
1·8 1·4 

3·0 N C 40 
33 20 
12·5 84 

DPPQ calc. B(E2) ratiosB 

23/1 43/1 

0·06 0·5 
2·5 0·2 
11 0·9 
1·6 24 
0·8 0·2 
32 0·03 
0·8 0·1 

A Experimental ratios from the data of energy levels and )'-ray transitions given by 
Sousa et al. (1975). 
B For the calculated members of the 3p band as specified in Tables 1 and 2. 
C Not available; the likely transition to the 2/1 state lies close to a 1458·4 keY intense 
)' ray. 

Table 11. E2/Ml mixing ratios for transitions in lS4Gd 

Transition Exp. E, J(E2/Ml) Transition Exp. E, J(E2/Ml) 
11 If (keY) Exp.A DPPQ DNSB 11 1r (keY) DPPQ 

2/1 2. 692·4 8.3!t:t 4·9 -10·1 2/1, 2. 1408·5 -12·6 
4/1 4. 676·6 2·2(9) 2·1 69·6 2/1 715·8 -4·4 
6/1 6. 648 1·2 9·0 2, 535·0 -11·9 

3, 403·5 -62 
2, 2. 873·2 -9·2(5) -41 -16·3 
3, 2. 1004·8 -7·9(3) -128 -15·3 3/1, 2. 1537·8 -5·4 
3, 4, 756·9 -6·1(2) -80 -8·7 4. 1290·0 -7·1 
4, 4. 892·7 -4·0(4) -12·4 -6·2 2/1 845·4 178 
5, 4. 1061·2 -47 -6·2 4/1 613·3 27·8 
5, 6, 714·6 -33 -4·8 2, 664·7 -45 
6, 6. 888·8 -5·9 -3·8 4, 397·1 18 

22/1 2. 1295·5 0·6 4/1, 4. 1419·2 -35 
2/1 602·8 3·1 
2, 422·1 138 42,B 4, 1274·7 -6·8 

4/1 589·2 -0·6 
42/1 4, 1327 0·05 4, 382·1 5·5 

4/1 650·6 1·8 3, 518·0 400 

3, 2, 131·6 1300 52,B 4. 1399·5 -2·0 
2/1 312·3 7·2 4/1 722·5 193 
4/1 80·4 11·3 4, 506·4 26·2 

5, 337·9 11·4 
44 124·4 7·1 

A Experimental ratios from Gupta et al. (1977a). 
B For the 2)' (K = 4) band. 

is obtained by assuming a uniform charge distribution over an ellipsoid and keeping 
terms up to second order in p. The ratios in Table 12b are given by 

X(EO/E2; i--+f) = e2 R4 p2(EO; i--+f)/B(E2; i--+f). 

Where comparisons can be made with experiment, there is generally reasonable agree
ment for both the calculated p and X values. 
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Table 12. Electric monopole matrix elements and EO/E2 ratios for 154Gd and 156Gd 

Values are tabulated for (a) the EO matrix elements p(EO; i--+f) and (b) the ratios X(E0/E2; hf) 
as defined in Section 3 

(a) p(EO; hi) 

Transition p(EO) values 
i--+/ 154Gd 156Gd 

II If EXp.A DPPQ EXp.A DPPQ 

0/1 O. 0·41(9) 0·37 0·41(5) 0·36 
2/1 2. 0·10-0·59 0·38 0·34 
4/1 4. 0·06--0·22 0·37 0·34 
6/1 6. 0·09-0·35 0·36 

2, 2. 0·04 0·05 
4, 4. 0·06 0·11 
6, 6. 0·06 

2, 2/1 0·06 0·04 
4, 4/1 0·13 0·08 
6, 6/1 0·18 

(b) X(EOjE2; i--+f) 

Transition X(EOjE2) values 
i--+/ 154Gd 156Gd 

II If Exp.o DPPQ Exp.o DPPQ 

O/lc Oc • 0·11(3) 0·11 0·18(4) 0·26 
2/1 2. 0·45(4) 0·75 0·50(8) 0·64 
4/1 4. 0·60(18) 0·70 0·57(10) 0·49 

2, Z. 0·005 0·010 
4, 4. 0·013 0·006 
6, 6. 0·017 

O2/1 O. 0·40 0·06(2) 0·028 
22/1 2. 1·06 0·048 
42/1 4. 2·32 0·22 

A Experimental values from Aldushchenkov and Voinova (1973). 
8 For the 2)' (K = 4) band. 

Transition p(EO) values 
h/ 154Gd 156Gd 

II If DPPQ DPPQ 

O2/1 O. 0·03 0·02 
22/1 . 2. -0·02 -0·02 
42/1 4. -0·03 -0·03 

O2/1 0/1 0·58 0·62 
22/1 2/1 0·57 0·66 
42/1 4/1 0·52 0·60 

22/J 2, -0·09 0·07 
42/1 4, -0·04 0·05 

42,8 4. 0·05 0·01 
42,8 4, -0·12 

Transition X(EOjE2) values 
i--+/ 154Gd 156Gd 

II If DPPQ DPPQ 

42,8 4. 0·31 0·55 

42,8 4, 0·16 

02,E O. 0·028 
22,E Z. 34 

03/1 O. 0·48 
23/1 Z. 1·17 

C For all X(OI--+Of) values, the E2 transition refers to 0l--+2f where Of and 2f belong to the same band. 
D Experimental values from Rud and Nielsen (1970) and Rud et al. (1971). 
E For the 2)' (K = 0) band. 

Calculated potential and other functions 

For the sake of brevity we have not presented contour plots of the calculated 
potential functions, inertial functions and wavefunctions of 154Gd since these are 
qualitatively similar to those presented earlier for 152Sm (Kumar 1974, 1975) and 
156Gd (Gupta et al. 1977b). However, a few characteristics may be noted for com
parison: The calculated potential function of 154Gd has a prolate minimum at 
p = O· 24 and}' = 0° with a deformation energy (from a spherical shape) of 3 . 7 MeV 
(this energy was 4·5 MeV for 156Gd and 3·1 MeV for 152Sm), and the prolate-oblate 
difference is 2·8 MeV. The ground state lies 1'82 MeV above the potential minimum 
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(which is then the energy of zero-point motion) so that the first three bands (i.e. 
most of the members of those bands considered here) lie in the prolate minimum 
below the spherical barrier (which is 1· 88 MeV above the ground state). The higher 
bands are mostly above the spherical and oblate barriers and hence exhibit consider
able mixing of prolate, asymmetric, oblate and spherical shapes. 

4. Conclusions 

The nucleus 154Gd with 90 neutrons and 64 protons is a transitional nucleus on 
the deformed side of the spherical-deformed shape transition boundary at N = 88-90. 
It is rather similar to 152Sm, another N = 90 nucleus, but, in the case of 154Gd, 
experimental results are available for many more higher bands than the lowest three 
(g, p and y). These data for the higher bands provide more stringent tests of a micro
scopic theory of collective motion. To the best of our knowledge, the present study 
is the first attempt to make a detailed comparison between theory and experiment 
for 25 states of the same nucleus. 

The present dynamic deformation theory combined with the pairing plus quadru
pole model has passed all tests surprisingly well. True, the calculated energies of 
the excited bands are too high by a factor of 1 ·4-1 . 7, but the B(E2) ratios, and even 
the absolute B(E2) values, are given remarkably well for states as high in excitation 
energy as 2· 3 MeV. Thus our answer to the second question raised in the Introduction 
is: a qualified yes. This result seems to suggest that the geometry of the nuclear 
wavefunctions is given correctly by the 'generalized rotational basis' (Kumar 1975) 
used in the dynamic deformation theory. This part of the theory is simply a generali
zation of the rotational model, which predicts that B(E2) ratios involving only one 
or two bands in terms of Clebsch-Gordan coefficients depend only on the (K, I) 
characteristics of the initial and final states, and not on the exact nature of the 
different bands. The B(E2) values involving three bands do depend on the nature of 
the bands involved, but the present study suggests that the rotational model classifica
tion of bands in terms of p-y phonons is meaningful even for the higher bands con
sidered (four 2-phonon bands, and three 3-phonon bands). Thus our answer to the 
first question raised in the Introduction also is: yes. 

Deviations from the rotational model can be attributed in the present type of 
calculation to K-mixing and to changes in the average nuclear shape as the nucleus 
is excited (or decays) from one state to another. The dynamic deformation theory 
allows us to take advantage of the rotational model on one hand (where various 
states are grouped into bands, each band with a definite and common intrinsic struc
ture), and the shell model on the other hand (where each state represents a different 
configuration mixing or nucleon distribution). The latter behaviour is allowed in the 
dynamic deformation theory via the fact that the average nuclear shape (to be more 
precise, the probability distribution as a function of the nuclear shape) is allowed to 
be different in each nuclear state, and that each nuclear shape represents a different 
nucleon distribution or configuration mixing. 

It would be very easy to attribute the discrepancies between theory and experiment 
noted in Section 3 above to the noncollective or two quasi-particle states. However, 
this would not be correct. It is true that two quasi-particle states do not appear 
explicitly in the final wavefunctions (they are, however, employed for calculating the 
inertial functions and the gyromagnetic ratio functions), but these (and higher) 
quasi-particle states are included in the dynamic deformation theory via the dynamics 
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or the vibrations, since each vibrational phonon represents a linear combination of 
two, four, ... quasi-particle states. 

The main restriction of the present dynamic deformation theory comes from the 
assumption of a particular symmetry of the states, namely a D2 symmetry with 
(r1 r2 r3) = (+ + +) (see Bohr and Mottelson 1975, p. 178), where rk is the eigenvalue 
of the rotation operator Rk(n). This assumption dictates the symmetry of the 
rotational part of our wavefunctions, the allowed K values and the symmetry of the 
allowed intrinsic states (which are the time-reversal-invariant BCS zero quasi-particle 
states in the present theory). States not considered are: 

(1) Negative-parity states. These, of course, do not mix with the even-parity 
states considered here, and their calculation would require, in the present type 
of theory, basis wavefunctions of a different symmetry. 

(2) States of positive parity but with (r 1 r 2 r 3) = (+ - -), (- + -) and (- - +). 
These states are absolutely essential if one wants to calculate I + states (which 
are not allowed for (+ + +) symmetry). However, their mixing with the 
levels considered here for the 25 states of 154Gd cannot be very important, 
otherwise the calculated B(E2) values would have been quite wrong (recall 
that the symmetry of the wavefunctions is crucial to the rotational model type 
patterns of B(E2) values). 

It seems to us that the main cause of the discrepancies between the theory and 
experiment (which occur mainly in the energy region of the vibrational bands) is the 
truncated configuration space used in the DPPQ method, which is restricted to two 
major oscillator shells. The inertial renormalization parameter, which multiplies all 
the calculated inertial functions, provides only a crude way of taking into account 
the effects of the 'inert' core. It could be argued that the core contributions are different 
for the moments of inertia and the vibrational· mass parameters and hence different 
renormalization coefficients should be used for the two types of functions. However, 
this would not help since such a procedure would upset the symmetry properties of 
the six inertial functions which must reduce in the limit of small deformations to 
Bohr's (1952) form, where all six functions depend on a single mass parameter except 
for some p- and y-dependent functions dictated by the symmetry conditions (Bohr 
1952; Kumar and Baranger 1967). 

As has been remarked many times before, the problem of truncation of the con
figuration space is not simply a computer time (cost) problem. If one merely expands 
the space without improving the nucleon-nucleon interaction, the calculated results 
can get worse instead of better. This has been our experience with several versions 
of the quadrupole force, where the radial matrix elements have been calculated accor
ding to different prescriptions; for instance, replacement of the oscillator by a 
Woods-Saxon potential, restriction to Il.N = 0 matrix elements only, etc. As noted 
in Section 2 above, calculations can now be made over a fairly complete configuration 
space (.IV = 0-8 major oscillator shells) with the recently developed DNSB version of 
the dynamic deformation theory, although such calculations still require much larger 
and faster computers than those used for most DPPQ calculations. However, the 
brief comparison made here between the DPPQ and DNSB results indicates once 
more that agreement with experiment is not improved simply by expanding the confi
guration space. Nevertheless, probably a more extensive study of the DNSB param
eters is required before it can be definitely concluded that this method is generally 
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inferior to the DPPQ method, rather than just that the latter method happens to 
work better for those mass regions where theoretical parameters have been established 
quite well after many years of study of various nuclear properties. 
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