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Abstract 

The first-order perturbation induced by the first-order perturbation of a given Lagrangian in its 
associated characteristic function V is given by a simple integral along the unperturbed extremals. 
This result is applied to the world characteristic of the linearized gravitational field. Various specialized 
situations are considered. For example, to obtain V(1) in the quasi-Newtonian approximation one 
merely needs to evaluate a three-dimensional volume integral over the product of the energy density 
and a type of two-point Green's function. 

1. Introduction 

Let {qk(U)} be a set of n arbitrarily selected, continuous, sufficiently often 
differentiable functions of one independent variable u. A set of values of 

ql(U), q2(U), ... , qn(u), U 

may be represented by a point P in an (n+ I)-dimensional representative space 
Rn + l' As u increases continuously from u = t to t' the point P traces out a 
representative curve C which joins the initial point A[x1, ... ,~, t] to the final point 
A'[x1', ... , xn', t '], where qk(t) =: Xk and qk(t') =: xk'. An arbitrary neighbouring 
curve C* through the same endpoints is generated by the set of functions 

{q*k(U):= qk(U) +e¢k(u)}, 

where e is a numerical parameter such that Ie I is sufficiently small and {¢k} is a set 
of arbitrary differentiable functions which vanish at the endpoints. If L is a given 
function of {qk}, the first derivatives {qk} of these, and of u explicitly, define the 
functional 

fA' 

Y:= A L(q\ql,u)du. 

Then a 'variational problem' is a prescription which selects a particular curve E 
joining A and A' by the requirement that the value of Yevaluated by integration 
along E is stationary as compared with its value when integrated along an arbitrary 
neighbouring curve E* through the same endpoints. It will be taken for granted 
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that there is only one such curve when values of {1:0' _Xk I, 1 I I - t I} are sufficiently 
small. The curve E is the 'extremal' of the variational problem. The corresponding 
value Vof V depends solely upon the coordinates of A and A'so that the variational 
problem generates a function V(.x1', ... ,X", I', xl, ... ,X', t)of 2n+2 variables; and 
this is the 'characteristic function' of the problem. In physical applications it some
times goes under other names, e.g. 'point characteristic' in geometrical optics, 
'principal function' in analytical dynamics, 'world characteristic' in general relativity 
theory. At any rate, given the explicit form of V one is in possession of all possible 
information about the extremals, i.e. of the solution of the variational problem: 
having chosen any pair of points A, A' the derivatives of V with respect to Xk and Xl' 

provide the directions at these points of the extremal which joins them. Explicitly, 
let vk(u) : = oL/oil and write Pk : = vk(t) and Pk' : = vk(t '). Then (e.g. Lanczos 1970) 

oV /0:0' = Pk" oV/o:0 = -Pk. (la, b) 

If one regards A and the values of the Pk as given, the set of equations (1 b) constitutes 
the equations of the extremal; and they satisfy the equations which express the 
vanishing of the functional derivatives of L with respect to {qk}. The function V 
satisfies a pair of first-order partial differential equations but these may be left aside 
here. 

Contemplate now a family of Lagrangians L(A) of the kind 

L(A) = L(O) +AL(l) +A2L(2) + ... , (2) 

where the L(') (s = 0,1, ... ) are given functions and A is a numerical parameter, 
sufficiently small in absolute value. Correspondingly, 

V(A) = V(O) +AV(l) +A2V(2) + ... (3) 

will be the characteristic function which belongs to L(A). Given V(O) there now 
arises the problem of determining the 'perturbations' V(l), V(2), ... of V. In this 
paper I consider V(l) alone. That the required result then follows almost trivially 
(see Section 2a below) in no way detracts from its usefulness. 

In applications the situation is particularly simple of course when V(O) is known 
from first principles; for instance when L(O) corresponds to (i) a homogeneous 
medium in geometrical optics or (ii) flat space in general relativity theory. It is 
just the second of these examples which is considered here in greater detail. In that 
case A may be thought of as Newton's constant whilst one may take 

V(O) = 1 11ilxi' _Xi)(Xi' _xi)lt , (4) 

where 11 ij = diag( - 1, - 1, -1, 1). The corresponding extremals (i.e. geodesics) are 
straight lines. Further, the explicit form of L(l) is provided by the solution of the 
linearized gravitational field equations (Section 2b). The function L(l) has to be 
integrated along the unperturbed geodesics (Section 2c) and in the special case when 
the field is stationary this integration can be carried out once and for all (Section 2d). 
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Then the determination of V(1) only requires the evaluation of three-dimensional 
(cartesian) volume integrals of the form 

f d3~ Sij(~)F(~;x',x), 
where 

F(~;x',x):= artanh[lx'-xl/(lx'-~1 + Ix-~D] 

is a kind of two-point Green's function and Sij(~) is a given source tensor (x' and 
x are the cartesian spatial coordinates of the endpoints). One may further specialize 
to the even simpler quasi-Newtonian approximation (Section 2e) which includes 
the Schwarzschild field remote from the origin (Section 2f). In the static case the 
optical point characteristic (to within terms O(A?» may be extracted directly from 
the world function Q (Section 2g). 

2. The Perturbation V(1) 

(a) General Result 

Quite generally 

yeA) - V(O) = f L(A) du - r nO) du , 
E(.l.) J E(O) 

where E(A) denotes the extremal joining A and A' defined by L(A). Therefore 

yeA) - V(O) = f L (0) du + A r n1) du - r nO) du + O(A 2) • 
E(.l.) J E(.l.) J E(O) 

Because of the extremality of the curve E (0) the difference between the first and 
third integrals is O(A2), whilst 

f n1) du - f n1) du = O(A). 
E(.l.) E(O) 

There follows at once the required result that 

V(l) = f n1) du. 
E(O) 

(5) 

In an optical context an analogous result appears in Section 109 of the text by 
Buchdahl (l970a). 

(b) Generic Form for Weak Gravitational Fields 

When V belongs to the Lagrangian 

L = Igijqiqilt, (6) 

where g ij is the metric tensor of a four-dimensional normal hyperbolic Riemann 
space (of signature -2), I caIl it the world characteristic. Synge's (1960) world 
function is then given by 

Q:= !eV2 , (7) 

where B = 1,0, -1 for time-like, light-like and space-like geodesics respectively. 
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Confronted with sufficiently weak gravitational fields one may adopt coordinates 
such that 9tj = rtij+Ah ji, where A may be identified with Newton's constant. For 
the time being it is convenient to contemplate only time-like geodesics. Then from 
equation (6) 

L(O) = (rtijqiqi)t, L(1) = thiiqiqi/L(O). (8a, b) 

According to equation (5) the function L(1) is required only on the curve E(O) which 
is here a straight line. Further, the special parameter u may be taken to be the 
geodesic arc length along E (0), varying from 0 to s (== V(O» as one goes from A 
to A'. Therefore in equation (8b) we have 

l = (Xi"_Xi)u/s +xi , (9) 
whence 

qi = (Xi'-Xi)/s =:rLi. (10) 

The denominator of equation (8b) now reduces to unity so that 

L(1) = thtj rLi rLi. (11) 

Restoring the argument qk to hii' one has finally 

V(1) = trLirLi f: hij(rLkU+Xk) du. (12) 

(c) Linearized Gravitational Field due to Given Sources 

Let the gravitational field contemplated in the preceding section be due to sources 
described by the energy-momentum tensor Tij(qk). Then (e.g. Eddington 1923) 

h. = _4fSij(~,q4-lq-~l)d3j; 
iJ Iq_~I'" 

(13) 

where Sij : = Tij -trttj T. (If wk is any contravariant vector, I write wk =: (w, w4) 

and w : = (- 'lab W"Wb)t = 1 w I. Indices a, b, c go over the range 1,2,3 and it should 
be borne in mind that on the right of equation (13) one is implicitly dealing with 
the Euclidean metric rtij' The quantity ~ is an auxiliary cartesian three-vector.) 

Equation (12) now becomes, using equations (9) and (10), 

V(1) = _2rLirLi fd3e fS Sjj(~, rL4u+t-l(Xu+x-~ I) du. 
o l(Xu+x-~1 

(14) 

It is of some advantage to choose a new variable of integration u:= u-ts. At the 
same time write 

11':= x' -~, 11 = x-~. (15) 

Omitting the bar, one then obtains from equation (14) 

V(1) = -2rLirLifd3efts Sij(~,rL4u+!(t'+t)-I(Xu+t(11'+11)1) 
-ts 1 (Xu +t(l1' +11) 1 duo (16) 

This is as far as one can go in the general case. 
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(d) Stationary Case 

Suppose now that the sources are stationary in the sense that the Tij are independent 
of q4. Equation (16) then reduces to 

V(1) = -2rxirxi f sij(~)r(~;xk',xl)d3~, (17) 

where 

fts du 
r(~; Xk', Xl) : = -ts I !Xu +-!-CfJ ' +fJ) I' (18) 

The integral on the right of equation (18) is elementary but its evaluation is tedious. 
Bearing in mind that 

s!X = X'_X = fJ'_fJ 
and so 

I x' - x I =: / = rxs, 
one finds that 

r = 2s/- 1 artanh[I/(11' +17)]. (19) 
Thus, explicitly, 

v(l) = -4rxirxjsl- 1 fSij(~)artanh( I ~ I ) d3~. (20) 
Ix- 1+lx-~1 

(e) Quasi-Newtonian Approximation 

The quasi-Newtonian approximation corresponds to the assumption that all 
internal motions are sufficiently slow. This is equivalent to the assumption that the 
component T44 =: p, the energy density, is effectively the sole non-vanishing 
component of Tij. Then 

Sij = 1pdiag(l, 1, 1, 1), (21) 
and 

rxirxjSij = W 2 +(t ' _t)2]S-2p. 
Consequently, 

v(l) = _ 2[12+(t ' _t)2] fp(~)artanh( I I ) d3~ (22) 
Is Ix -~I+lx-~1 

and, since Q(O) = 1S2, 
Q(l) = S 01) . (23) 

In the strictly Newtonian approximation one contemplates only geodesics for 
which rx is negligible compared with rx4 , that is, / negligible compared with t I - t. 
The factor /2 + (t I - t)2 on the right of equation (22) is then to be replaced by (t I - t)2. 

(f) Schwarzschild Field 

Since p(~) in equation (22) denotes the 'Newtonian density', a point source 
corresponds to the choice 

p(~) = mf>(O/2ne, (24) 

where m is the mass of the source. The required integration is now trivial. Identifying 
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m with the parameter A, units having now been chosen as usual so as to give the 
speed of light and Newton's constant the value unity, one has finally 

Q = -ts2 - 2ml-l[l2 + (t I - t)2] artanh[l/(I x' I + I xl)] + O(m2) . (25) 

This result is not so easily obtained otherwise. However, it may be confirmed that it 
is in harmony with the series found by Buchdahl and Warner (1979). There is, of 
course, no need to confine oneself to time-like geodesics now, that is, Q need not be 
positive. 

(g) Optical Point Characteristic V 
Given a static gravitational field, take adapted coordinates such that ga4 = 0 

and gij,4 = O. The optical point characteristic V may then be obtained from Q 
by replacing t I - t by V and solving the equation Q = 0 for V (cf. Buchdahl 1970b). 
It will suffice to choose the special result (25) for the purpose of illustration. One 
finds at once that 

f· = I + 4m artanh[l/(r I + r)] + O(m2) , (26) 

where r:= I xl and r':= I x' I· 
In an equatorial plane, say the plane z = 0, consider the ray which joins the point 

(x, y) to the point (x' =x, y' = - y). For this ray, from equation (26), 

-1/1:= 8V/8x = 2m lyl/x(x2+y2}t +O(m2). 

Now let Iyl--+ CI) and reject all terms not linear in m. Then I/Ilyl=oo = -2m/x. 
However, to the required order, x is the distance R of closest approach to the origin 
and 1/1 is the angle between the ray and the y axis. By symmetry, the total deflection 
is 211/1 I = 4m/ R, which is the usual result. (There is, of course, no meaningful 
Newtonian approximation in this context, since I is now very nearly equal to t' - t.) 

3. Concluding Remarks 

The question arises as to the possibility of extending the approximation to V 
to a higher order in A by extending the procedure adopted above. The situation is 
that such higher order approximations can indeed be found though the work involved 
is very cumbersome. It must be borne in mind, however, that experience shows other 
methods for finding approximations to V also to be very cumbersome. I hope to 
return to this problem at a later date. 
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