Aspects of the Exceptional Group $\boldsymbol{E}_{\mathbf{8}}$

B. G. Wybourne
British Council Commonwealth Visiting Professor 1978-79, at the School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, U.K.; permanent address: Physics Department, University of Canterbury, Christchurch, New Zealand.

Abstract

Methods for calculating branching rules and Kronecker products for the exceptional group E_{8} are developed. In particular, tables of branching rules for $E_{8} \rightarrow S U_{9}, E_{8} \rightarrow S U_{2} \times E_{7}$ and $E_{8} \rightarrow S U_{3} \times E_{6}$ are given. The third and fourth symmetrized powers of the adjoint representation of E_{8} are also resolved. The relevance of E_{8} to unified theories of strong, electromagnetic and weak interactions is briefly considered.

Introduction

The properties of the exceptional groups have recently been a subject of interest to physicists investigating the possible construction of unified gauge theories of strong, weak and electromagnetic interactions (see Gell-Mann et al. 1978, and references therein). Ramond (1977) has asked the question 'Is there an exceptional group in your future?', answering in the affirmative. Subsequent developments make the affirmative answer questionable. Nevertheless, it is important that the basic properties of the exceptional groups be known and available.

The basic properties of the exceptional groups have been outlined, and a systematic notation established for describing their irreducible representations (irreps), by Wybourne and Bowick (1977). The calculation of explicit properties such as $3 j m$ and $6 j$ symbols for E_{7} in particular has been considered (Wybourne 1978; Butler et al. 1978, 1979). The exceptional group E_{8} is truly exceptional in that its defining (or fundamental) and adjoint (or regular) irreps coincide. The high dimension (248) of the adjoint irrep of E_{8} further complicates the problem of resolving Kronecker products and branchings. As a consequence there is a paucity of known results for E_{8} (McKay et al. 1976b; Wybourne and Bowick 1977). In this paper we are able to find quite simple and efficient methods for resolving all Kronecker products of E_{8} irreps up to the fourth power in the adjoint irrep and thence to resolve the symmetrized third and fourth powers of the adjoint irrep. These calculations were performed leisurely by hand and the most cumbersome case, a Kronecker product of dimension 1015808000 , was resolved in 10 minutes while awaiting a coffee break. The bulk of the time was taken up with checking the results. We note that this example is about six orders of magnitude larger than those produced by computer programs which solve the problem by enumeration of weights (cf. Patera and Sankoff 1973; McKay et al. 1976a).

While for most Lie groups it is possible to deduce branching rules for the various group-subgroup combinations from a knowledge of Kronecker products in the group and subgroup, together with the branching rules for the irreps that arise in the Kronecker square of the fundamental irreps, such a procedure fails for E_{8}. In this case the Kronecker third powers of the fundamental irrep do not yield sufficient equations to solve for the branchings of three of the five power-3 irreps of E_{8}. These methods in two cases yield the content of pairs of irreps of E_{8}, namely the pair $\left[\left(43^{6} 2\right),\left(63^{7}\right)\right]$ and the pair $\left[\left(43^{6} 2\right),\left(3^{8}\right)\right]$. While comparison of the two pairs yields a partial content for each irrep, it is not possible to separate the pairs completely in the traditional manner. Nevertheless, methods are described here which enable us to make a complete separation and thus to determine for the first time the branching rules for all third power irreps of E_{8}. Inspection of the tables of E_{8} Kronecker products shows that the branching rules for all the fourth power irreps of E_{8} can be unequivocally resolved and probably even those of fifth power, if not all higher powers of E_{8}. Particular results are given here for the maximal subgroups $S U_{9}, S U_{2} \times E_{7}$ and $S U_{3} \times E_{6}$. The relevance (or what currently appears more likely, the irrelevance) of these results to unified gauge theories is briefly considered.

Some Basic Properties of $\boldsymbol{E}_{\mathbf{8}}$ Irreps

The nontrivial irreps of E_{8} may be uniquely labelled by a set of eight integers $\Lambda_{i}(i=1,2, \ldots, 8)$ such that (Wybourne and Bowick 1977)

$$
\begin{gather*}
\Lambda_{i} \geqslant \Lambda_{i+1} \geqslant 0 \tag{1}\\
2\left(\Lambda_{6}+\Lambda_{7}+\Lambda_{8}\right)-\left(\Lambda_{1}+\Lambda_{2}+\Lambda_{3}+\Lambda_{4}+\Lambda_{5}\right)=3 n \tag{2}
\end{gather*}
$$

where n is a non-negative integer. (For an alternative labelling scheme based on the $S O_{16}$ subgroup of E_{8} see Qubanchi 1978.) The irreps may be equivalently labelled in Dynkin's notation by the set of non-negative integers $a \equiv a_{1} a_{2} \ldots a_{8}$. It is useful to list the irreps in order of increasing power p_{A} (Wybourne 1979) and, for a given power, in order of increasing maximal weights. The power p_{Λ} of an irrep (Λ) of E_{8} is simply the numerical value of Λ_{6} (Wybourne 1979). Every irrep of E_{8} may be associated with a dimension D_{A} and a second-order Dynkin index $I_{A}^{(2)}$ (Dynkin 1952a, 1952b; Patera et al. 1976, 1977). These basic properties are given, for all irreps of E_{8} with $p_{A} \leqslant 4$, in Table 1. A similar, and more extensive, tabulation including the fourth order Dynkin index $I_{A}^{(4)}$ but without ordering with respect to p_{Λ} has been given by McKay and Patera (1977).

We note that all the irreps of E_{8} are orthogonal and real (Malćev 1944). The group $S U_{9}$ occurs as a maximal subgroup of E_{8}. The characters of $S U_{9}$ may be expressed in Schur functions (S-functions) (see Wybourne 1970). Under the reduction $E_{8} \rightarrow S U_{9}$ we necessarily have in our notation

$$
\begin{equation*}
\Lambda \supset\{\Lambda\}, \tag{3}
\end{equation*}
$$

where we use braces to label the S -functions of $S U_{9}$ (Wybourne and Bowick 1977). If $\{\Lambda\}$ is not self-contragredient then $\left\{\Lambda^{*}\right\}$ will also necessarily occur in the right-hand side of the relation (3).

Table 1. Basic properties of $\boldsymbol{E}_{\mathbf{8}}$ irreps
All irreps of E_{8} with $p_{\Lambda} \leqslant 4$ are listed

Irrep (Λ)	Dynkin label (a)	Power p_{A}	Dimension D_{A}	Dynkin index $I_{A}^{(2)} / 8$
(0)	(00000000)	0	1	0
$\left(21^{7}\right)$	(10000000)	1	248	60
$\left(2^{7} 1\right)$	(00000010)	2	3875	1500
$\left(3^{2} 2^{6}\right)$	(01000000)	2	30380	14700
$\left(42^{7}\right)$	(20000000)	2	27000	13500
$\left(3^{8}\right)$	(00000001)	3	147250	85500
$\left(43^{6} 2\right)$	(10000010)	3	779247	502740
$\left(4^{3} 3^{5}\right)$	(00100000)	3	2450240	1778400
$\left(543^{6}\right)$	(11000000)	3	4096000	3072000
$\left(63^{7}\right)$	(30000000)	3	1763125	1365000
$\left(4^{6} 3^{2}\right)$	(00000100)	4	6696000	5292000
$\left(4^{7} 2\right)$	(00000020)	4	4881384	3936600
$\left(54^{7}\right)$	(10000001)	4	26411008	22364160
$\left(5^{2} 4^{5} 3\right)$	(01000010)	4	76271625	68890500
$\left(5^{4} 4^{4}\right)$	(00010000)	4	146325270	141605100
$\left(64^{6} 3\right)$	(20000010)	4	70680000	64980000
$\left(65^{2} 4^{5}\right)$	(10100000)	4	344452500	344452500
$\left(6^{2} 4^{6}\right)$	(02000000)	4	203205000	206482500
$\left(754^{6}\right)$	(21000000)	4	281545875	290628000
$\left(84^{7}\right)$	(40000000)	4	79143000	84249000

Calculated Results for $\boldsymbol{E}_{\mathbf{8}}$

Resolution of Kronecker Products
A Kronecker product $(\Lambda) \times\left(\Lambda^{\prime}\right)$ will be resolved if all the non-negative integers $k_{A^{\prime \prime}}$ are known in

$$
\begin{equation*}
(\Lambda) \times\left(\Lambda^{\prime}\right)=\sum k_{\Lambda^{\prime \prime}}\left(\Lambda^{\prime \prime}\right), \tag{4}
\end{equation*}
$$

where the summation is over all irreps ($\Lambda^{\prime \prime}$). The resolution may be verified by checking that the identities

$$
\begin{align*}
D_{\Lambda} \times D_{A^{\prime}} & =\sum k_{A^{\prime \prime}} D_{\Lambda^{\prime \prime}}, \tag{5}\\
D_{A^{\prime}} \times I_{\Lambda}^{(n)}+D_{\Lambda} \times I_{\Lambda^{\prime}}^{(n)} & =\sum k_{\Lambda^{\prime \prime}} I_{\Lambda^{\prime \prime}}^{(n)} \tag{6}
\end{align*}
$$

are simultaneously satisfied. It is important to require simultaneous satisfaction since either identity by itself can be satisfied by incorrect resolutions. For example, in E_{8} the two irreps $\left(6^{6} 54\right)$ and $\left(765^{5} 4\right)$ are of the same dimension though they have different values of $I_{A}^{(2)}$. In comparatively rare instances two or more irreps may separately coincide in D_{A} and $I_{A}^{(2)}$, such as for the $\left\{31^{3}\right\}$ and $\left\{32^{6}\right\}$ irreps of $S U_{9}$. In these cases the fourth order Dynkin index $I_{A}^{(4)}$ is required. Contragredient partners will necessarily possess common values for the dimension and Dynkin indices. In these cases great caution must be exercised.

It is often possible to resolve Kronecker products by use of equations (5) and (6) and the consequential solution of the resulting linear Diophantine equations, provided the possible values of ($\Lambda^{\prime \prime}$) in equation (4) can be sufficiently restricted. Our resolution of E_{8} Kronecker products relies upon producing just such a restricted list of candidates for the ($\Lambda^{\prime \prime}$).

We first note that the range of $\left(\Lambda^{\prime \prime}\right)$ is restricted by the requirement that (Wybourne 1979)

$$
\begin{equation*}
p(\Lambda)+p\left(\Lambda^{\prime}\right) \geqslant p\left(\Lambda^{\prime \prime}\right) \geqslant\left|p(\Lambda)-p\left(\Lambda^{\prime}\right)\right| . \tag{7}
\end{equation*}
$$

The leading term in equation (4) is necessarily

$$
\begin{equation*}
\left(\Lambda^{\prime \prime}\right)_{\max }=\left(\Lambda+\Lambda^{\prime}\right), \tag{8}
\end{equation*}
$$

with $k_{\Lambda^{\prime \prime} \max }=1$. The identity irrep (0) will occur in equation (4) if and only if $\Lambda \equiv \Lambda^{*}$ and then only with $k_{0}=1$.

Table 2. Kronecker products for $\boldsymbol{E}_{\mathbf{8}}$
Product Evaluation

$\left(21^{7}\right) \times\left(21^{7}\right)$	$\left\{\left(42^{7}\right)+\left(2^{7} 1\right)+(0)\right\}+\left[\left(3^{2} 2^{6}\right)+\left(21^{7}\right)\right]$
$\left(2^{7} 1\right) \times\left(21^{7}\right)$	$\left(43^{6} 2\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+\left(21^{7}\right)$
$\left(2^{7} 1\right) \times\left(2^{7} 1\right)$	$\left\{\left(4^{7} 2\right)+\left(4^{3} 3^{5}\right)+\left(42^{7}\right)+\left(3^{8}\right)+\left(2^{7} 1\right)+(0)\right\}+\left[\left(4^{6} 3^{2}\right)+\left(43^{6} 2\right)+\left(3^{2} 2^{6}\right)+\left(21^{7}\right)\right]$
$\left(3^{2} 2^{6}\right) \times\left(21^{7}\right)$	$\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+\left(21^{7}\right)$
$\left(3^{2} 2^{6}\right) \times\left(2^{7} 1\right)$	$\begin{aligned} \left(5^{2} 4^{5} 3\right) & +\left(54^{7}\right)+\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+2\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+2\left(3^{2} 2^{6}\right) \\ & +\left(2^{7} 1\right)+\left(21^{7}\right) \end{aligned}$
$\left(3^{2} 2^{6}\right) \times\left(3^{2} 2^{6}\right)$	$\begin{aligned} \left\{\left(6^{2} 4^{6}\right)\right. & +\left(64^{6} 3\right)+\left(5^{4} 4^{4}\right)+\left(543^{6}\right)+\left(4^{7} 2\right)+2\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+2\left(42^{7}\right)+\left(3^{8}\right) \\ & \left.+2\left(2^{7} 1\right)+(0)\right\}+\left[\left(65^{2} 4^{5}\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+\left(543^{6}\right)+\left(4^{6} 3^{2}\right)\right. \\ & \left.+2\left(43^{6} 2\right)+\left(3^{8}\right)+2\left(3^{2} 2^{6}\right)+\left(21^{7}\right)\right] \end{aligned}$
$\left(42^{7}\right) \times\left(21^{7}\right)$	$\left(63^{7}\right)+\left(543^{6}\right)+\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{2} 2^{6}\right)+\left(21^{7}\right)$
$\left(42^{7}\right) \times\left(2^{7} 1\right)$	$\left(64^{6} 3\right)+\left(54^{7}\right)+\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)$
$\left(42^{7}\right) \times\left(3^{2} 2^{6}\right)$	$\begin{aligned} \left(754^{6}\right) & +\left(65^{2} 4^{5}\right)+\left(64^{6} 3\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+2\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right) \\ & +2\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+2\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+\left(21^{7}\right) \end{aligned}$
$\left(42^{7}\right) \times\left(42^{7}\right)$	$\begin{gathered} \left\{\left(84^{7}\right)+\left(6^{2} 4^{6}\right)+\left(64^{6} 3\right)+\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+\left(4^{7} 2\right)+2\left(42^{7}\right)+\left(2^{7} 1\right)+(0)\right\} \\ +\left[\left(754^{6}\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(543^{6}\right)+\left(43^{6} 2\right)+\left(3^{2} 2^{6}\right)+\left(21^{7}\right)\right] \end{gathered}$
$\left(3^{8}\right) \times\left(21^{7}\right)$	$\left(54^{7}\right)+\left(4^{6} 3^{2}\right)+\left(43^{6} 2\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)$
$\left(43^{6} 2\right) \times\left(21^{7}\right)$	$\begin{aligned} \left(64^{6} 3\right) & +\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+\left(543^{6}\right)+\left(4^{7} 2\right)+2\left(43^{6} 2\right)+\left(4^{3} 3^{5}\right)+\left(4^{6} 3^{2}\right)+\left(42^{7}\right) \\ & +\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right) \end{aligned}$
$\left(4^{3} 3^{5}\right) \times\left(21^{7}\right)$	$\left(65^{2} 4^{5}\right)+\left(5^{4} 4^{4}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)$
$\left(543^{6}\right) \times\left(21^{7}\right)$	$\begin{aligned} \left(754^{6}\right) & +\left(6^{2} 4^{6}\right)+\left(65^{2} 4^{5}\right)+\left(64^{6} 3\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+2\left(543^{6}\right)+\left(4^{3} 3^{5}\right) \\ & +\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{2} 2^{6}\right) \end{aligned}$
$\left(63^{7}\right) \times\left(21^{7}\right)$	$\left(84^{7}\right)+\left(754^{6}\right)+\left(64^{6} 3\right)+\left(63^{7}\right)+\left(543^{6}\right)+\left(42^{7}\right)$
$\left(3^{8}\right) \times\left(2^{7} 1\right)$	$\begin{aligned} \left(5^{7} 4\right) & +\left(5^{4} 4^{4}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+\left(4^{7} 2\right)+\left(4^{6} 3^{2}\right)+\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+2\left(43^{6} 2\right) \\ & +\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(42^{7}\right)+\left(2^{7} 1\right)+\left(21^{7}\right) \end{aligned}$
$\left(4^{7} 2\right) \times\left(21^{7}\right)$	$\left(65^{6} 3\right)+\left(5^{7} 4\right)+\left(5^{2} 4^{5} 3\right)+\left(4^{7} 2\right)+\left(4^{6} 3^{2}\right)+\left(43^{6} 2\right)$
$\left(4^{6} 3^{2}\right) \times\left(21^{7}\right)$	$\left(65^{5} 4^{2}\right)+\left(5^{7} 4\right)+\left(5^{4} 4^{4}\right)+\left(54^{7}\right)+\left(4^{7} 2\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(3^{8}\right)$
$\left(54^{7}\right) \times\left(21^{7}\right)$	$\begin{aligned} \left(75^{7}\right) & +\left(6^{2} 5^{6}\right)+\left(65^{5} 4^{2}\right)+\left(64^{6} 3\right)+\left(65^{2} 4^{5}\right)+\left(5^{7} 4\right)+\left(5^{4} 4^{4}\right)+\left(5^{2} 4^{5} 3\right)+2\left(54^{7}\right) \\ & +\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(3^{8}\right) \end{aligned}$

The above conditions severely restrict the range of ($\Lambda^{\prime \prime}$) in the Kronecker product though not always sufficiently to avoid Diophantine equations with several redundant terms. At this juncture we note that the method used by Wybourne and Bowick (1977) unequivocally resolves the E_{8} products if the branching rules for the $E_{8} \rightarrow S U_{9}$ reductions are known. One simply reduces Λ and Λ^{\prime} to linear combinations of S -functions appropriate to $S U_{9}$, forms their products and then uses the relation (3) and the branching rules to invert the S -functions back into E_{8} irreps. Clearly, considerable labour is involved if all the S -function multiplications are carried out. However, many S-function products cannot yield partitions that satisfy the relation
(3) and thus in obtaining possible candidates for ($\Lambda^{\prime \prime}$) we need only consider those products that can yield S-functions whose defining partitions satisfy the conditions (1) and (2). Indeed in many cases the selection of the ($\Lambda^{\prime \prime}$) can be deduced by simply combining the S-function products $\{\Lambda\}\left\{\Lambda^{\prime}\right\}$ followed by the solution of some trivial linear Diophantine-type equations. In this way it became trivial to resolve the Kronecker products listed in Table 2 from just the information given in Table 1 using a small non-programmable hand calculator and carrying out only the simplest of Young tableau operations. The hand calculator was used primarily for checking the results. Inspection of the results in Table 2 shows that if the branching rules are known for all E_{8} irreps of power 3 and less, then all those of power 4 can be deduced.

Table 3. Symmetrized third and fourth powers of adjoint irrep of $\boldsymbol{E}_{\mathbf{8}}$

Plethysm	Evaluation
$\left(21^{7}\right) \otimes\{3\}$	$\left(63^{7}\right)+\left(43^{6} 2\right)+\left(3^{2} 2^{6}\right)+\left(21^{7}\right)$
$\left(21^{7}\right) \otimes\{21\}$	$\left(543^{6}\right)+\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+2\left(21^{7}\right)$
$\left(21^{7}\right) \otimes\left\{1^{3}\right\}$	$\left(4^{3} 3^{5}\right)+\left(42^{7}\right)+\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+(0)$
$\left(21^{7}\right) \otimes\{4\}$	$\left(84^{7}\right)+\left(64^{6} 3\right)+\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+\left(4^{7} 2\right)+2\left(42^{7}\right)+\left(3^{8}\right)+\left(2^{7} 1\right)+(0)$
$\left(21^{7}\right) \otimes\{31\}$	$\left(754^{6}\right)+\left(64^{6} 3\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+2\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+3\left(43^{6} 2\right)$
	$+2\left(42^{7}\right)+\left(3^{8}\right)+3\left(3^{2} 2^{6}\right)+2\left(2^{7} 1\right)+2\left(21^{7}\right)$
$\left(21^{7}\right) \otimes\left\{2^{2}\right\}$	$\left(6^{2} 4^{6}\right)+\left(64^{6} 3\right)+\left(54^{7}\right)+\left(543^{6}\right)+2\left(4^{3} 3^{5}\right)+\left(4^{7} 2\right)+\left(43^{6} 2\right)+3\left(42^{7}\right)+\left(3^{8}\right)+\left(3^{2} 2^{6}\right)$
	$\quad+3\left(2^{7} 1\right)+2(0)$
$\left(21^{7}\right) \otimes\left\{21^{2}\right\}$	$\left(65^{2} 4^{5}\right)+\left(63^{7}\right)+\left(5^{2} 4^{5} 3\right)+\left(54^{7}\right)+2\left(543^{6}\right)+\left(4^{6} 3^{2}\right)+\left(4^{3} 3^{5}\right)+3\left(43^{6} 2\right)+\left(42^{7}\right)$
	$+2\left(3^{8}\right)+4\left(3^{2} 2^{6}\right)+\left(2^{7} 1\right)+3\left(21^{7}\right)$
$\left(21^{7}\right) \otimes\left\{1^{4}\right\}$	$\left(5^{4} 4^{4}\right)+\left(543^{6}\right)+\left(4^{3} 3^{5}\right)+\left(43^{6} 2\right)+\left(42^{7}\right)+\left(3^{8}\right)+\left(2^{7} 1\right)+\left(21^{7}\right)$

Symmetrized Powers of Adjoint Irrep

Following the methods outlined by Wybourne and Bowick (1977) it was possible from the preceding results to resolve the third and fourth powers of the adjoint irrep of E_{8} as listed in Table 3. The resolution of the Kronecker powers of an irrep (Λ) of dimension D_{A} for a group G may be verified by noting that the evaluation of the plethysm (Wybourne 1970)

$$
\begin{equation*}
(\Lambda) \otimes\{\mu\}=\sum k_{\Lambda^{\prime \prime}}\left\{\Lambda^{\prime \prime}\right\} \tag{9}
\end{equation*}
$$

is equivalent to determining the branching rule for the $\{\mu\}$ irrep of $U_{D_{\boldsymbol{A}}}$ under the restriction of $U_{D_{A}} \rightarrow G$ (Butler and Wybourne 1969), in our case $U_{248} \rightarrow E_{8}$. With this in mind we may simply use the two branching rule identities

$$
\begin{equation*}
D_{\{\mu\}}=\sum k_{A^{\prime \prime}} D_{A^{\prime \prime}} \quad \text { and } \quad I_{\{\mu\}}^{(n)}=\rho_{n} \sum k_{A^{\prime \prime}} I_{A^{\prime \prime}}^{(n)} . \tag{10}
\end{equation*}
$$

The value of ρ_{n} may be fixed by knowing the reduction of the vector irrep $\{1\}$ of $U_{D_{A}} \rightarrow G$. In the present case, the eigenvalues of the second order Casimir operator for U_{n}, namely

$$
\begin{equation*}
C_{2}(\Lambda)=\frac{1}{2} n^{-1} \sum_{i=1}^{n} \Lambda_{i}\left(\Lambda_{i}+n+1-2 i\right)-\frac{1}{2} n^{-2}\left(\sum_{i=1}^{n} \Lambda_{i}\right)^{2}, \tag{11}
\end{equation*}
$$

were computed and these were then combined with D_{A} to yield the results of Table 4.

Table 4. Basic properties of some \boldsymbol{U}_{248} irreps

$\{\mu\}$	$D_{\{\mu\}}$	$2.248^{2} C_{2}$	$60 C_{2} . D_{\{\mu\}} /(247.248 .249)$
$\{0\}$	1	0	0
$\{1\}$	248	61503	60
$\{2\}$	30876	163336	15000
$\left\{1^{2}\right\}$	30628	122508	14760
$\{3\}$	2573000	185991	1882500
$\{21\}$	5084248	184503	3690060
$\left\{1^{3}\right\}$	2511496	183015	1808100
$\{4\}$	161455750	248976	158130000
$\{31\}$	476648250	246992	463110000
$\left\{2^{2}\right\}$	315223376	246000	305040000
$\left\{21^{2}\right\}$	469021878	245008	452039760
$\left\{1^{4}\right\}$	153829130	243024	147058800

Branching Rules for Subgroups

Wybourne and Bowick (1977) have given the branching rules for all power-2 irreps of E_{8} for a number of maximal subgroups of interest. Inspection of their Kronecker products for E_{8} shows clearly that additional information is required to determine the branching rules for the $\left(63^{7}\right),\left(3^{8}\right)$ and $\left(43^{6} 2\right)$ power- 3 irreps of E_{8}. If these are known then the branching rules for all the power 4, and possibly all powers, follow.

The problem for the $E_{8} \rightarrow S U_{9}$ decomposition was first solved by exploiting the Kronecker product $\left(21^{7}\right) \times\left(2^{7} 1\right)$ to give the terms in $\left(43^{6} 2\right)+\left(3^{8}\right)$, and the third symmetrized power $\left(21^{7}\right) \otimes\{3\}$ gave the terms in $\left(63^{7}\right)+\left(43^{6} 2\right)$. Comparison of these two lists of $S U_{9}$ irreps made it possible to assign some of the irreps to $\left(63^{7}\right),\left(43^{6} 2\right)$ and $\left(3^{8}\right)$, leaving a common residue of terms. The method of elementary multiplets was next used to decide on the distribution of most of the remaining terms among the three E_{8} irreps. It was then possible to complete the resolution by solving some trivial Diophantine equations based on the two identities (10) to yield the results shown in Table $5 a$.

The branching rules for $E_{8} \rightarrow S U_{2} \times E_{7}$ proved somewhat simpler to derive, and the results are given in Table $5 b$. The branching rules for $E_{8} \rightarrow S U_{3} \times E_{6}$ are of some interest as they are relevant to the E_{6} unified gauge model (Gürsey et al. 1975; Achiman and Stech 1978). To obtain these it was noted that the $E_{8} \rightarrow S U_{2} \times E_{7}$ branching rules could be disassembled to give those for $E_{8} \rightarrow S U_{2} \times S U_{6} \times S U_{3}$ and then the $S U_{2} \times S U_{6}$ parts reassembled into irreps of E_{6} using the results from Wybourne and Bowick (1977) for $E_{6} \rightarrow S U_{2} \times S U_{6}$. This was trivially done for the $\left(3^{8}\right)$ irrep of E_{8} and then the results for $\left(63^{7}\right)$ and $\left(43^{6} 2\right)$ were obtained by conventional methods. The results are given in Table 5c. These were checked both dimensionally and via the Dynkin index. In the latter case it was necessary to first calculate the values of the second and fourth Dynkin indices for $S U_{3} \times E_{6}$. Here the tables of McKay and Patera (1977) were most useful.

We may note that since the branching rules $E_{8} \rightarrow S U_{9}$ for the power- 3 irreps of E_{8} are now known it would be possible to use them to obtain all Kronecker products of E_{8} involving products with $p(\Lambda) \leqslant 6$. Indeed, we probably now have sufficient results to permit the building up of E_{8} products almost without limit.

Table 5. Branching rules for power- $\mathbf{3}$ irreps of \boldsymbol{E}_{8}
(4)

Branching

(a) $E_{8} \rightarrow S U_{9}$ branching rules
(3 ${ }^{8}$) $\quad\left\{3^{8}\right\}+\{3\}+\left\{3^{3} 2^{4} 1\right\}+\left\{321^{4}\right\}+\left\{32^{2} 1^{5}\right\}+\left\{32^{5} 1^{2}\right\}+\left\{32^{6}\right\}+\left\{3^{2} 1^{6}\right\}+\left\{31^{3}\right\}+\left\{3^{5} 2^{3}\right\}$ $+\left\{32^{3} 1^{3}\right\}+\left\{3^{2} 2^{3} 1^{3}\right\}+\left\{3^{2} 2^{6}\right\}+\left\{31^{6}\right\}+\left\{2^{7} 1\right\}+\{21\}+2\left\{2^{2} 1^{5}\right\}+\left\{2^{4} 1\right\}+\left\{2^{4} 1^{4}\right\}$
$+\left\{21^{4}\right\}+\left\{2^{2} 1^{2}\right\}+\left\{2^{5} 1^{2}\right\}+\left\{21^{7}\right\}+\left\{1^{6}\right\}+\left\{1^{3}\right\}$
(43 ${ }^{6} 2$) $\quad\left\{43^{6} 2\right\}+\left\{421^{6}\right\}+\left\{432^{5} 1\right\}+\left\{43^{3} 2^{4}\right\}+\left\{42^{4} 1^{3}\right\}+\left\{42^{7}\right\}+\left\{3^{4} 2^{2} 1^{2}\right\}+\left\{32^{2} 1^{2}\right\}+3\left\{32^{2} 1^{5}\right\}$ $+3\left\{32^{5} 1^{2}\right\}+2\left\{3^{2} 2^{6}\right\}+2\left\{31^{6}\right\}+2\left\{3^{3} 2^{4} 1\right\}+2\left\{321^{4}\right\}+\left\{3^{3} 21^{4}\right\}+\left\{32^{4} 1\right\}+2\left\{3^{2} 2^{3} 1^{3}\right\}$ $+2\left\{32^{3} 1^{3}\right\}+\left\{3^{5} 2^{3}\right\}+\left\{31^{3}\right\}+\left\{3^{2} 21^{4}\right\}+\left\{3^{2} 2^{4} 1\right\}+\left\{32^{6}\right\}+\left\{3^{2} 1^{6}\right\}+\left\{3^{6} 21\right\}+\{321\}$ $+3\left\{2^{4} 1^{4}\right\}+3\left\{21^{4}\right\}+2\left\{2^{7} 1\right\}+2\{21\}+2\left\{2^{3} 1^{3}\right\}+3\left\{2^{2} 1^{5}\right\}+2\left\{2^{2} 1^{2}\right\}+2\left\{2^{5} 1^{2}\right\}$ $+\left\{2^{4} 1\right\}+3\left\{21^{7}\right\}+2\left\{1^{6}\right\}+2\left\{1^{3}\right\}$
$\left(4^{3} 3^{5}\right) \quad\left\{4^{3} 3^{5}\right\}+\left\{41^{5}\right\}+2\left\{432^{5} 1\right\}+\left\{4^{2} 3^{4} 2^{2}\right\}+\left\{42^{2} 1^{4}\right\}+\left\{4^{2} 32^{5}\right\}+\left\{42^{5} 1\right\}+\left\{43^{6} 2\right\}+\left\{421^{6}\right\}$
$+\left\{42^{4} 1^{3}\right\}+\left\{43^{3} 2^{4}\right\}+\left\{432^{2} 1^{4}\right\}+\left\{43^{4} 2^{2} 1\right\}+\left\{43^{2} 2^{3} 1^{2}\right\}+\left\{42^{7}\right\}+\left\{3^{8}\right\}+\{3\}$
$+2\left\{3^{5} 2^{3}\right\}+2\left\{31^{3}\right\}+\left\{3^{5} 1^{3}\right\}+\left\{3^{2} 1^{3}\right\}+\left\{3^{4} 2^{3}\right\}+\left\{3^{2} 2^{3}\right\}+2\left\{3^{2} 1^{6}\right\}+2\left\{32^{6}\right\}$
$+3\left\{3^{2} 2^{3} 1^{3}\right\}+3\left\{32^{3} 1^{3}\right\}+3\left\{32^{5} 1^{2}\right\}+3\left\{32^{2} 1^{5}\right\}+\left\{3^{3} 2^{2} 1^{2}\right\}+\left\{3^{2} 2^{2} 1^{2}\right\}+\left\{3^{3} 21^{4}\right\}$
$+\left\{32^{4} 1\right\}+\left\{3^{4} 2^{2} 1^{2}\right\}+\left\{32^{2} 1^{2}\right\}+2\left\{3^{3} 2^{4} 1\right\}+2\left\{321^{4}\right\}+\left\{3^{2} 21^{4}\right\}+\left\{3^{2} 2^{4} 1\right\}+\left\{3^{6} 21\right\}$
$+\{321\}+2\left\{3^{2} 2^{6}\right\}+2\left\{31^{6}\right\}+3\left\{2^{3} 1^{3}\right\}+4\left\{2^{2} 1^{5}\right\}+3\left\{2^{4} 1^{4}\right\}+3\left\{21^{4}\right\}+2\left\{2^{7} 1\right\}+2\{21\}$
$+\left\{2^{4} 1\right\}+\left\{2^{6}\right\}+\left\{2^{3}\right\}+2\left\{2^{5} 1^{2}\right\}+2\left\{2^{2} 1^{2}\right\}+2\left\{21^{7}\right\}+2\left\{1^{6}\right\}+2\left\{1^{3}\right\}+\{0\}$
(543 $\left.{ }^{6}\right)\left\{543^{6}\right\}+\left\{52^{6} 1\right\}+\left\{53^{5} 2^{2}\right\}+\left\{53^{2} 2^{5}\right\}+\left\{43^{6} 2\right\}+\left\{421^{6}\right\}+2\left\{432^{5} 1\right\}+2\left\{43^{3} 2^{4}\right\}+2\left\{42^{4} 1^{3}\right\}$ $+\left\{4^{2} 3^{4} 2^{2}\right\}+\left\{42^{2} 1^{4}\right\}+\left\{4^{2} 32^{5}\right\}+\left\{42^{5} 1\right\}+2\left\{43^{2} 2^{3} 1^{2}\right\}+\left\{432^{2} 1^{4}\right\}+\left\{43^{4} 2^{2} 1\right\}$
$+\left\{43^{5} 1^{2}\right\}+\left\{43^{2} 1^{5}\right\}+2\left\{42^{7}\right\}+\left\{3^{5} 21\right\}+\left\{3^{2} 21\right\}+2\left\{3^{4} 2^{2} 1^{2}\right\}+2\left\{32^{2} 1^{2}\right\}+2\left\{3^{2} 2^{6}\right\}$
$+2\left\{31^{6}\right\}+3\left\{3^{3} 2^{4} 1\right\}+3\left\{321^{4}\right\}+\left\{3^{2} 2^{2} 1^{2}\right\}+\left\{3^{3} 2^{2} 1^{2}\right\}+2\left\{3^{3} 21^{4}\right\}+2\left\{32^{4} 1\right\}$
$+3\left\{3^{2} 2^{3} 1^{3}\right\}+3\left\{32^{3} 1^{3}\right\}+\left\{3^{3} 1^{3}\right\}+\left\{3^{3} 2^{3}\right\}+\left\{3^{6} 21\right\}+\{321\}+\left\{3^{5} 2^{3}\right\}+\left\{31^{3}\right\}+\left\{32^{6}\right\}$
$+\left\{3^{2} 1^{6}\right\}+2\left\{3^{2} 2^{4} 1\right\}+2\left\{3^{2} 21^{4}\right\}+5\left\{32^{5} 1^{2}\right\}+5\left\{32^{2} 1^{5}\right\}+2\left\{2^{7} 1\right\}+2\{21\}+2\left\{2^{4} 1\right\}$
$+4\left\{2^{4} 1^{4}\right\}+4\left\{21^{4}\right\}+2\left\{2^{6}\right\}+2\left\{2^{3}\right\}+4\left\{2^{2} 1^{5}\right\}+3\left\{2^{5} 1^{2}\right\}+3\left\{2^{2} 1^{2}\right\}+4\left\{2^{3} 1^{3}\right\}$.
$+4\left\{21^{7}\right\}+3\left\{1^{6}\right\}+3\left\{1^{3}\right\}$
(63 ${ }^{7}$) $\left\{63^{7}\right\}+\left\{53^{2} 2^{5}\right\}+\left\{53^{5} 2^{2}\right\}+\left\{43^{5} 1^{2}\right\}+\left\{43^{2} 1^{5}\right\}+\left\{43^{3} 2^{4}\right\}+\left\{42^{4} 1^{3}\right\}+\left\{43^{2} 2^{3} 1^{2}\right\}+\left\{432^{5} 1\right\}$
$+\left\{42^{7}\right\}+\left\{3^{6}\right\}+\left\{3^{3}\right\}+\left\{3^{3} 1^{3}\right\}+\left\{3^{3} 2^{3}\right\}+\left\{3^{4} 2^{2} 1^{2}\right\}+\left\{32^{2} 1^{2}\right\}+\left\{3^{3} 21^{4}\right\}+\left\{32^{4} 1\right\}$
$+\left\{3^{2} 2^{3} 1^{3}\right\}+\left\{32^{3} 1^{3}\right\}+2\left\{32^{5} 1^{2}\right\}+2\left\{32^{2} 1^{5}\right\}+\left\{3^{2} 2^{4} 1\right\}+\left\{3^{2} 21^{4}\right\}+\left\{3^{2} 2^{6}\right\}+\left\{31^{6}\right\}$
$+\left\{2^{5} 1^{2}\right\}+\left\{2^{2} 1^{2}\right\}+\left\{2^{6}\right\}+\left\{2^{3}\right\}+\left\{2^{4} 1^{4}\right\}+\left\{21^{4}\right\}+3\left\{2^{3} 1^{3}\right\}+\left\{2^{2} 1^{5}\right\}+\left\{21^{7}\right\}+2\left\{1^{6}\right\}$
$+2\left\{1^{3}\right\}+\{0\}$
(b) $E_{8} \rightarrow S U_{2} \times E_{7}$ branching rules ${ }^{\mathrm{A}}$
(3 $\left.{ }^{8}\right) \quad{ }^{4}\left(2^{7}\right)+{ }^{3}\left[\left(3^{2} 2^{5}\right)+\left(2^{5} 1^{2}\right)+\left(21^{6}\right)\right]+{ }^{2}\left[\left(3^{4} 2^{3}\right)+\left(32^{5} 1\right)+\left(2^{7}\right)+\left(1^{6}\right)\right]+{ }^{1}\left[\left(3^{6} 2\right)+\left(2^{5} 1^{2}\right)+\left(21^{6}\right)\right]$
$\left(43^{6} 2\right) \quad{ }^{5}\left(21^{6}\right)+{ }^{4}\left[\left(32^{5} 1\right)+\left(2^{7}\right)+\left(1^{6}\right)\right]+{ }^{3}\left[\left(42^{6}\right)+\left(3^{6} 2\right)+\left(3^{2} 2^{5}\right)+\left(2^{6}\right)+2\left(2^{5} 1^{2}\right)+\left(21^{6}\right)+(0)\right]$ $+{ }^{2}\left[\left(43^{6}\right)+\left(3^{5} 21\right)+\left(3^{4} 2^{3}\right)+2\left(32^{5} 1\right)+2\left(2^{7}\right)+2\left(1^{6}\right)\right]+{ }^{1}\left[\left(43^{4} 2^{2}\right)+\left(3^{6} 2\right)+\left(3^{2} 2^{5}\right)+\left(2^{6}\right)\right.$ $\left.+\left(2^{5} 1^{2}\right)+2\left(21^{6}\right)\right]$
$\left(4^{3} 3^{5}\right) \quad{ }^{5}\left(2^{5} 1^{2}\right)+{ }^{4}\left[\left(3^{4} 2^{3}\right)+\left(32^{5} 1\right)+\left(2^{7}\right)+\left(1^{6}\right)\right]+{ }^{3}\left[\left(43^{4} 2^{2}\right)+\left(3^{6} 2\right)+2\left(3^{2} 2^{5}\right)+\left(2^{6}\right)+\left(2^{5} 1^{2}\right)+2\left(21^{6}\right)\right]$ $+{ }^{2}\left[\left(4^{2} 3^{4} 2^{2}\right)+\left(43^{6}\right)+\left(3^{5} 21\right)+\left(3^{4} 2^{3}\right)+2\left(32^{5} 1\right)+2\left(2^{7}\right)+\left(1^{6}\right)\right]+{ }^{1}\left[\left(4^{3} 3^{4}\right)+\left(43^{5} 1\right)\right.$ $\left.+\left(42^{6}\right)+\left(3^{6} 2\right)+\left(3^{2} 2^{5}\right)+2\left(2^{5} 1^{2}\right)+(0)\right]$
$\left(543^{6}\right) \quad{ }^{6}\left(1^{6}\right)+{ }^{5}\left[\left(2^{6}\right)+\left(2^{5} 1^{2}\right)+\left(21^{6}\right)+(0)\right]+{ }^{4}\left[\left(3^{5} 21\right)+2\left(32^{5} 1\right)+\left(2^{7}\right)+2\left(1^{6}\right)\right]+{ }^{3}\left[\left(43^{5} 1\right)+\left(43^{4} 2^{2}\right)\right.$ $\left.+\left(42^{6}\right)+\left(3^{6} 2\right)+\left(3^{2} 2^{5}\right)+2\left(2^{6}\right)+2\left(2^{5} 1\right)+2\left(21^{6}\right)+(0)\right]+{ }^{2}\left[\left(53^{5} 2\right)+\left(4^{2} 3^{4} 2\right)+\left(43^{6}\right)\right.$ $\left.+\left(3^{6}\right)+\left(3^{5} 21\right)+\left(3^{4} 2^{3}\right)+3\left(32^{5} 1\right)+\left(2^{7}\right)+2\left(1^{6}\right)\right]+{ }^{1}\left[\left(543^{5}\right)+\left(43^{5} 1\right)+\left(43^{4} 2^{2}\right)+\left(42^{6}\right)\right.$ $\left.+\left(3^{6} 2\right)+\left(3^{2} 2^{5}\right)+\left(2^{6}\right)+\left(2^{5} 1^{2}\right)+\left(21^{6}\right)\right]$
$\left(63^{7}\right) \quad{ }^{7}(0)+{ }^{6}\left(1^{6}\right)+{ }^{5}\left[\left(2^{6}\right)+\left(21^{6}\right)\right]+{ }^{4}\left[\left(3^{6}\right)+\left(32^{5} 1\right)+\left(1^{6}\right)\right]+{ }^{3}\left[\left(43^{5} 1\right)+\left(42^{6}\right)+\left(2^{6}\right)+\left(2^{5} 1^{2}\right)+(0)\right]$ $+{ }^{2}\left[\left(53^{5} 2\right)+\left(3^{5} 21\right)+\left(32^{5} 1\right)+\left(1^{6}\right)\right]+{ }^{1}\left[\left(63^{6}\right)+\left(43^{4} 2^{2}\right)+\left(2^{6}\right)+\left(21^{6}\right)\right]$

[^0]Table 5 (Continued)
(4)

Branching

(c) $E_{8} \rightarrow S U_{3} \times E_{6}$ branching rules
$\left(3^{8}\right) \quad\{32\}\left[(1: 1)+\left(1^{4}: 2\right)\right]+\{31\}\left[\left(1^{5}: 1\right)+\left(1^{2}: 2\right)\right]+\left\{3^{2}\right\}(0: 2)+\{3\}(0: 2)+\{21\}[2(0: 0)+2(0: 2)$

$$
\begin{aligned}
& \left.+2\left(21^{4}: 2\right)+\left(1^{3}: 3\right)\right]+\{2\}\left[2(1: 1)+\left(1^{4}: 2\right)+(1: 3)\right]+\left\{2^{2}\right\}\left[2\left(1^{5}: 1\right)+\left(1^{2}: 2\right)\right. \\
& \left.+\left(1^{5}: 3\right)\right]+\{1\}\left[2\left(1^{5}: 1\right)+(2: 2)+2\left(1^{2}: 2\right)+\left(1^{5}: 3\right)+\left(21^{3}: 3\right)\right]+\left\{1^{2}\right\}[2(1: 1) \\
& \left.+\left(2^{5}: 2\right)+2\left(1^{4}: 2\right)+(1: 3)+\left(2^{2} 1^{3}: 3\right)\right]+\{0\}\left[2(0: 2)+\left(21^{4}: 2\right)+(21: 3)\right. \\
& \left.+\left(2^{4} 1: 3\right)\right]
\end{aligned}
$$

$\left(43^{6} 2\right)$
$\left(4^{3} 3^{5}\right)$
$\left(543^{6}\right)$
$\left(63^{7}\right)$
$\{43\}\left(1^{5}: 1\right)+\{41\}(1: 1)+\{42\}[(0: 0)+(0: 2)]+\left\{3^{2}\right\}\left[(0: 0)+(0: 2)+\left(21^{4}: 2\right)\right]+\{3\}[(0: 0)$
$\left.+(0: 2)+\left(21^{4}: 2\right)\right]+\{32\}\left[3(1: 1)+\left(2^{5}: 2\right)+2\left(1^{4}: 2\right)+(1: 3)\right]+\{31\}\left[3\left(1^{5}: 1\right)\right.$
$\left.+(2: 2)+2\left(1^{2}: 2\right)+\left(1^{5}: 3\right)\right]+\{21\}\left[3(0: 0)+5(0: 2)+5\left(21^{4}: 2\right)+2\left(1^{3}: 3\right)\right.$
$\left.+(21: 3)+\left(2^{4}: 3\right)+(0: 4)\right]+\{2\}\left[3(1: 1)+\left(2^{5}: 2\right)+3\left(1^{4}: 2\right)+2(1: 3)+\left(2^{2} 1^{3}: 3\right)\right]$
$+\left\{2^{2}\right\}\left[3\left(1^{5}: 1\right)+(2: 2)+3\left(1^{2}: 2\right)+2\left(1^{5}: 3\right)+\left(21^{3}: 3\right)\right]+\{1\}\left[5\left(1^{5}: 1\right)+2(2: 2)\right.$
$\left.+4\left(1^{2}: 2\right)+3\left(1^{5}: 3\right)+2\left(21^{3}: 3\right)+\left(32^{4}: 3\right)+\left(1^{2}: 4\right)\right]+\left\{1^{2}\right\}\left[5(1: 1)+2\left(2^{5}: 2\right)\right.$
$\left.+4\left(1^{4}: 2\right)+3(1: 3)+2\left(2^{2} 1^{3}: 3\right)+\left(31^{4}: 3\right)+\left(1^{4}: 4\right)\right]+\{0\}[(0: 0)+3(0: 2)$
$\left.+3\left(21^{4}: 2\right)+2\left(1^{3}: 3\right)+(21: 3)+\left(2^{4} 1: 3\right)+\left(21^{4}: 4\right)\right]$
$\{43\}\left[\left(1^{5}: 1\right)+\left(1^{2}: 2\right)\right]+\{41\}\left[(1: 1)+\left(1^{4}: 2\right)\right]+\{42\}\left[(0: 0)+(0: 2)+\left(21^{4}: 2\right)\right]+\left\{4^{2}\right\}(1: 1)$
$+\{4\}\left(1^{5}: 1\right)+\left\{3^{2}\right\}\left[(0: 0)+2(0: 2)+\left(21^{4}: 2\right)+\left(1^{3}: 3\right)\right]+\{3\}[(0: 0)+2(0: 2)$
$\left.+\left(21^{4}: 2\right)+\left(1^{3}: 3\right)\right]+\{32\}\left[3(1: 1)+3\left(1^{4}: 2\right)+\left(2^{5}: 2\right)+2(1: 3)+\left(2^{2} 1^{3}: 3\right)\right]$
$+\{31\}\left[3\left(1^{5}: 1\right)+3\left(1^{2}: 2\right)+(2: 2)+2\left(1^{5}: 3\right)+\left(21^{3}: 3\right)\right]+\{21\}[2(0: 0)+6(0: 2)$
$\left.+6\left(21^{4}: 2\right)+2(21: 3)+2\left(2^{4} 1: 3\right)+3\left(1^{3}: 3\right)+(0: 4)+\left(21^{4}: 4\right)\right]+\{2\}\left[\left(1^{5}: 1\right)\right.$
$\left.+3(1: 1)+3\left(1^{4}: 2\right)+2\left(2^{5}: 2\right)+\left(2^{2} 1^{3}: 3\right)+3(1: 3)+\left(31^{4}: 3\right)+\left(1^{4}: 4\right)\right]$
$+\left\{2^{2}\right\}\left[(1: 1)+3\left(1^{5}: 1\right)+3\left(1^{2}: 2\right)+2(2: 2)+\left(21^{3}: 3\right)+3\left(1^{5}: 3\right)+\left(32^{4}: 3\right)\right.$
$\left.+\left(1^{2}: 4\right)\right]+\{1\}\left[(1: 1)+3\left(1^{5}: 1\right)+5\left(1^{2}: 2\right)+2(2: 2)+3\left(21^{3}: 3\right)+4\left(1^{5}: 3\right)\right.$
$\left.+\left(32^{4}: 3\right)+\left(1^{2}: 4\right)+(2: 4)+\left(2^{3} 1^{2}: 4\right)\right]+\left\{1^{2}\right\}\left[1^{5}: 1\right)+3(1: 1)+5\left(1^{4}: 2\right)$
$\left.+2\left(2^{5}: 2\right)+3\left(2^{2} 1^{3}: 3\right)+4(1: 3)+\left(32^{4}: 3\right)+\left(1^{4}: 4\right)+\left(2^{5}: 4\right)+\left(21^{2}: 4\right)\right]$
$+\{0\}\left[2(0: 0)+2(0: 2)+4\left(21^{4}: 2\right)+2\left(1^{3}: 3\right)+(21: 3)+\left(2^{4} 1: 3\right)+(3: 3)\right.$ $\left.+\left(3^{5}: 3\right)+(0: 4)+\left(21^{4}: 4\right)+\left(2^{2} 1^{2}: 4\right)\right]$
$\{54\}(0: 0)+\{51\}(0: 0)+\{53\}(1: 1)+\{52\}\left(1^{5}: 1\right)+\left\{4^{2}\right\}(1: 1)+\{4\}\left(1^{5}: 1\right)+\{43\}\left[2\left(1^{5}: 1\right)\right.$
$\left.+\left(1^{2}: 2\right)+(2: 2)\right]+\{41\}\left[2(1: 1)+\left(1^{4}: 2\right)+\left(2^{5}: 2\right)\right]+\{42\}[2(0: 0)+2(0: 2)$
$\left.+2\left(21^{4}: 2\right)\right]+\left\{3^{2}\right\}\left[(0: 0)+2(0: 2)+2\left(21^{4}: 2\right)+(21: 3)\right]+\{3\}[(0: 0)+2(0: 2)$
$\left.+2\left(21^{4}: 2\right)+\left(2^{4} 1: 3\right)\right]+\{32\}\left[\left(1^{5}: 1\right)+4(1: 1)+2\left(2^{5}: 2\right)+3\left(1^{4}: 2\right)+3(1: 3)\right.$
$\left.+\left(2^{2} 1^{3}: 3\right)+\left(31^{4}: 3\right)\right]+\{31\}\left[(1: 1)+4\left(1^{5}: 1\right)+2(2: 2)+3\left(1^{2}: 2\right)+3\left(1^{5}: 3\right)\right.$
$\left.+\left(21^{3}: 3\right)+\left(32^{4}: 3\right)\right]+\{21\}\left[4(0: 0)+6(0: 2)+8\left(21^{4}: 2\right)+2(21: 3)+2\left(2^{4} 1: 3\right)\right.$
$\left.+4\left(1^{3}: 3\right)+(3: 3)+\left(3^{5}: 3\right)+2(0: 4)+2\left(21^{4}: 4\right)\right]+\{2\}\left[\left(1^{5}: 1\right)+3(1: 1)+3\left(2^{5}: 2\right)\right.$
$\left.+4\left(1^{2}: 2\right)+3(1: 3)+2\left(2^{2} 1^{3}: 3\right)+\left(31^{4}: 3\right)+\left(1^{4}: 4\right)+\left(2^{5}: 4\right)\right]+\left\{2^{2}\right\}[(1: 1)$
$\left.+3\left(1^{5}: 1\right)+3(2: 2)+4\left(1^{2}: 2\right)+3\left(1^{5}: 3\right)+2\left(21^{3}: 3\right)+\left(32^{4}: 3\right)+\left(1^{2}: 4\right)+(2: 4)\right]$
$+\{1\}\left[2(1: 1)+3\left(1^{5}: 1\right)+3(2: 2)+5\left(1^{2}: 2\right)+6\left(1^{5}: 3\right)+3\left(21^{3}: 3\right)+2\left(32^{4}: 3\right)\right.$
$\left.+2\left(1^{2}: 4\right)+(2: 4)+\left(2^{3} 1^{2}: 4\right)+\left(1^{5}: 5\right)\right]+\left\{1^{2}\right\}\left[2\left(1^{5}: 1\right)+3(1: 1)+3\left(2^{5}: 2\right)\right.$
$+5\left(1^{4}: 2\right)+6(1: 3)+3\left(2^{2} 1^{3}: 3\right)+2\left(31^{4}: 3\right)+2\left(1^{4}: 4\right)+\left(2^{5}: 4\right)+\left(21^{2}: 4\right)$
$+(1: 5)]+\{0\}\left[4(0: 2)+4\left(21^{4}: 2\right)+2(21: 3)+2\left(2^{4} 1: 3\right)+2\left(1^{3}: 3\right)+2(0: 4)\right.$
$\left.+2\left(21^{4}: 4\right)+\left(1^{3}: 5\right)\right]$
$\{63\}(0: 0)+\{53\}(1: 1)+\{52\}\left(1^{5}: 1\right)+\{43\}\left[\left(1^{5}: 1\right)+(2: 2)\right]+\{41\}\left[(1: 1)+\left(2^{5}: 2\right)\right]$
$+\{42\}\left[(0: 0)+(0: 2)+\left(21^{4}: 2\right)\right]+\left\{3^{2}\right\}\left[(0: 0)+\left(21^{4}: 2\right)+(3: 3)\right]+\{3\}[(0: 0)$
$\left.+\left(21^{4}: 2\right)+\left(3^{5}: 3\right)\right]+\{32\}\left[\left(1^{5}: 1\right)+(1: 1)+\left(2^{5}: 2\right)+\left(1^{4}: 2\right)+(1: 3)+\left(31^{4}: 3\right)\right]$
$+\{31\}\left[(1: 1)+\left(1^{5}: 1\right)+(2: 2)+\left(1^{2}: 2\right)+\left(1^{5}: 3\right)+\left(32^{4}: 3\right)\right]+\{21\}[(0: 0)+2(0: 2)$
$\left.+3\left(21^{4}: 2\right)+(21: 3)+\left(2^{4}: 3\right)+(0: 4)+\left(21^{4}: 4\right)\right]+\{2\}\left[\left(1^{5}: 1\right)+\left(2^{5}: 2\right)+\left(1^{4}: 2\right)\right.$
$\left.+(1: 3)+\left(2^{2} 1^{3}: 3\right)+\left(2^{5}: 4\right)\right]+\left\{2^{2}\right\}\left[(1: 1)+(2: 2)+\left(1^{2}: 2\right)+\left(1^{5}: 3\right)+\left(21^{3}: 3\right)\right.$
$+(2: 4)]+\{1\}\left[(1: 1)+\left(1^{5}: 1\right)+(2: 2)+\left(1^{2}: 2\right)+2\left(1^{5}: 3\right)+2\left(21^{3}: 3\right)+\left(32^{4}: 3\right)\right.$
$\left.+\left(1^{2}: 4\right)+\left(1^{5}: 5\right)\right]+\left\{1^{2}\right\}\left[\left(1^{5}: 1\right)+(1: 1)+\left(2^{5}: 2\right)+\left(1^{4}: 2\right)+2(1: 3)+2\left(2^{2} 1^{3}: 3\right)\right.$
$\left.+\left(31^{4}: 3\right)+\left(1^{4}: 4\right)+(1: 5)\right]+\{0\}\left[(0: 0)+(0: 2)+\left(21^{4}: 2\right)+2\left(1^{3}: 3\right)+\left(21^{4}: 4\right)\right.$
$+(0: 4)+(0: 6)]$

Application to Unified Gauge Theories

The application of the exceptional groups to possible unified gauge theories has been considered by a number of authors. Gürsey and his associates (Gürsey et al. 1975; Gürsey and Sikivie 1976; Sikivie and Gürsey 1977) have considered models based on E_{7}, while a detailed study of a vector-like E_{7} model has been made by Ramond $(1976,1977)$. The weak interaction angle $\sin ^{2} 0_{\mathrm{w}}=\frac{2}{3}+O\left(e^{2} / g_{\mathrm{c}}^{2}\right)$ is strongly in conflict with experiment (note that we include D'yakonov's (1977) correction to earlier published values of $\frac{1}{2}$). The vector-like E_{7} model is also in serious error in its failure to recognize properly the consequences of choosing a symplectic-type irrep $\left(1^{6}\right)$ of E_{7} to embed fermions. Consistent usage requires that the representation be doubled; a model using such a doubled representation has been discussed by Gell-Mann et al. (1978). Nonvector-like E_{6} gauge models remain consistent with most experimental data (Achiman and Stech 1978).

Gell-Mann et al. (1978) have determined all Lie groups G that can be written in the direct product to

$$
G \supset S U_{3}^{\mathrm{c}} \times G^{\mathrm{f}},
$$

where $S U_{3}^{\mathrm{c}} \times G^{\mathrm{f} 1}$ is a maximal subgroup of G, with $G^{\mathrm{f} 1}$ the group of flavours and $S U_{3}^{\mathrm{c}}$ the assumed exact colour gauge group of QCD. In choosing G they restricted their attention to groups whose fermion representations involved only triplets, antitriplets and singlets of colour. This restriction excluded E_{8} from their considerations. Possibly such a restriction is excessively severe since octets and sextets of colour arise naturally in SO_{8} supergravity models (Gell-Mann 1977; Gell-Mann et al. 1978).

In the case of $E_{8} \supset S U_{3}^{\mathfrak{c}} \times E_{6}$, we would have in the fermionic (217) irrep of E_{8} a colour octet of flavourless states, 27 coloured quarks and antiquarks and 78 colourless leptons. In the bosonic (21^{7}) irrep there would be the expected 8 gluons of the colour octet, 27 leptoquarks and antiquarks and 78 colourless vector bosons. Again we note that in any supersymmetric theory, even for $N=1$, we have colour octets of both fermions and bosons. Detailed discussion of possible E_{8} models is premature and must await further developments in theory and experiment.

Concluding Remarks

The problem of resolving Kronecker products of E_{8} irreps and branching rules to the principal maximal subgroups of E_{8} has been solved to the extent of possible applications in physics. Sufficient information has been given to permit a considerable extension if required. It would seem to be important that physicists have available to them at least a sketch of the basic properties of E_{8}, and this has been the aim of the present work.

Acknowledgments

It is a pleasure to acknowledge some S -function calculations for the $S U_{9}$ group by Dr P. H. Butler, which contributed to part of this paper. I am grateful to Dr R. C. King for a number of constructive comments.

References

Achiman, Y., and Stech, B. (1978). Phys. Lett. B 77, 789.
Butler, P. H., Haase, R. W., and Wybourne, B. G. (1978). Aust. J. Phys. 31, 131.
Butler, P. H., Haase, R. W., and Wybourne, B. G. (1979). Aust. J. Phys. 32, 137.

Butler, P. H., and Wybourne, B. G. (1969). J. Phys. (Paris) 30, 655, 795.
D'yakonov, D. I. (1977). Yad. Fiz. 26, 845; Sov. J. Nucl. Phys. 26, 443.
Dynkin, E. B. (1952a). Mat. Sb. 30(72), 349; Am. Math. Soc. Transl. 6(2), 111.
Dynkin, E. B. (1952b). Tr. Mosk. Mat. Obsc. 1, 39; Am. Math. Soc. Transl. 6(2), 245.
Gell-Mann, M. (1977). Invited Paper at American Physical Society Meeting, Washington, April 1977.
Gell-Mann, M., Ramond, P., and Slansky, R. (1978). Rev. Mod. Phys. 50, 721.
Gürsey, F., Ramond, P., and Sikivie, P. (1975). Phys. Rev. Lett. 12, 2166.
Gürsey, F., and Sikivie, P. (1976). Phys. Rev. Lett. 36, 775.
McKay, W., and Patera, J. (1977). Centre de Recherches Mathematiques, Université de Montreal, Rep. No. CRM-742.
McKay, W., Patera, J., and Sankoff, D. (1976a). In 'Computers in the Study of Nonassociative Rings and Algebras' (Eds R. E. Beck and B. Kolman) (Academic: New York).
McKay, W., Patera, J., and Sharp, R. T. (1976b). J. Math. Phys. (New York) 17, 1371.
Malćev, A. I. (1944). Izv. Akad. Nauk. SSSR Ser. Mat. 8, 143; English transl. (1962) in Am. Math. Soc. Transl. 9(1).
Patera, J., and Sankoff, D. (1973). 'Tables of Branching Rules for Representations of Simple Lie Algebras' (Montreal Univ. Press).
Patera, J., Sharp, R. T., and Winternitz, P. (1976). J. Math. Phys. (New York) 17, 1872.
Patera, J., Sharp, R. T., and Winternitz, P. (1977). J. Math. Phys. (New York) 18, 1518.
Qubanchi, A. H. A. Al- (1978). Ph.D. Thesis, University of Southampton.
Ramond, P. (1976). Nucl. Phys. B 110, 214.
Ramond, P. (1977). Nucl. Phys. B 126, 509.
Sikivie, P., and Gürsey, F. (1977). Phys. Rev. D 16, 816.
Wybourne, B. G. (1970). 'Symmetry Principles and Atomic Spectroscopy' (Wiley-Interscience: New York).
Wybourne, B. G. (1978). J. Math. Phys. (New York) 19, 529.
Wybourne, B. G. (1979). Powers of the fundamental representation of a semisimple Lie group. J. Phys. A (in press).

Wybourne, B. G., and Bowick, M. J. (1977). Aust. J. Phys. 30, 259.

[^0]: ${ }^{\text {A }}$ The left superscript in this table corresponds to the dimension of the relevant $S U_{2}$ irrep.

