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Abstract 

Energy-weighted angular-momentum-projected sum rules for form factors and multipole moments 
of arbitrary states are corrected for centre-of-mass motion. Cumbersome expressions are obtained 
for the general case, but comparatively simple bounds have been obtained for particular cases. The 
results show that the corrections can only be important for light nuclei or at large momentum 
transfers. 

1. Introduction 

Energy-weighted sum rules (EWSR) have proven very useful in nuclear physics. 
Transition form factors, transition charge densities, static quadrupole moments and 
other nuclear properties have been calculated (Kao and Fallieros 1970; Deal and 
Fallieros 1973; Vi and Tsukamoto 1974; Reinhard and Drechsel 1975; Tassie 1975; 
Koo and Tassie 1976, 1978, 1979; Noble 1978; Koo 1979), and good agreement 
has been obtained with experiment. In addition the application of the EWSR to 
the nucleus has given an understanding of the hydrodynamical model (Tassie 1956), 
as indicated by the work of Deal and Fallieros (1973) and Suzuki and Rowe (1976), 
and has also yielded (in the appropriate limits) matrix element relations of the harmonic 
vibrational model (Koo 1978). However, most of these calculations have been done 
for the laboratory frame, where the centre-of-mass (c.m.) motion of the nucleus 
will affect the results. Accordingly the effects of the c.m. motion on the EWSR must 
be appropriately calculated since only intrinsic excitations of the nucleus are of 
interest. 

The problem of spurious excitations of the nucleus due to the neglect or improper 
treatment of the c.m. motion is well known, and one obvious way of avoiding such 
spurious contributions to the EWSR is to specify all the relevant transition operators 
in the rest frame (or the c.m. frame) of the nucleus. In the present paper we discuss 
the effects of the c.m. motion on the EWSR, giving examples for specific sum rules 
wherever possible. We use the method of Deal (1972) and extend it to apply to the 
generalized angular-momentum-projected sum rules for arbitrary multipolarities and 
transitions between arbitrary states (Reinhard and Drechsel 1975; Koo 1978; Koo 
and Tassie 1979). 

It should be noted that non-exchange forces which are independent of momentum 
or are at most linear in momentum dependence, such as the first-order spin-orbit 
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force, do not contribute to the EWSR. However, more-complicated forces can contrib
ute to the EWSR; in particular, exchange forces make important contributions to the 
isovector EWSR but do not contribute to the isoscalar EWSR. For the above 
reasons, the treatment of c.m. corrections to the EWSR (neglecting consideration of 
the nuclear forces) has many applications. In the present paper, for simplicity, we 
completely neglect consideration of the nuclear forces. 

To make the paper reasonably complete and self contained, we include in Section 2 
a brief derivation of the EWSR in the laboratory frame of reference, pointing out 
the assumptions and definitions used. At the same time we state formulae that will 
be useful for comparisons with the c.m.-corrected EWSR of Section 3. Maximal and 
minimal bounds are derived in Section 4, where some specific examples are given 
for a brief appraisal of the importance of the c.m. corrections. Model-independent 
and exact evaluations of the c.m. correction to some specific EWSR are discussed, 
and their consequences are briefly mentioned in Section 5. This paper is not intended 
as a complete and final treatment of c.m. corrections, but is mainly intended to 
provide a justification for their neglect in our other papers (Koo and Tassie 1978, 
1979; Koo 1979). 

2. Laboratory Frame Sum Rules 

Consider a system of A particles and operators G(IX) that can be described by sums 
of single-particle operators. Let 

A 

G(IX) = L girJ. (1) 
i= 1 

From the well-known commutation relation 

[pjl"Xkvl -ihbkjb"v, (2) 

where k and j are the particle labels, and Jl and v are the component labels of the 
coordinates, we obtain, by neglecting the potential energy operator of the system, 

[G(IX), [H,G([3)]] = (h 2 jm) I "VigaCri)· "Vigp(ri )· (3) 
i 

Linear EWSR can now be obtained in a standard manner by taking the matrix element 
of equation (3) between two eigenstates of the Hamiltonian and then inserting a 
complete set of states I n) within the left-hand side. 

The form factor operator is 

F(q) = I ekexP( -iq.rk)' (4) 
k 

where ek = t for an isoscalar operator, ek = t'k3 for an isovector operator and 
ek = t(l +'k3) for a charged operator. Replacing G(IX) and G([3) in equation (3) by 
the form factor operator yields the relation 

[Ftcql),[H,F(q2)]] = (h2jm)ql.q2 Ie~exp( -i(q2-ql).rk ). (5) 
k 
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Taking the matrix element of equation (5) between the state I i) and inserting a 
complete set of states I n) within the left-hand side yields the progenitor sum rule 
(Noble 1971) 

L OJni(n I F(ql) I i)* (n I F(q2) I i) 
n 

= (h2/2m)q1"q2<i I ~Bfexp( -i(Q2-ql)ork)1 i), (6) 

where OJni = En - E j is the excitation energy from state I i) to state In). 
The generalized angular-momentum-projected EWSR for mUltipole operators may 

be derived by coupling the standard double commutator of the Hamiltonian Hand 
two multi pole operators to overall angular momentum L, and then evaluating it 
between two states of spins J i and Jf. Thus for the multipole form factor operator 

F~(q) = L Bk Hqrk) Y'm(Qk) (7) 
k 

we define the coupling scheme 

[FI,(ql), [H,F"(q2)]]t- = L (11 m112 m21 LM)[F~,(ql)' [H,F~2(q2)]], (8) 
mlm2 

so that by doing the necessary angular-momentum-recoupling algebra, the generalized 
multipole form factor sum rule is (Reinhard and Drechsel 1975 ; Koo and Tassie 1979) 

L L OJni F1n( q 1) F~1( q 2) + ( - y' -" + L OJnf F'!nC q 2) F~~( q 1) [ {Jf Ji L} {Jf Ji L} ] 
n 12 11 I n 11 12 I n 

= (-l,+Jf eCh2/2m)(4n)-t il12 (~ ~ ~) f r2 dr P7i(r) 2 {djl,~ql r) dj,,~q2 r) 

+ r- 2{l1(11 + 1) + 12(12 + 1) - L(L+ I)} j,,(ql r)j,,(q2 r) }, (9) 

where L = (2L + l)t. The parameter e is a number depending on the isospin characters 
of the two multipole operators used: when both operators are isoscalar or isovector, 
e = ! and P7i(r) is the isoscalar transition density; when both the operators are 
charged operators, e = 1 and P7;(r) is the transition charge density. The reduced 
matrix element is defined by (Edmonds 1968) 

( ' ( Jf JfMfIFm(q) I JjMj) = (_)JrMf 
-Mf 

Jo) 
m ~i F};(q). (10) 

Other generalized multipole sum rules may be obtained in the same way, but the 
mUltipole moment and multipole density sum rules may be more easily obtained from 
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equation (9) by equating terms of same powers of q1 or q2 and by taking the appropriate 
Fourier-Bessel transform. The results are 

L ~ [Wni{:: :: ~J Q'i: F~Kq2) +( - )Z,-Z,+L Wnf {:: :~ ~}FjnCq2)Q~}a] 

=(~)Ji+Jf~(h2/2m)(4n)-tl 12 r't +2a pL{r)dr A A (L 12 11) f 
1 0 0 0 fl 

X {II (11 + 1) + 12(12 + 1) - L(L + 1) + 2(11 + 2et)rd/dr} jh(q2 r), (11) 
where 

QIIJ! = '" e r 1+ 2a Y (Q) m L..kk Imk 
k 

is the generalized multipole moment operator; 

L '" w. I QhaQ'~P +(_ )It-I,+LW I [ {Jf J. L} {J f J. 
L.. mil fn m nf 1 

n 2 1 I n 1 12 
L) QI,P Qlt.a] J fn m 

n 

A A (L 12 11) = (- )Ji+Jf ~(h2/2m)(4n)-t 1112 
000 

X {2(l1 +2et)(l2+ 2,B) +11(11 +1) +liI2+1) -L(L + I)} f rlt + l,+2a+2fJ p7;(r) dr; 

(12) 

[ {J Ji L} {J L~ Wni I: 11 I n Q'i:p~Kr)+(-)h-I,+LWnf I: 
J i L} 
12 I n pjn(r) Q~}a] 

= (_ )Ji+ Jf ~(h2/2m)(4n)-t 1112 r't +2a-2 A A (L 12 11) 
000 

x {4et(211 + 2et + 1) + 11 (11 + 1) -12(12 + 1) + L(L + 1) + 2(11 + 2et) r d/dr }p7;(r). (13) 

3. EWSR Corrected for CM Motion 

Because it is necessary to sum over nuclear states of spin I n, where I n is the total 
angular momentum in the rest frame S of the nucleus, the sum rules must be obtained 
in the frame S. In the frame S, the nucleons are described by the intrinsic coordinates 

ri = ri-R, Pi =Pi- A - 1p , (14) 
satisfying 

A A 

L ri = 0, L Pi = 0, (15) 
i= 1 i= 1 

where nucleonic coordinates without tilde accents are defined in the laboratory frame S, 
while 

A A 

R = A-I L ri and P=LPi (16) 
i=l i= 1 
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are respectively the position and the total momentum of the centre of mass of the 
nucleus in S. 

Since the nucleonic coordinates in S are not independent, the commutation 
relation corresponding to equation (2) is modified. By using equations (2), (14) and 
(16), the commutation relations for the intrinsic coordinates are (Deal 1972) 

- - _ . -1 [Pk!"rjv] - -IM/lv[bkj-A ], (17) 

which has a term that depends on two-particle correlation. The double commutator 
for the intrinsic coordinates corresponding to equation (3) then becomes 

L [ga<ri)' [V;,gp(rk )]] = -2 LVi giri)' Vk gp(rk)[b ik -A- 1] , (18) 
ijk ik 

where the operators with tilde accents are defined in the frame S. 
For the form factor operator defined by equation (4), we have (using equation 18) 

['F t (q1)' [fl, F(q2)]] 

= (h 2jm) q1" q2 L 8j 13k exp( -i q2' rj +iq1"rk)[bjk -A -1] 
jk 

= (h 2jm)q1.q2 (~8~exp( -i(Q2-Q1).rk) -A -1 pt(q1)F(q2))' (19) 

Taking the expectation value of equation (19) between the state I i) we obtain the 
progenitor sumrule of Noble (1971) corrected for c.m. motion: 

I {Wni +(h2j2mA)Q1·Q2}<n I F(ql) I i)*<n I F(q2) I i) 
n 

= (h2j2m)Q1"q2<i I ~8~exp( -i(Q2-q1)'Yk ) I i) (20) 

which, when compared with equation (6), acquires a correction term dependent upon 
the momentum transfers and A. 

Equation (20) yields the result of Deal (1972) when I i) is the ground state 10) 
with spin zero. By choosing q1 = q2 we obtain 

~ {WilD +(h2j2mA)q2}<n IF(q) I i)*<n I F(q) I i) = (h 2j2m)q2<0 I ~ 8~ I 0) 
= (h2j2m)q2B, (21) 

where B = Z when 13k = ·HI +rk3)' and B = tA when 13k = t or trk3' Note that 
{wno + (h 2 j2mA)q2} is the total energy of the recoiling nucleus. Examining equation 
(21), we can see that the contribution of the c.m. correction term will be appreciable 
for large momentum transfers. 

For the multipole form factor EWSR corrected for the c.m. motion, we make 
use of equations (4), (8) and (18) to obtain 

[1;lt(q1)' [if, F'2(q2)]]t-

"" "'" ,.. iiW _,..,. ~ 1 
= L L(l1m112m2ILM)Vjj"(q1r)Yl,m/Q)'Vkj,,(q2Yk)Y,,m2(Qk)[bjk-A-]. 

mlm2 jk 

(22) 
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In a way analogous to that of obtaining equation (9), we get 

A [ {JJ Ji L} {JJ J i Ln} ] L ~ Wni 12 11 I n FJn(ql)F!1(q2) +( - )'1-h+ LWnJ 11 12 I n F?nCq2) F~l(ql) 

+( - )J,+Jf(h2/mA) ql q2 L (- )-h -" cPJ11t cP12h 
J112 

{JJ Ji L }{J2 J 1 L} -J -J 
X I I FJ~(ql) Fni'(q2) 

J 2 J 1 I n 1 2 1 

~ ~ (L = (- )Jt+Jf~(h2/2m)(4n)-tI112 0 2 1 S .... 2d--L.(-)2{djl.<qlr)djh(q2r) I I) --
r rpf<r d- d-

O 0 r r 

+r- 2{1 1(11 + 1) + 12(12 + 1) - L(L+ l)H1(ql r)jh(q2r)} , (23) 

where 
cPJI = {t(J+I+ l)}t(Dn+l +DJI - 1)· 

Equation (23) should be compared with equation (9), and again an additional term 
is obtained. This term will contribute significantly to the multi pole form factor sum 
rules at large q. Since J1 = 11 ± 1 and J2 = 12 ± 1, the multipolarities of the form 
factors in the correction term are either one unit greater or less than the corresponding 
operators in the principal sum and so, for any given If) and I i), the intermediate 
states involved in the correction term are different from that of the principal sum. 

Other multipole c.m.-corrected sum rules involving the generalized multipole 
moment Q:;: and the multi pole density can be directly derived from equation (23). 
By noting that 

00 

i!(qr) = L (-Y(qr),+20:{20:1X!(21+21X+1)!!t 1, (24) 
0:=0 

00 

F~(q) = L (-Y ql+20:{20:1X! (21 +21X+ 1)!!} -1 Q:, (25) 
0:=0 

we can, by repeated substitution of equations (24) and (25) into equation (23), followed 
by equating coefficients of terms with equal powers of ql and q2' obtain a mixed 
multipole moment-multipole form factor EWSR and a pure multipole moment EWSR. 

Substituting once, and then equating coefficients of terms with the same power of 
ql' we obtain 

L'" [W .{JJ Ji L}Q"'"'lto:p1,(q) +(_)'1-h+LW {JJ Ji L}p2(q )Q"'"'It,o:] 
L. HI [I In HI 2 nJ I [ In 2 HI 

n 2 1 I n 1 2 I n 

+(h2/mA)q '" (_)J,+Jr-h-hcP cP F12(q ) Q"'"'Ji 4>(0:) {JJ Ji L}{J2 J 1 L} 
2 L. hit 12h J [[ 1 In 2 HI 

J112 2 J 1 I n 1 2 

A ~ (L [2 11) S = (_)J,+Jr~(h2/2m)(4n)-tI112 0 0 0 r lt +20:p7lr)dr 

x {11(11 + 1)+ [i12 + 1)-L(L+ 1)+2(11 +21X),d/dr}j,,(q2r), (26) 
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where 
Q~l "'(~) = (211 + 21X + 1)Q~~ - h for 

= _2IXQ""~+1~-1 
no 

J1 = 11 -1 

J 1 = 11+1. 

433 

Equation (26) should be compared with equation (11), and large contribution of the 
c.m. correction term is expected at large q. Substituting equations (24) and (25) into 
equation (26) and similarly equating the coefficients of terms with the same power 
of Q2' we obtain the c.m.-corrected generalized pure multipole moment EWSR 

A [ ~ {J I J i L}... {J I Ji L}... _] L'" Wni Qlt~Q-lzfJ +(_)It-Iz+LW Q'2fJQ'~~ 
.t.... 1 1 J In ni nl 1 1 J In n& 

2 1 n 1 2 n 

{J J. L}{J J L} +(h2/mA) L (_)J,+Jrh-hcI>JI cI>JI I. 2 1 Q"'Jz"'(fJ)a,J!"'(~) 
1 1 2 2 J J J 1 1 1 In no J1Jz 2 1 n 1 2 

~ ~ (L 12 11) = ( - )J,+J, ~(h2 /2m)(4n)-t 11 12 0 0 0 

X {2(11 +21X)(12+2P) +11(11 +1) +12(12+ 1) -L(L+1)} f "1+h+2~+2fJpJl;:) dr. 

(27) 

Comparison with equation (12) shows that the contribution of the c.m. motion 
correction is expected to be significant for light nuclei. For IX = f3 = 0, and choosing 
I J i ) = I JI ) = 10), we obtain a result equivalent to that of Deal (1972). 

Assuming that the sum rule (26) is uniformly convergent, and using the trans
formation 

P}n(r) = (2/n) f F}nCq)i,(qr) q2 dq, (28) 

we obtain the c.m.-corrected density sum rule: 

:L",[w.{JI Ji L}r;ll~pl~(;)+(_)'l-lz+Lw {JI Ji L}ph(;)QI~rz] 
.t.... no 1 1 J I"tln no nl I I J In n& 

2 1 n 1 2 n 

+(h2/mA) '" (_)J,+Jr J1 - 12 cI> cI> ,-1p~Jz(')Q-J!"'(a) {JI Ji L} {J2 J 1 L} 
.t.... hit Jzlz J J I I 1 In no J1Jz 2 J 1 n 1 2 

= (-l,+J/~(h2/2m)(4n)-tl 12 ,It+2a-2 ~ ~ (L 12 11) 
1 0 0 0 

X {41X(211 +21X+ 1) + 11(11 + 1) -12(12 + 1) +L(L+ 1) +2(11 + 21X)rd/dr} PJi(r) , 

where 
p~~(,) = {(l2 -1) +rd/dr} P1n- 1(r) 

= {(l2+1) +(1 +rd/dr)} P1n+ l(r) 

for J2 = 12-1 

J2 = 12 +1. 

(29) 
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Equation (29) should be compared with the uncorrected EWSR equation (13). The 
factor of,-l in the correction term on the left-hand side of equation (29) underlies 
the importance of this term for regions near the centre of the nucleus, where the 
most difficult problems and ambiguities are encountered as to the behaviour of the 
charge densities. 

4. Bounds on the eM-corrected Sum Rules 

Although the c.m.correction term in the sum rules cannot be evaluated explicitly 
in general, its contribution can be better appreciated by establishing bounds for the 
sum rules. Qualitatively its contributions are expected to be large at large q and 
for small A. Since the m dependence of the multi pole operators in equation (7) is 
purely geometrical, we can choose the subscript m to be zero in the appropriate 
quantization axis. We also restrict our discussion to even-even nuclei and consider 
the case IX = p, in which the states I J) and I J,) are both taken to be the ground 
state I 0) with zero spin. 

(a) Maximal Bounds 

For any operator Q we have 

(sIQtln)(nIQls) ~ 0, (30) 

and this inequality leads to maximal bounds for certain sum rules. From equation 
(21), the usual progenitor sum rule value for q1 = q2 is a maximal bound: 

LWno(nJF(q)li)*(nIF(q)li)::::; (h2j2m)q2iJ. (31) 
n 

Similarly a maximal bound for the multipole form factor sum rule for q1 = q2 and 
IJ;) = IJ,) = 10) is 

~ wno(n I pb(q) I 0)* (n I Pb(q) I 0) ::::; ~(h2q2/2m)(21 + 1)-1 f;2 pCr) dr~ <pJdiz(q;)}2 , 

(32) 

and from equation (27), a maximal bound for the corresponding nlultipole moment 
sum rule is 

~ wno (n I Q~I 0)* (n I Q~~ 10) ::::; (h2j8nm){(1 +21X)2 + 1(1 + l)}< ° I ~ 8r;fl+4~-21 0>. 

(33) 

The usual sum rule values merely provide upper bounds for the sums of the energy
weighted transition strengths. The experimental observation 0f over exhaustions of 
the bounds would therefore imply the effects of velocity-dependent forces and of 
exchange forces which have been neglected. 

(b) Minimal Bounds 

For minimal bounds we note that 

(2~in)-1(0\QtHQ\0) ~ (O\QtQ\O), (34) 
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where E~in is the energy of the lowest state of the Hamiltonian operating on the 
Hilbert space of multi polarity I, that is, 

Bin) = E!ln), HIO) = O. 

Substituting the inequality (34) into equation (27), with IX =/3, I J;) = I Jf ) = 10) 
we get 

L [E!<n I Q~ I O)*<n I Q~ I 0) 
n 

+(hZ /2mA)(21 + 1) {l(21 +21X+ 1)Z (E~i~)-l E!-l <n I Q~-l a I 0)* <n I Q~-l a I 0) 

+4IXZ(l+ l)(E:';;~)-l E!+l<n I Q~+l a- 11 O)*<n I Q~+1 a- 11 O)}] 

;;::: (h Z/8nm){(1+21X)Z+I(l+1)}<0 I ~>frfl+4a-zl 0). (35) 

Since the second and the third term on the left-hand side of equation (35) now have 
the structures of EWSR, we can substitute their maximal bounds and obtain 

LE!<n I Q~ 10)*<n I Q~ I 0) 
n 

;;::: (h2 /8nm)( {(l + 21X)2 + 1(1 + l)}< 0 I ~ e?r?I+4a-zl 0) 

-(hz/2mA)(21+ 1)-1<01 ~>frfl+4a-41 0) 

x [1(21+21X+ 1)2 {(l+21X-1)Z +1(1-1)}(E~i~)-1 

+4IXZ(1 + 1){(1 + 21X-1)Z +(1 + 1)(1 + 2)}(E~";~ )-1]). (36) 

The true values of the 21-pole sum rules then lie somewhere between the maximal 
and the minimal bound. Similarly a minimal bound for the form factor sum rule is 

L WnO <n I P(q) I 0)* <n I F(q) I 0) ;;::: (hZ /2m)qZ B (1- hZqZ /2mAEmin) , (37) 

where Emin is the energy of the first-excited state of the nucleus. For the pure multipole 
form factor sum rule, a minimal bound is 

L E~ <n I j;'&cq) I 0)* <n I tb(q) I 0) 
n 

;;::: ~(h2/2m)(21+1)-1qZ frZdrp(r) 

" 2 ({' - 2 hZ q2 1" Z {. - }z) 
xL., ifJJl J/qr)} - 2mA 2J + 1 EJ. L: ifJJ',J }j,(qr) . 

J mIn J 
(38) 

For illustration, we explicitly consider E2 transitions for inequality (36) which 
becomes, with IX = 0 and ei = t(1 +Ti3)' 

LWnol<nIQ~OIO)IZ;;::: (10hz/8nm)Ze{<rZ) -62·3(AE~in)-1}, (39) 
n 
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where (;2) is the mean square charge radius of the ground state and E~in is the 
energy of the lowest 1 - state. Similarly inequality (38), for E2 transitions, becomes 

LWno 1 (n I F6(q) I 0) 12 
n 

~ (h2/lOm)q2 f r2 dr p(r) {3{jiqr)V +2{h(qr)V 

_(h2 /2mA)q2( (7 E!in)-l [4{jiqr)2 + 3(jiqr)}2] 

-(3E~in)-1 [2{jiqr)}2 + {jo(qr)V])} , (40) 

where E!in is the energy of the lowest 3 - state. Corrections for other multipoles 
can be similarly derived. 

For a particular nucleus, the bounds imposed can be evaluated given the charge 
density and the energy levels. 
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Fig. 1. Maximal and minimal bounds imposed by the c.m. motion of the nucleus for the form factor 
sum rule 

LEn 1 <n I p(q) I 0) 12 
n 

for (a) 160 and (b) 208Pb. 

Figs la and Ib display the maximal and minimal bounds for the progenitor sum 
rule (equations 31 and 39) and show that the effect of the c.m. correction is practically 
negligible at low momentum transfers ( < O· 5 fm -1 for 160 and < 1 ·0 fm -1 for 208Pb), 
but may become significant at larger momentum transfers. The effect of the c.m. 
correction is obviously less important for 208Pb than for 160. 

Fig 2 shows the bounds for the quadrupole form factor sum rule (equations 32 
and 40) of 160 as a function of q. A similar conclusion to that of the progenitor 
sum rule can be drawn. Although not shown here, the c.m. effect becomes less 
significant as A increases. 
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Fig. 3 shows the bounds for the quadrupole moment sum rule as a function of A. 
The difference between the maximal and minimal bounds is more than 10% for 
nuclei with A < 15, while for nuclei with A > 15 the difference is less significant. 

5. Specific eM-corrected Sum Rules 

In certain cases, the c.m. correction term can be evaluated explicitly without any 
model assumption, and exact sum rules are then obtained. We discuss some of these 
cases below. 
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Fig. 2 (left). Maximal and minimal bounds imposed by the c.m. motion of the nucleus for the quad
rupole form factor sum rule 

1: En I <n I F~(q) I 0> 12 . 
for 160. The charge distribution used is obtained from Sick and McCarthy (1970). 

Fig. 3 (right). Maximal and minimal bounds imposed by the c.m. motion of the nucleus for the quad
rupole moment sum rule 

1: E.I <n I Q~o I 0> I 2 • 

• 
The points are calculated using experimentally determined energy levels and mean square radii. 
The line depicting the minimal bound is merely to guide the eye. 

The usual nuclear analogue of the isoscalar Thomas-Reiche-Kuhn sum rule has 
a nonzero sum rule value, and is hence inconsistent with the result that the rx = 0 
isoscalar dipole operator is zero. The resolution, however, lies in the proper treatment 
of the c.m. motion, and it can be easily checked, using equation (35) with rx = 0 
and I = 1, that the isoscalar dipole sum rule is zero (Deal 1972, 1973). The correspond
ing isovector sum rule has a correction. It can also be easily shown that, using equation 
(35) with rx = 0 and I = 1, the isovector dipole sum rule is 

LWno<nIQ6010)*<nIQ6010) = gih24NAZ, 
n nm 

which is a well-known result. The corresponding EWSR uncorrected for c.m. motion 
has the factor A in the place of 4NZ/ A, and this implies in general a small correction 
as 4NZ/A ~ (0· 95-d ·O)A. 

For nonvanishing isoscalar dipole transitions, the null first-order (rx = 0) dipole 
operator implies the effect of higher-order (rx = 1,2, ... ) dipole operators, and these 
may be confused with transitions of higher muItipolarities (Koo and Tassie 1978). 
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For instance, in a recent electron scattering study of 197 Au (Torizuka 1978), the 
isoscalar E3 giant resonance at '" 20 MeV excitation contributed (147 ± 21) % to the 
isoscalar E3 EWSR, and this excess E3 strength might be an example of such a higher 
El contribution. It can also be shown easily, using equation (27), that the a = 1 
isoscalar monopole and the a = 0 isoscalar quadrupole moment sum rules are the 
same, with or without the c.m. correction. 

6. Discussion 

We have obtained the c.m.-corrected generalized angular-momentum-projected 
EWSR for transitions between arbitrary states. The results are cumbersome, but 
comparatively simple bounds have been established for three of the sum rules. Two 
important points are to be noted: for heavy nuclei, as expected, the required c.m. 
correction is small; the c.m. correction can become progressively more important 
as the momentum transferred to the nucleus becomes larger, as seen in Figs 1 and 2. 
Although similar bounds cannot be obtained for other sum rules, we should expect 
similar behaviour. Thus we may with confidence neglect the c.m. correction in the 
calculation of nuclear structure (Koo and Tassie 1979, Koo 1979) at low momentum 
transfers and for A > 30. 

It is possible that there are large c.m. corrections to form factor sum rules at large 
momentum transfer. However, it must be remembered that at very large momentum 
transfers our treatment (based on the usual assumptions of nuclear theory, namely 
the description of the nucleus as composed of neutrons and protons described by 
the Schrodinger equation) is not applicable, as the experimental inelastic electron 
scattering is dominated by meson production. To deal with this problem, a relativistic 
description must be used. 
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