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Abstract 

The angular and temporal distributions of energy in the reflection of a pulsed laser beam from a 
sea surface depend on the diameter of the beam and on the wavenumber spectrum of the water 
surface. Theoretical expressions are derived for the influence on the reflection of the mean height 
and slope of waves in the illuminated area as well as the variation of the height and slope within 
this area. The results are applied to airborne lasers for wave height profiling, altimetry and water 
depth sounding. The optimum beam diameter depends on both the application and the wavenumber 
spectrum of the water surface. 

1. Introduction 
The reflection of a short laser pulse from a sea surface is influenced in several ways 

by the wavenumber spectrum of that surface: 
The mean water level within the illuminated area determines the delay between 

the time of transmission of the laser pulse and the time of detection of the peak of 
the reflected pulse. The variation of mean water level in a series of measurements 
comprises the data used by a wave height profiler. This same variation is also an 
error that limits the accuracy of an altimeter. Clearly, these two applications require 
beams of different diameters. 

The variation of water level within the illuminated area determines the temporal 
spread of the reflected pulse. Since this spread slows the pulse risetime, amplitude 
fluctuations will introduce timing errors when threshold detection is used. A small 
beam diameter minimizes water level variation within the illuminated spot, but it also 
increases amplitude fluctuations in the reflected pulse detected by a receiver. 

The slope distribution of the sea surface affects the amplitude and variability of 
the received signal. When a rippled water surface is illuminated by a large diameter 
laser beam, the reflection is diffuse and the amplitude of the received signal is relatively 
stable. However, when a long smooth swell is illuminated by a narrow laser beam, 
the reflection is almost specular and moves around in all directions, producing an 
occasional bright flash at a fixed observation point. For reliable detection of the 
reflected pulse, a large beam diameter is therefore preferable. 

These and other considerations will sometimes lead to conflicting requirements 
for the beam diameter. The theoretical study of laser beam reflection from an ocean 
surface by Swennen (1968) takes no account of the wavenumber spectrum of the sea 
surface. In the present paper, general expressions are derived for the influence of 
wavenumber spectra on laser beam reflection, and the results are related to several 
important applications. 
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2. Description of Sea Surface 

(a) Wave Height Spectrum 

D. M. Phillips 

The undulation of a water surface can be described by the height (r) of the water 
above a point r in the horizontal plane of mean water height. By this definition 
we have 

~ == f (r) dr = O. 

The surface heights at adjacent points are related by the two-dimensional spatial 
autocorrelation function 

Z(r) = lim {(nQZ)-l( f(pn(r+ p) dP) }, 
Q-+w p<Q 

(1) 

where P is a horizontal position vector. It should be noted that Z (0) is simply the 
variance of the surface height. The wavenumber spectrum of the water height 
variance is the Fourier transform of the autocorrelation function, namely 

P(k) = (2n)-z f Z(r)exp(-ik.r) dr, (2) 

where k = 2n/A is the wavenumber corresponding to the wavelength A (see e.g. 
Phillips (1969), equation 4.1.14). Using polar coordinates r = (r, IX), a direction
independent wavenumber spectrum is defined by 

X(k) = f P (k) k dIX, (3) 

which differs by a factor k from that used by Phillips (1969, Chapter 4). 

(b) Wave Slope Spectrum 

The slope of a water surface at a point r can be defined by the cartesian 
components 

Sx = ax (r) and Sy = ay(r), (4) 

from which it follows that Sx = Sy = O. The spatial autocorrelation function for 
slope is defined by 

Sxy(r) = lim {(nQZ)-l( fSxCP)Sk+P) dP) } 
Q-+w p<Q 

(5) 

and the corresponding direction-independent wavenumber spectrum is denoted by 
Lxy(k). Assuming that orthogonal slopes are statistically independent, it will be 
convenient to use the wavenumber spectrum of the total slope variance defined by 

L (k) = LxxCk) + Lyy(k). (6) 
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(c) Equilibrium Spectra 

The wavenumber spectrum of wave height takes a simple form when the sea is 
'fully aroused'. This occurs when the wind has blown over a fetch and for a duration 
that are sufficient for the sea to be in equilibrium with the wind. This equilibrium 
is established when the energy supplied to the waves is lost again as crests break and 
form patches of foaming white caps or as parasitic capillary waves are generated. 
Phillips (1969, Section 4.5) derives the functional forms of the wave spectra in the 
equilibrium range by similarity considerations. When defined by equations (3) 
and (6) they are 

X(k) = Bk- 3 for ko < k < kl (7) 
and 

r(k) = k 2 X(k) = Bk- 1 for ko < k < kl' (8) 

where ko and kl depend on wind and sea conditions. The lower cutoff wavenumber 
ko is determined by the largest waves present, while the upper cutoff wavenumber 
kl is governed by the shortest capillary waves. These two parameters are used to 
characterize the wave slope spectrum, rather than the single parameter of mean 
square slope used by Swennen (1968). 

The validity of the functional forms (7) and (8) is supported by measurements 
of the related frequency spectra. Ditta from numerous experiments have been 
assembled by Phillips (1969, Fig. 4.8) and these are supported by more recent data 
obtained by Peep (1972) and de Leonibus et al. (1973). The value of B = 4· 6 X 10- 3 

assigned by Phillips (1969) and Wu (1972) was derived from measurements ofthe slope 
variance by Cox and Munk (1954a). 

(d) Wave Statistics 

The statistical distributions of water heights and slopes are also important for a 
full description of the sea surface, because they go beyond average properties such 
as variances and spectra. Since the shape of a sea surface results from the super
position of many independent waves generated by winds in different regions, the cen
tral limit theorem predicts gaussian distributions for wave height and wave slope. 

Experimental measurements of wave height, analysed by Kinsman (1960), reveal 
a distribution that is approximately gaussian but has a significant skewness. Observed 
surface slopes, analysed by Cox and Munk (l954a), also show an approximately 
gaussian distribution, but with an appreciable skewness in the windward direction 
that results in the most probable surface slope being not zero but a few degrees. 
These departures from gaussian distributions result from nonlinear distortions of the 
wave components. In the present study, the first-order approximation of a gaussian 
distribution is assumed, namely the probability 

p(sc,su) = (21!O'cO'u)-lexp( -t{(sc/O'Y + (su/O'u)2}) , (9) 

where O'c and O'u are the standard deviations of slope in the crosswind and upwind 
directions respectively. 
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3. Properties of Limited Area of Sea Surface 

The applications of an airborne laser mentioned in the Introduction all involve 
the reflection of a beam from a limited area of the sea surface. Important properties 
of the reflection (such as time delay, time spread, direction and amplitude) depend 
on the nature of the surface of the illuminated area. Expressions are now derived 
for: the pulse-to-pulse variation of the mean height and mean slope over the 
illuminated area of water; the variation of the height and slope within this area; 
the variation of the difference between the central height and mean height. 

(a) Variance of Mean Height 

The mean water height over a circle of radius R centred on the point r is given by 

~R(r) = (rcR2)-1( J((P) dP) . 
Ip-rl<R 

This expression can also be written as the convolution product 

~R(r) = ((r) * hR(r) == J ((r-q)hR(q) dq, 

where the averaging function 

hR(r) = (rcR2)-1 

=0 

has the Fourier transform (Ditchburn 1952) 

for 

HR(k) = (2rc)-2 2J1(kR)/kR. 

r < R 

r> R 

(10) 

(11) 

(12) 

(13) 

The autocorrelation function for the mean water height is derived by substituting 
the expression for ~R(r) in equation (11) in place of ((r) in equation (1). This yields 

ZR(r) = Z(r) * hR(r) *hR( -r), (14) 

which is a generalization of the theorem proved by Papoulis (1962, equation 12-43). 
It follows that the corresponding wavenumber spectrnm is 

IJiR(k) = (2rc)4P(k)HR(k)H~(k), (15) 

from which the direction-independent form 

XR(k) = X(k){2J1(kR)/kR}2 (16) 

is derived by substituting HR(k) from equation (13). 
When the sea is fully aroused, the wavenumber spectrum in equation (7) should 

be substituted for X(k) in equation (16). The autocorrelation function for mean 
water height l kl 

ZR(r) = B k- 3 {2J1(kR)/kRVJo(kr) dk 
ko 

(17) 
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Fig. 1. Dependence of the relative 
variances: 
(a) ZR(O)/Z(O) of the mean height, 
(b) Z;''<O)/Z(O) of the residual height, 
(c) Z~(O, O)/Z(O) of the central residual 

height 
on the dimensionless radius ko R of the 
illuminated spot for the indicated 
values of the ratio kt/ko. 

is then obtained from the inverse Fourier transform in polar coordinates 

Z(r) = fooo x(k)Jo(kr) dk. (18) 

It follows that the variance of the mean water height relative to the total height 
variance is lk t 

ZR(O)/Z(O) = 2(kC;2-k12)-1 k- 3 {2J 1(kR)/kRV dk. 
ko 

(19) 
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This ratio is shown in Fig. la as a function of the dimensionless radius ko R of 
the illuminated spot, the factor ko scaling the radius relative to the longest wave 
present. 

It can be seen from Fig. la that, when the water height is averaged over a small 
area (ko R ---+ 0), the variance of the mean height approaches the total height 
variance (ZR(O) ---+ Z(O)). This provides some validation of the calculations because 
no averaging can be achieved with a vanishingly small spot. As the spot becomes 
larger, however, the averaging becomes more effective and the variance of the mean 
height is reduced. Indeed, when ko R exceeds '" 3 . 5, the mean height variance is 
only '" I % of the total height variance. The standard error in the mean height, 
which is the square root of the variance, is then'" 10 % of the r.m.s. wave height. 
Further increases in the size of the spot produce only a small additional reduction 
in the mean height error. 

It can also be seen from Fig. la that the relative variance of mean water height 
depends primarily on the parameter ko R and to a less extent on the ratio k1/ko. 
The significance of the former parameter is more readily apparent when it is 
expressed as 

koR = nD/Ao, 

where D is the diameter of the spot and Ao = 2n/ko is the wavelength of the longest 
significant wave present. The reason for the rapid decrease in the relative variance 
of the mean water height when ko R ~ n is that the diameter of the spot exceeds the 
longest wavelength present and hence the height is averaged over at least one wave 
in every direction. The insensitivity of the averaging to the ratio kl/ko is due to the 
strong bias towards short wavenumbers of the wave height spectrum (equation 7). 
In physical terms, this exemplifies the small contribution to the wave height from 
ripples. 

In the application of a laser (or radar) altimeter, the influence of swell on height 
measurements can be largely eliminated by making the diameter of the illuminated 
spot greater than the length of the longest wave likely to be encountered. In the 
application of a wave height profiler, which determines the water height with a 
beam of finite diameter, the measured variance will correspond to the quantity 
Z R(O). Therefore the profiler will record over 90 % of the total variance Z(O) for all 
values of kl/ko if koR is less than ",0·3 (see Fig. la). In the other words, the 
profiler will record the height of most of the significant waves if the spot diameter 
is less than one tenth of the characteristic wavelength of the sea being studied. 

(b) Variance of Residual Height 

The residual height of the water surface at the point r + p within the averaging 
circle is defined as 

(R(r, p) = (r+ p) - ~R(r). (20) 

The autocorrelation function for the residual water height is derived by substituting 
the above expression for (R(r, p) in place of (r) in equation (1). With the aid of 
equations (11) and (14), this yields 

ZR(r,p) = Z(r) +ZR(r) -Z(r+p)*hR(r+p) -Z(r-p)*hR(r-p). (21) 
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The mean residual autocorrelation over the averaging circle, which is defined by 

ZR(r) == (nR2r 1( f ZR(r,p) dPt<R' 

reduces to 
Z~(r) = Z(r) -ZR(r). (22) 

Equation (22) is a generalization of the well-known statistical relationship that the 
sample variance is the difference between the true variance and the variance of the 
mean. This important result confirms the behaviour expected from qualitative 
arguments, i.e. that, as the illuminated spot is made bigger, the variation in mean 
height between measurements is reduced and the variation in height within the 
spot is increased. Equation (22) shows that the reduction in the former variance 
equals the increase in the latter. 

The ratio of the residual variance of water height averaged over the illuminated 
area to the total water height variance, namely Z~(O)/Z(O), is shown in Fig. 1b as a 
function of the dimensionless radius ko R of the illuminated spot. It can be seen· 
from Fig. 1b that, when the spot is large enough, the average residual height 
variance Z~(O) approaches the total height variance Z(O), as would be expected. 
As the spot becomes smaller, the residual variation within the illuminated area is 
reduced. Thus, when ko R is less than ,...., O' 1, the residual variance is only ,...., 1 % of the 
total variance for all values of k1/ko. 

The broadening of a short laser pulse reflected from the sea surface due to 
variation in the water height over the illuminated area can be predicted with the aid 
of Fig. lb. This broadening can introduce timing errors in a wave height profiler 
when threshold detection of the reflected pulse is employed. Fig. 1b shows that, for 
the resulting height error to be mainta~ned below 10 % of the r.m.s. wave height, 
the diameter must be less than ,...., 3 % of the longest significant wave present (that is, 
koR;5 0·1). 

(c) Variance of Relative Central Height 

Another important property is the variance of the difference between the water 
height at the centre of the illuminated spot and the mean height. The autocorrelation 
function corresponding to this case is given by equation (21) when p = 0, that is, 

ZMr,O) = Z(r) +ZR(r) -2Z(rhhR(r) , 

which yields the wavenumber spectrum 

X~(k,O) = X(k){l -2nHR(k)}2. 

When the sea is fully aroused, a derivation similar to that used to obtain equation 
(19) shows that 

i kl 

ZR(O,O)/Z(O) = 2(ki)2 -k12)-1 k- 3 {1 -2J1(kR)/kRY dk. 
ko 

(23) 

This expression for the variance of the relative water height at the centre of the 
illuminated spot is depicted in Fig. Ie. As expected, the variance of the central point 
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approaches the total variance as the size of the spot increases. Comparison with 
Fig. Ib shows that the central variance is less than the average variance over the 
illuminated spot. The reason for this can most easily be perceived by considering a 
plane as a first approximation to the shape of the water surface within the spot. 
The mean residual variance over the whole spot is then a measure of the slope of the 
plane, whereas the central residual variance vanishes because the centre lies in the 
plane. It follows that the residual variance of the central point is second order and 
depends on the curvature of the water surface. 

Fig. Ic is relevant to the application of a laser depth sounder, so designed that it 
receives a surface reflection from a large spot but has a narrow concentric beam 
penetrating the water surface. In this case, the residual height error of the central 
beam is less than (say) 10 % of the r.m.s. wave height when 

Z~(O, O)/Z(O) ;5 0·01 . 

Fig. 1 c shows this condition to be satisfied for ko R ;5 O' 3, that is, when the diameter 
of the spot used for the surface reflection is less than 10 % of the longest significant 
wavelength present. Comparison with Fig. la shows that a requirement for small 
variance of the mean water height over a spot conflicts with a requirement for small 
residual variance at the centre. 

(d) Variance of Mean Slope 

The derivation of the variance of the mean water height given in Section 3a is 
sufficiently general that it can be applied (with only minor changes) to slopes. By 
analogy with equation (16), the wavenumber spectrum of the mean slope of the 
illuminated water surface is 

'tRek) = E(k){2J1(kR)/kR}2. (24) 

For a fully aroused sea, the wavenumber spectrum is given by equation (8). A 
derivation, similar to that used to obtain equation (19), shows that the variance of 
the mean surface slope relative to the total slope variance is 

SkI 

SR(O)/S(O) = {In(k 1/ko)}-1 k- 1{2J 1(kR)/kR}2 dk. 
ko 

(25) 

The dependence of this ratio on the dimensionless parameters ko Rand kl/ko is 
shown in Fig. 2a. 

It can be seen from Fig. 2a that, as the spot shrinks to a point (ko R --+ 0), the 
variance of the mean slope S R(O) of the area approaches the total variance S(O) of 
the water surface. This asymptotic behaviour is necessary for the wave slope variance 
(as it is for the wave height variance) and consequently Fig. 2a resembles Fig. 1a 
in this respect. Furthermore, when ko R ):::: 11: and the diameter of the spot approaches 
the wavelength of the longest significant wave present, the variance of the mean 
slope falls rapidly for kdko = 1, as does the variance of the mean wave height in 
Fig. lao 

However, the parameter kl/ko is much more significant for the mean slope variance 
than it is for the mean height variance. In other words, the mean slope variance 
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is determined by the whole range of wavenumbers contributing to the slope spectrum 
and not just the low cutoff wavenumber ko. This difference is due to the functional 
forms of the wave spectra in the equilibrium range given in equations (7) and (8). 
Whereas the height spectrum is clearly dominated by small wavenumbers or long 
wavelengths, the slope spectrum is only weakly biased in that way. 

In any application requiring the detection of a laser beam reflected from the sea 
surface, the strongly directional nature of the reflection can present problems. The 
reflection will fill a solid angle of a size determined by the roughness of the water 
surface. The central direction of this solid angle is determined by the mean slope 
of the illuminated area of water. If both the incident laser beam and the receiving 
telescope are vertical, the mean slope of the illuminated spot must be small enough 
for the reflected cone to include the vertical. A small mean-slope variance is therefore 
necessary but not sufficient for reliable detection of the reflection of a laser pulse 
from the sea surface. 

(e) Variance of Residual Slope 

The residual slope of the water surface at the point r + p within the averaging circle 
is defined by 

SR(r,p) = s(r+p) -SR(r) , (26) 

which is analogous to the definition of residual height in equation (20). A similar 
argument shows that the mean autocorrelation function of residual slope is given by 

SR(r) = S(r) -SR(r) , (27) 

which is the analogue of equation (22). The ratio S R(O)/ S(O) of the residual slope 
variance to the total slope variance is shown in Fig. 2b as a function of the dimension
less parameters ko Rand kl/ko. It can be seen that the asymptotic behaviour of all 
the curves is as required, namely the residual slope variance approaches the total 
slope variance as the size of the illuminated spot increases. The range of wave numbers, 
over which the slope spectrum is saturated and which is indicated by the parameter 
kl/ko, is clearly of great importance. Consequently, Fig. 2b provides insufficient 
evidence for deducing the reliability of detection of a laser pulse reflected from a 
water surface. This question is examined in greater detail in the next section. 

4. Laser Beam Reflection from Sea Surface 
The reflection of a laser beam from the sea surface is influenced by the properties 

ofthe illuminated area of water. These properties are now used to derive the amplitude 
and variability of the reflected pulse, as well as its time delay and time spread. 

(a) Average Amplitude of Reflected Pulse 

The reflection of a diverging beam from an airborne laser is shown schematically 
in Figs 3a and 3b. For a transmitted radiant flux Ft , the irradiance at the sea surface 
on a plane normal to the incident light is approximately 

E(</J) = (Ftcos2 </J)/Qh2 , (28) 

where h is the aircraft height, Q is the solid angle of the diverging beam and </J is the 
nadir angle. It is assumed that the irradiance is uniform within the beam and that the 
divergence is small. 
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4a 4b 

Fig. 3. Schematic diagram of laser beam reflection from a sea surface: (a) the transmitter 
geometry and (b) the receiver geometry. 

Fig. 4. Geometry of the tilted laser beam and receiver field of view: (a) small tilt and (b) large tilt. 

The radiance L(¢) reflected from the sea surface at a zenith angle ¢ can be found 
using the 'scattering cross section' derived from the geometry of reflection from a 
water surface by Cox and Munk (1954b, equation 9). When the receiver is adjacent 
to the transmitter (as shown in Fig. 3), their result becomes 

{L(¢) cos ¢}/ E(¢) = O' 251}(0)p(¢) sec4 (¢), (29) 

where 1}(0) is the reflection coefficient at normal incidence and p( ¢) is the probability 
of the water facet having a tilt at the correct azimuth. The probability given in 
equation (9) reduces to 

p(¢) = (2n0"2)-1 exp( _10"-2 tan2 ¢) (30) 
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when the r.m.s. slopes in the crosswind directions are equal, i.e. when 

ac = au = a. 

This simplification introduces only small errors compared with the effects being 
described in the present theory. 

The radiant flux dFr entering the receiver of area A from the water surface element 
within the viewing solid angle dw is given by 

dFr = L(¢)(Ah- 2 cos2 ¢){h2 sec2 ¢ dw}, (31) 

where the first factor within braces is the solid angle subtended by the receiver, 
while the second factor within braces is the projected area of the sea surface element 
normal to the viewing direction (see Fig. 3). Combining equations (28)-(31) yields 
the normalized differential reflectance 

Q dFr '1(0)Asec3¢exp(-ta-2tan2¢) 
F t dw = 4h2 2na 2 (32) 

which must be integrated to obtain the total received flux. 
Equation (32) is integrated over the solid angle within the field of view of the 

receiver, which is assumed to equal the solid angle of the transmitted beam Q. This 
cone has an angular diameter c5 and its axis is tilted by an angle ¢o to the nadir, 
as illustrated in Figs 3 and 4. The sides of the cone nearest to and furthest from the 
nadir are inclined at the angles 

¢1 = Itc5-¢ol and ¢2 = tc5+¢o' (33) 

The solid angle element at the angle ¢ within the field of view is 

dw = 2rx(¢)¢d¢, (34) 
where 

rx(¢) = n for ¢ < ¢1 

= arccos( (¢~ + ¢2 - tc52)/2¢o ¢ ) ¢1 < ¢ < ¢2' 

For tilt angles less than tc5 (the small tilt case illustrated in Fig. 4a), the integration 
is between 0 and ¢2, while for larger tilts it is from ¢1 to ¢2 (the large tilt case 
illustrated in Fig. 4b). The ratio of received to transmitted flux can be written as 

Fr/Ft = '1(0)(A/4h2Q)fJi(¢o,c5,a), (35) 
where 

P4(¢o,c5,a) = (fsec3(¢)(2na2)-lexp(-ta-2tan2¢)2rx(¢)¢d¢L (36) 

is the relative reflectance of the sea surface. 
Two limiting cases of the relative reflectance can be evaluated when the beam 

is vertical (¢o ~ 0, rx = n, tan¢ ~ ¢): Firstly, when the water is calm (a -+ 0), 
we have 

P4(0.c5,0) = I, 
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so that, in general, !J£(<po, 15, a) is the amplitude of the reflection relative to that from 
a mirror. Secondly, when the water is rough (a ~ 15), we have 

!J£(O, 15, a) = Q/2na2 , (37) 

and equation (35) then reduces to 

Fr/Ft = y/(0)A/8nh2a2 , (38) 

which is a useful result for practical applications. It shows that the received signal 
is independent of the beam divergence, and hence that the most useful quantity to 
evaluate is the relative signal return !J£(<po, 15, a)/Q. 
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Fig. 5. Dependence of the relative signal return 9i'( tPo, 0, u)/Q on the roll angle tPo 
for the indicated values of the beam divergence 0 and the r.m.s. residual slope u. 

Fig. 5 shows the dependence of !J£(<po, 15, a)/Q on roll angle <Po for several values of 
r.m.s. slope a and beam divergence b. When the water is rough (a ~ 0·2) the beam 
divergence has little effect, and the return signal is relatively insensitive to roll. In 
calm water, however, a small roll angle can produce an enormous drop in signal. 
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Under these conditions the beam divergence is significant. The approximate values 
of the relative signal return determined from equation (36) (which is valid for ¢o = 0 
and a ~ <5) are indicated in Fig. 5 by solid circles on the vertical axis. The agreement 
between these points and the curves for <5 = 10 mrad provides confirmation of the 
accuracy of the numerical integration used to obtain the curves. 

The range of seas observed by Cox and Munk (l954b) corresponds to a variation 
of a from 0·09 to 0·28. This range of conditions would produce vertical signal 
returns varying from 2 to 20 sr-I, independent of the beam divergence below 100 mrad. 
The signal at 15° roll (or scan) angle would drop by a factor of between ~2 and 
~ 100 over this range of sea states. 

(b) Variability in Amplitude of Reflected Pulse 

In the preceding subsection, the calculation of the received pulse amplitude 
assumed the average slope over the illuminated area to be zero, i.e. Fig. 5 provides 
only the average amplitude of the signal return. Fluctuations in this amplitude due 
to the passage of waves are equally important and these are now examined. Swell 
causes fluctuations in the average slope that depend on the diameter ofthe illuminated 
spot and on the wavenumber spectrum of the sea surface. These slope fluctuations 
induce fluctuations in the amplitude of the received pulse because of changes in the 
reflection geometry. 

When the transmitter and receiver are vertical but the mean slope of the illuminated 
surface is s, the reflection geometry is equivalent to a horizontal mean sea surface 
illuminated by a beam inclined at an angle ¢o, where tan ¢o = s. The amplitude of 
a pulse reflected from an inclined surface can therefore be read from Fig. 5 or 
calculated from equation (36). 

When a threshold detector is used to detect pulses of variable amplitude, it is 
important to know the probability that the pulse amplitude exceeds the threshold. 
It can be seen from Fig. 5 that the probability of the relative signal return exceeding 
fJf(¢o, <5, a)/Q equals the probability that s < tan ¢o. Assuming an isotropic 
gaussian distribution, the probability of a mean slope s at any azimuth is 

p(s) = sa- 2 exp(--!-s2/a2), (39) 

where a is the r.m.s. mean slope (cf. equation (30) at a particular azimuth). 
Integration and inversion yields 

¢o = arctan(a(lnq-l)t), (40) 

where q is the 'failure' probability, i.e. the probability that the mean slope exceeds 
tan ¢o and the pulse amplitude is below threshold. 

The threshold signal returns that correspond to different failure probabilities can 
be determined from equation (36) or from Fig. 5 with the aid of equation (40). The 
results for a failure probability of 1 % are presented in Fig. 6a. It can be seen that the 
threshold must be set considerably lower than the peak signal return if reliable 
detection is to be achieved over a wide variety of sea conditions. 

The threshold signal returns in the absence of swell and the absence of aircraft 
roll are given in Fig. 6a by the curves for a = O. These threshold curves are identical 
for all failure probabilities because there is no variation in the amplitude of the 
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reflected pulse when the mean slope over the illuminated area remains zero. 
Furthermore, these threshold curves correspond to the signal returns shown in 
Fig. 5 when <Po = 0, that is, in the absence of aircraft roll. This follows from the 
fact that Fig. 5 was produced with the assumption of a zero mean slope (0' = 0). 
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threshold signal return n(q, D) on: 

(a) the r.m.s. residual slope 0' for the 
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mean slopes if for a failure probability 
of 1%; 
(b) the spot diameter D for the indicated 
failure probabilities q and lower and 
upper cutoff wavenumbers ko and k 1; 
(c) the spot diameter D for the 
indicated lower cutoff wavenumbers 
ko and ratios kl/ko at a failure probability 
q of 1 % (i.e. for a variety of sea states). 
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Each set of threshold curves in Fig. 6a for a fixed beam divergence shows a fall to 
lower values as the r.m.s. mean slope increases. This is because the amplitude of the 
reflected pulse in the vertical direction becomes more variable as the swell increases 
and tilts the reflected cone further away from the zenith. The reduction in the 
threshold is greatest when the reflected cone has a small solid angle, i.e. when the 
r.m.s. residual slope within the illuminated spot is small. 

Beam divergence is significant when the r.m.s. residual slope is small, i.e. when 
the water surface is relatively smooth within the illuminated spot. Under these 
conditions, and in the absence of swell (0' = 0), a higher threshold is obtained with 
a small beam divergence. This is because smooth horizontal water reflects a laser 
pulse into a narrow vertical cone, which is collected efficiently by the receiver when the 



484 D. M. Phillips 

divergence l> of the transmitted beam is smaller than the divergence (1 of the reflected 
cone. When l> > (1, the outer parts of the transmitted beam are reflected away 
from the receiver and are thus wasted. A lower threshold is then required for 
reliable detection. 

If, however, as the swell grows in magnitude the water surface remains smooth 
«(J increases for (1 small), the situation is reversed: a higher threshold is obtained 
with a large beam divergence. The collection efficiency with a large beam divergence 
(l> > (1) is still small but, as the directions of the reflected cones from small patches 
of water within the illuminated spot are 'wobbled' by swell, some parts of the beam 
still reach the receiver. With a small beam divergence, the reflected cone from a 
small illuminated spot has a greater probability of missing the receiver altogether
hence the lower threshold. 

The curves in Fig. 6a are sufficient to predict a satisfactory threshold signal if the 
spot size is known and if the r.m.s. mean slope over that spot and the r.m.s. residual 
slope within it are known. Since such information is not always available, additional 
assumptions must be made. 

When the sea is fully aroused and the slope spectrum is saturated between the 
lower and upper cutoff wavenumbers ko and kl' the variability of the reflected pulse 
can be analysed further. The relative threshold signal is now redefined as 

D.(q,D) = ~(¢o,l>,(1)/Q, (41) 

where q is the failure probability and D = 2~ is the diameter of the illuminated spot. 
This definition is possible because, for given values of ko and kl' the relative threshold 
signal is a function of q and D only, as is now shown. The solid angle of the 
transmitted beam is 

Q = tRl>2, (42) 

as may be seen from Fig. 3a, and the angular diameter of the beam is 

l> = D/hsec¢o. (43) 

In the ensuing calculations it is assumed that h = 500 m and ¢o = O. From equation 
(27) it follows that 

(12(D) = SR(O) = Bln(kl/ko) - (J2(D) , (44) 

where the total slope variance is obtained by integrating equation (8). The value 
B = 4·6x 10- 3 assigned by Phillips (1969) and Wu (1972) is used in the present 
calculations. Finally, from equation (25) we have 

SkI 

(J2(D) = SR(O) = B k- 1 {2J 1(kR)/kR}-2 dk. 
ko 

(45) 

This establishes the validity of the functional form of O(q, D) in equation (41). 
Fig. 6b shows the threshold relative signal return D.(q, D) as a function of the 

diameter of the illuminated spot for the failure probabilities q = O' 1 %, 1 % and 10 %. 
Three sets of curves are shown, all for slope spectra covering one decade of wave
numbers, but with different lower cutoff wavenumbers ko = 0'1, 1 and 10 m- 1 . 
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These curves were computed from equations (36) and (41), expressed in terms of 
q, D, ko and kl with the aid of equations (42)-(45). However, the curves for q = 1 % 
can be determined graphically from Figs 2a or 2b and Fig. 6a. From given values 
of ko, kl and D, we can calculate the dimensionless parameters ko Rand kl/ko, 
which yield (J and if from Figs 2a and 2b. Then, depending on the value of q, 
Fig. 6a will yield the appropriate threshold signal. 

It can be seen from Fig. 6b that, when the diameter of the spot is large enough, 
all the curves have the same asymptote, which is constant until D exceeds '" 20 m. 
This common asymptote is due to the common value of kdko (= 10), and hence the 
common value of the r.m.s. total slope. When the diameter becomes large enough, 
the r.m.s. mean slope if approaches zero, and the threshold signal (see Fig. 6a) for 
a given value of (J depends on the beam divergence () only. Fig. 6a clearly shows 
that increasing beam divergence reduces the threshold return when if = 0 (particu
larly when (J is small). This accounts for the fall in the asymptotic threshold in 
Fig. 6b when the diameter of the spot exceeds '" 20 m. 

Fig. 6b shows that the diameter of the illuminated spot needed to achieve a given 
threshold return depends markedly on k o. More specifically, the thresholds begin 
to fall in every case when the spot diameter becomes less than the longest significant 
wave present (ko D ;5 2n). 

The acceptable failure probability is also a significant parameter. For example, 
when the slope spectrum is saturated over the range 1-10 m -1, a spot diameter of 
1 m produces a 10% failure level with a threshold return of 10 sr- 1 • In order to 
improve the reliability to a failure level of O· 1 %, it is necessary either to reduce the 
threshold by an order of magnitude or to increase the spot diameter by a factor of 
",2·5. 

The range of wavenumbers over which the slope spectrum is saturated has a 
significant influence on the threshold as shown in Fig. 6c. All the curves correspond 
to a failure probability of 1 %. It can be seen that the asymptotic threshold falls as 
the saturation range (kl/ko) becomes larger. In other words, as the sea becomes 
rougher the reflection becomes more diffuse and hence less intense in the vertical 
direction. 

The fall in threshold when the spot diameter becomes less than the longest 
significant wave present (ko D ;5 2n), which was noted in Fig. 6b, is also evident in 
Fig. 6c. However, the fall is much more rapid when the slope spectrum is saturated 
over only a small range. When the saturated range is large, due to the presence of 
many ripples, the threshold is not very sensitive to the size of the illuminated spot. 

The above results are presented differently in Fig. 7. By using ko and kl as axes, 
each point in the plane corresponds to a particular sea state. The small lower cutoff 
wavenumbers to the left of the graph correspond to the long wavelength swell of 
the open ocean, while the large lower cutoff wavenumbers to the right of the graph 
represent the small waves of restricted waters such as rivers and bays. On the 
vertical axis, the large upper cutoff wavenumbers towards the top of the graph 
represent the small ripples generated in a strong wind, while the small upper cutoff 
wavenumbers towards the lower part of the graph represent smooth waves that 
occur in calm air. A variety of sea conditions can therefore be represented by an 
area of the graph. 

The restrictions on the illuminated spot diameter D and the threshold signal level 
needed to achieve failure probabilities less than I % are depicted in Fig. 7. For a 
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Fig. 7. Range of sea states for which given spot diameters D and relative 
thresholds .Q achieve a failure probability below 1 %. 

Fig. 8. Variation of water height and slant height errors over the illuminated spot. 

given threshold and diameter, the failure probability is below the required value (1 %) 
to the right of the corresponding curve. For a threshold of 10 sr-1, reliable detection 
is achieved only when the saturated range of wavenumbers kl/ko is less than 30. 
As the spot diameter is increased, reliable detection is achieved in the presence of 
longer swells. The effect of reducing the threshold (e.g. with a more sensitive 
detector) is to achieve reliable detection when the wave spectrum is saturated over a 
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greater range of wavenumbers. If reliable detection is required over a wide range of 
upper cutoff wavenumbers and with lower cutoff wavenumbers as small as O· 1 m -1, 

a diameter between 1 and 10 m is required together with a threshold of less than 
2 sr- 1. 

(c) Water Height Resolution 

The time spread of a laser impulse reflected from the sea surface is determined 
both by the variation of water height within the illuminated area and by the variation 
of the slant height travelled by the beam. This is illustrated in Fig. 8. The 
accuracy of a water height measurement is limited by the sum of these two errors 
and hence by the sea state and the diameter of the illuminated spot. 
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Fig. 9. Dependence of the r.m.s. residual height error tih on the laser spot 
diameter D and the sea state (exemplified by the lower cutoff wavenumber ko). 

The variance of the residual water height, which can be derived from equations 
(19) and (22), is given by 

tB(ko2 -k12)Z~(O)jZ(O). (46) 

The slant height error of a beam at a zenith angle ¢ from an aircraft at height h 
is h(sec¢ -1). In the small angle approximation, when the square of this error is 
averaged over an area of diameter D, a variance for the slant error of 

D4j192h2 (47) 

is obtained. The total r.m.s. height error is therefore 

!J.h = {tB(ko2 -k12)Z~(O)jZ(O) +D4jI92h2}t. (48) 

The upper limit of this error, which occurs for kl ~ ko, is shown in Fig. 9 as a 
function of ko and D. 
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In calculating the value of !J.h it is assumed that the aircraft altitude is 500 m and 
that the axis of the transmitted beam is vertical. When ko is large, the first term in 
equation (48) is negligible and the height error is proportional to D2. In this limit, 
only small waves are present and the slant height error dominates. When ko is small, 
the first term in equation (48) dominates. It can be shown that, in this limit, the 
height error is proportional to D. In the presence of strong swell, therefore, wave 
height errors are larger than slant height errors except for very large diameter spots. 

5. Discussion of Applications 
An airborne system (such as an altimeter, wave height profiler or water depth 

sounder) that relies for its operation on the detection of a laser pulse reflected from 
the sea surface has several system parameters available for optimization. One is 
the aircraft operating height, but this is often determined by other considerations. 
Another is the peak output power of the laser pulse, but this may be limited by the 
laser design. Yet another is the vertical stabilization of the laser beam against pitch 
and roll variations of the aircraft. Apart from the latter, the only system parameter 
available for optimization in practice may be the diameter of the illuminated laser 
spot on the sea surface, which is controlled by the divergence of the transmitted 
laser beam. 

The theory of laser beam reflection developed in the previous sections has been 
concerned with the influence of laser spot diameter on the accuracy and reliability 
of surface detection. The reliability is affected by fluctuations in the amplitude of the 
received pulse, due to variations in the mean slope and surface roughness of the 
illuminated spot. The accuracy is affected by pulse broadening due to water height 
variations within the illuminated spot and by pulse-to-pulse timing variations due to 
swell. The choice of a suitable spot diameter depends on both the application and the 
range of sea conditions expected. 

The theory described in this paper has been developed on the assumption that the 
wave slope spectrum of the sea is saturated between two cutoff wavenumbers. 
Unfortunately, experimental data to test the validity of this assumption are lacking. 
Moreover, the lack of experimental data precludes any detailed predictions. Cutoff 
wavenumbers can be deduced from slope variance data, but vastly different results 
are obtained depending on the assumptions employed. Here, therefore, different 
applications can be discussed only in general terms. 

A wave height profiler must illuminate a spot that is small enough to profile the 
waves but large enough for reliable detection of the reflected signal. The optimum 
diameter will depend on the wavenumber of the longest waves present, the height 
resolution required and the maximum failure probability that can be tolerated. 
Fig. 7 provides the information necessary to determine the optimum diameter. 

An altimeter, required to measure height above mean sea level, must illuminate 
a spot that is large enough for reliable detection of the reflected signal, large enough 
to measure the mean sea level, but small enough to contain slant height errors. The 
optimum diameter will be much greater than that required by a wave height profiler. 
Figs I and 7 provide the necessary information. 

A water depth sounder, which uses the mean sea level as a reference surface, requires 
a spot that is large enough for reliable detection of the reflected signal but small 
enough for adequate accuracy in the height measurement. The large spot suitable 
for an altimeter may not establish the mean sea level with sufficient precision for use 
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as a reference in depth sounding. On the other hand, the· small spot suitable for a 
high resolution wave height profiler may compromise the high detection reliability 
needed by a water depth sounder. Consequently, the optimum diameter for an air
borne depth sounder may lie between the other two. Again, Fig. 7 provides the 
relevant information. 

6. Conclusions 

The reflection of a pulsed laser beam from a limited area at the sea surface has 
been analysed theoretically. Temporal and amplitude fluctuations are shown to 
depend on the wavenumber spectrum of the sea surface. Using a two parameter 
characterization of the wavenumber spectrum, an expression «41) with (36)) has been 
obtained for the probability of the reflected signal failing to exceed a given threshold. 
in the detecting system. Results calculated from this expression, which are presented 
graphically, allow the optimum diameter of the illuminated spot on the sea surface 
to be determined for a given application. The main hindrance to the immediate 
application of these results is the lack of experimental measurements of the two 
parameters on which the theory is based. When the necessary data become available, 
the results can be used in applications of lasers for wave height profiling, altimetry 
and water depth sounding. 
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