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Taking the magnitude of the elements of the S matrix and the nuclear phases to be of Woods-Saxon 
form in the variable I with width parameter LI, we find that the form of the scattering amplitude 
components f+(B) and f-(B) is specified by the parameters LI+ and LI- such that LI is closely the 
geometric mean of LI+ and LI-. Many angular distributions have been analysed into f+(B) and 
f-(B) to obtain LI+ and LI- and hence LI, the angular momentum diffuseness, from which the nuclear 
surface diffuseness is obtained, so reducing an ambiguity in the nuclear potential. The case of light 
ions incident on heavy ions has also been investigated. 

1. Introduction 

Most calculations of elastic scattering of heavy ions have employed the optical 
model, but this approach gives little insight into the collision problem and is also 
subject to ambiguity in the nuclear parameters so derived. More general approaches 
have involved approximate diffraction formulae. The most fruitful method has been 
to take the magnitude of the scattering matrix S(l) to be of Woods-Saxon form, to 
replace the term PzCcos e) in the partial wave series for the scattering amplitude fee) 
by its asymptotic form containing the expression sin {(l + 1)8 + in} and to split the 
sine into two exponentials. Thus fee) is broken up into additive components f+(e) 
andf-(e), and these vary uniformly in magnitude as e increases, while being progres­
sively in and out of phase through the factors exp( ± i/e e), where Ie ~ k(Rl + R2) is 
the critical value of I for which S(/) = 1. Thus fee) has maxima and minima with 
angular separation nf/e' the oscillations being large whenf+ andf- are nearly equal 
in magnitude, and small or negligible when they are very unequal. 

In the strong absorption model, Frahn and Venter (1963) neglect the nuclear 
phase component of Sl to obtain a simple expression for f± by taking the value for 
a sharp cutoff below I = Ie and multiplying it by a 'form factor'. The approximations 
involved have been briefly summarized by Bassichis and Dar (1966). However, the 
result is best derived by taking the Fourier transform of S(l) with respect to the 
variable (I-Ie) (Friedman et al. 1974) to givef±(e) in terms of the conjugate variable 
(e ± ee), where ee is the quarter-point angle given by 2 arctan(n/1J, with n = Zl Z2 e2/hv. 
Then for e > ee we have 

sinte f±(e) oc nLl/sinh {nLl(e ± ee)} . (1) 



542 

For values of 8 not too close to 8e we have approximately 

and so 
sint 8 f±(8) oc exp{ - nLl(8 ± 8e)} , 

f+(8)lf-(8) ~ exp(- 2nLl8J. 
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(2) 

(3) 

Hence for 8e large, as is the case for energies near the Coulomb barrier, we have 
f+ ~ f-, so there are no oscillations in the angular distribution and the curve of 
log{ sin 8 0'(8)} versus 8 falls almost linearly past 8e, as is found experimentally. Using 
the principle of stationary phase, Frahn (1972) has shown that, for 8 = 8e , the 
component f- is approximately equal to lfe, where fe is the Coulomb value of f: 
provided 8e is not too small. Similarly, if f+ is extended back to negative angles, 
we expect to have f+ ~ lfe at 8 = - 8e • 

Now refraction takes place in the nucleus as well as absorption, and more recently 
attempts have been made to incorporate the nuclear phases b1 into the theory, using 
the parameterization b1 = bo(1- Sl) and the Poisson summation formula. Hartmann 
(1976) has taken the m = 0 term in the formula to obtain expressions valid for b1 

small which are used for angles close to, and on both sides of, 8e • Rowley and Marty 
(1976) have used saddle points in the complex angular momentum plane, and from 
the m = 0 terms obtain 

sint 8 f±(8) oc exp{ - n Ll ±(8 ± 8e)} , (4) 

where Ll + and Ll- decrease and increase respectively from Ll by equal amounts as 
bo increases from 0, so that 

Ll + + Ll - = 2Ll . (5) 

We shall investigate here the accuracy of the relations (4) and (5). 

2. Analysis of Experimental Angular Distributions 

As 8 increases, f+ and f- undergo equal and opposite phase changes Ie 8, so that 
when they are in phase fmax = f+ + f- and when out of phase fmin = If+ -f-I. 
Hence by drawing smooth curves through the maxima and minima of the graph of 
0'(8) = If1 2 , it is possible to deduce the curves for f+ andf-. The latter curves 
cross near the lowest minimum of 0'(8), the depth of this minimum depending on 
how nearly f+ andf- are of opposite phase when they are equal in magnitude. 

Fig. 1 shows the results of the analysis of angular distributions calculated by 
Goldberg and Smith (1974) from an optical model; these theoretical distributions 
avoid the imperfections due to experimental error and limited angular resolution, 
and in fact the presence of two distinct components in these angular distributions 
can be seen immediately without detailed calculation. The lines for f+ and f- in 
Fig. 1 are nearly straight and pass nearly through the value sint 8e lfe at 8 = - 8e 

and 8 = 8e respectively as expected. The lines A, B, C and D for the same energy 
(Fig. la) have slopes Ll + and Ll- that are nearly independent of the target nucleus; 
the lines E, F, G and H for the same pair of ions (Fig. lb) show that Ll- --+ Ll + as 
E --+ EB , the barrier energy. A similar analysis of experimental angular distributions 
with their imperfections and often small angular ranges gives less satisfactory results; 
nevertheless approximate values for Ll + and Ll- have been obtained in this study 
for many pairs of heavy ions. 
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Fig. 1. Forms deduced for sintB f±(B) as a function of B, for (a) 200 MeV 160 ions on 28Si (A lines), 
5 8Ni (B), 90Zr (C), and 208Pb (D); and for (b) 160 ions of energies 200 (E), 120 (F), 80 (G) and 40 MeV 
(H) on 28Si. The full and dashed lines show the components f- and f+ respectively. The bar on 
each f- line indicates the quarter-point angle Be, and each dot the crossing of lines for corre­
sponding f- and f+ . 
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Fig.2. Forms deduced for sintB f±(B) as a function of B, for (a) 140 MeV 4He ions on 12C (A lines), 
40Ca (B), 90Zr (C) and 208Pb (D); and for (b) 4He ions of energies 100 (E), 80 (F), 59 (G) and 40 MeV 
(H) on 90Zr. The full and dashed lines show the components f- and f+ respectively. Each dot 
indicates the crossing of lines for corresponding f- and f+ . 
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Angular distributions for the scattering of fast IX particles (Goldberg et al. 1974) 
and helions (Hyakutake et al. 1978) by heavy nuclei show the same feature of an 
intermediate angular range over which oscillations are more pronounced than at 
other angles, so it is of interest to carry out a separation of f+ and f- for incident 
light ions. Fig. 2 shows the results for collisions of 4He, to be compared with Fig. 1. 
Here the lines for f- show a more definite curvature, and in fact they finally curve 
upwards to meet the value of f+ near 180° at the lower energies for which the oscil­
lations in cree) increase in amplitude towards 180°. The lines for f+ are almost 
straight at the smaller and the larger angles, but show a bulge at intermediate angles, 
due no doubt to the behaviour of a few nuclear phases which do not conform to 
the parameterized form used in the theory, for Ie is smaller for light than for heavy 
ions incident at the same energy. Also Ie is too small for safe use of the approximation 
used to obtain the relation (1), whereby a summation over I is replaced by an integral. 

The deviations of the curves for f+ andf- from linearity are greatest at the larger 
angles, and determinations of LI + and LI- must be made from their slopes near their 
crossing point. There is some justification for this in that the lines for f+ and f­
pass close to the value tfe at e = - ee and ee respectively. Although the determination 
of LI + and LI- is thus subject to greater error for incident light ions than for heavy 
ions, the extension of the heavy-ion treatment to light ions is worth a trial. 

3. Effect of Refraction by Graphical Analysis 

Having checked the accuracy of the relation (4), we now check (5). It has so 
far proved difficult to do this by algebraic methods. As for numerical methods, 
the calculation of f is carried out using the Coulomb value fe for the partial wave 
series, and correcting the lower order terms for the inclusion of the nuclear phases 
with the Coulomb phases, but f+ and f- cannot be calculated in this way because 
their Coulomb values are not known. It may be done, however, by using a regularity 
in the phase-amplitude diagram for the partial wave series (Mohr 1976). 

Thus the terms in the series for f with S(l) = 1 for all I (pure Coulomb field) are 
represented by vectors in the complex plane, giving a diagram (Fig. 3) resembling 
the Cornu spiral, which first turns around 0 (l = 0) and finally around 0' (I = (0). 
As e increases, the spiral about 0 unwinds while the spiral about 0' winds up, and 
the point P at the end of the vector representing a particular term I moves from the 
former spiral to the latter, passing close to the midpoint of 00' when e = ee. For 
a sharp cutoff below I = le,fis given by O'P. We now apply the method to the diagrams 
for f+ and f- for S(l) = 1, and these are seen to take simpler forms, the exterior 
angle between the successive segments being e± = e ± 2PI' where PI = arctan(n/I) is 
the difference between the Coulomb phase shifts of order I and 1-1. For f+ there 
is only a single spiral; for f- there is a double spiral, but our concern is with e > ee 
and hence with the spiral about 0'. 

For a sharp cutoff, f± = O'P± = tA/sin te± from the geometry of Fig. 3, where 
A is the length of the segment of the spiral representing the term of order I in the 
partial wave series for f±. This corresponds to the value given by Frahn and Venter 
(1963). For a smoothed cutoff, the segments of the spiral are shortened, as shown by 
the dashed line in the figure, and the value off- is now represented by O'T; similarly 
for f+. As e increases, e± increases and the spiral winds up more tightly, so that 
O'T becomes smaller, and this decreased value of f± is to be compared with the value 
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given by the relation (1). Many calculations based on this graphical model were 
carried out and they gave results in fair agreement with (1) provided () was not too. 
large, for then the value of f± is small and therefore sensitive to small differences 
in S(/) from the Woods-Saxon form. 

Having dealt with the effect of absorption, we now introduce the additional effect 
of refraction. The exterior angle between successive segments of the spiral now 
becomes () ± = () ± 2(p /- (j I), so that the spiral for f+ winds up less tightly and f+ 
is decreased by a smaller amount; conversely f- is decreased by a larger amount. 
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f+ \'m~~-

p+ 

r 

20 

Fig. 3. Phase-amplitude diagrams for scattering by a Coulomb potential through an angle 
of 60° for n = 5. The successive terms in the partial wave series, starting from I = 0 at the 
point 0, are shown for f, f+ and f-. For a sharp cutoff below Ie = 24, f is given by O'P, 
f+ by O'P+ andf- by O'P-. The effect of a smoothed cutoff of Woods-Saxon form with width 
parameter L1 = 2·5 is shown by the dashed line for f-, which is then given by OT. 

Thus the effect of refraction is to decrease the slope of the line for f+ from .£I to 
.£I + (say), and to increase that for f- from .£I to .£1-. The two changes in .£I are opposite 
in direction but not quite equal in magnitude: our detailed calculations show that 
.£I is nearer to the geometric mean of .£I + and . .£1- than to the arithmetic mean. The 
difference becomes significant for the largest values of .£1-/.£1 + which are close to 3. 
For () ~ (}e, f- is given by the relation (1) with .£1- in place of .£I, instead of by the 
relation (4), while f+ is still given by (4). 

4. Determination of Surface Diffuseness 

We expect the nuclear surface diffuseness to be related to the angular momentum 
diffuseness, the latter being specified by the parameter .£I and obtained by analysing 
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angular distributions as in Section 2 to obtain LI+ and LI- and hence LI. Now the 
nuclear surface diffuseness may be specified in terms of the radial variation of either 
the nuclear density p or the nuclear potential V, both being approximately of W oOQs­
Saxon form with width parameters d and a respectively. Because of the finite range 
of the force between nucleons we expect a to be a little greater than d, while dis 
related to LI according to a semiclassical argument due to Frahn and Venter (1963), 
which we now give in slightly simplified f<;>rm. For a sharp cutoff we have Ie ~ kR, 
where R is the combined radius Rl + R2 , and so for a smoothed cutoff the change 
LI in Ie and a change din R are related by LI ~ kd, where d is the combined diffuseness 
d1 +d2 • 
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Fig.4. Values of the width parameter L1 for various values of k-kB for the collision of (a) pairs 
of heavy ions and (b) light ions with heavy ions. Details of alI the data plotted, with references, are 
given in Section 4. 

The relation LI ~ kd, which is asymptotic, fails for energies near the Coulomb 
barrier, when there is a need for a detailed calculation of barrier penetration. This 
suggests that we consider a plot of LI as a function of k - kB' where kB is the value 
of k;~fthe barrier energy. Such a plot is shown in Fig. 4, where we see that LI increases 
fairly uniformly with k - kB' except near the origin where LI has much smaller values 
due to the barrier. We therefore ignore the region near the origin, and take the slope 
of the mean line through tlie rest of the points as giving the value of d. The small 
displacements of the points from the mean line in Fig. 4a are due to a possible depen­
denee of d on the pair of nuclei concerned, and also to inaccuracy in analysis of 
the experimental angular distributions, which often have too few oscillations to 
permit a fully satisfactory separation of f+ and f-. It should be noted that it is not 
possible to make use of angular distributions without oscillations, which is the case 
for the larger values of nile, for then we have f+ ~ f- and we can find only f­
and LI- and cannot determine LI: the energy is too low for probing the nuclear 
surface. Actually there are few experimental studies which extend over a wide energy 
range for a particular pair of heavy ions. _ 

Fig. 4a shows the values of LI obtained-for -the collision of pairs of heavy ions. 
:rhe points A, Band c are for 80, 120 and 200 MeV 160 ions on 28Si (Goldberg and 
Smith 1974), using the theoretical angular distributions referred to in Section 2 above, 
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while D and E are for 141· 5 and 215 MeV 160 ions on 28Si (Satchler et al. 1978), 
using experimental angular distributions; the latter two points are seen to lie a little 
above the former three points. The points F and G are for 200 MeV 1.60 ions on 
58Ni and 90Zr (Goldberg and Smith 1974), again using theoretical distributions. The 
rest of the points are from experimental distributions as follows: H, for 15 MeV 
12C on 14C (Delic 1975); I for 52 MeV 180 on 160 (Reisdorf et al. 1975); J for 
186 MeV 12C on 28Si (DeVries et al. 1977); K for 30 MeV 6Li on 40Ca (Bohn et al. 
J977); L for 34 MeV 6Li on 48Ca (Cutler et al. 1977); M for 135 MeV 6Li on 28Si 
(DeVries et al. 1977). Apart from the three low energy points H, I and K nearest 
the Coulomb barrier, all the points lie close to a straight line whose slope corresponds 
to a value for d of 0·4 fm, with points away from the line by amounts corresponding 
to a variation in d of O· 1 fm. Our result d = 0·4 ± O· 1 fm is to be compared with 
the result a = 0·8 ± 0·2 fm obtained by optical model fits to angular distributions. 
We now make a similar comparison for the collision of light ions with heavy ions. 

Fig. 4b shows the values of LI obtained for the collision of light ions with heavy 
ions. The solid squares are for 40-120 MeV 4He on 24Mg (Singh et al. 1975), the 
solid triangles for 32· 3 MeV 4He (Cowley et al. 1974) and 23 ·4-166 MeV 4He (Singh 
et al. 1975) on 58Ni, and the solid circles for 40-118 MeV 4He (Singh et al. 1975) 
and 140 MeV 4He (Goldberg et al. 1974) on 90Zr. The three dashed lines pass close 
to the points for Mg, Ni and Zr respectively, and, while the fluctuations from linearity 
are due partly to inaccuracies in analysis, there seems to be a small increase in LI 
on going from the lightest to the heaviest of the three target ions. Taking the mean 
slope of all three curves for 4He at the larger values of k-kB we obtain a mean 
value for d of about O· 5 fm, slightly more than the mean value of 0·4 fm for incident 
heavy ions. 

The open squares in Fig. 4b are for 20'5 and 32·6 MeV 3He on 12C (Karban 
et al. 1977), 46 MeV 3He on 27 Al and 28Si (Fulmer et al. 1978), 71 MeV 3He on 
60Ni (Fulmer et al. 1973), 71 MeV 3He on 209Bi (Fulmer et al. 1975) and 109· 2 MeV 
3He on 40Ca, 58Ni, 90Zr and 116Sn (Hyakutake et al. 1978). The open circles are 
for 11·8 and 21·6 MeV 2H on Cu (Perey and Perey 1963) and 80 MeV 2H on 208Pb 
(Duhamel et al. 1971). The crosses are for 30'8, 45, 160 and 185 MeV 1H on2?8Pb 
(van Oers et al. 1974). There are too few points for the ions 3He, 2H and 1 H for firm 
conclusions, but the indications are that LI is significantly greater than for 4He. The 
result that LI is greater for incident 3He than for 4He is also shown by comparing the 
form of the S matrix for 217 MeV 3He and 166 MeV 4He incident on each of four 
very different heavy ions (Willis et al. 1973). The present comparison of values of 
LI indicates that the penetration of incident heavy ions into target heavy ions is nearly 
the same for different pairs of heavy ions, but that incident light ions penetrate a 
little deeper, a result to be expected. 

The less regular behaviour of incident 4He ions as compared with incident heavy 
ions, as shown by comparing Fig. 2 with Fig. 1, and Fig. 4b with Fig. 4a, may be 
understood in terms of the degree of departure of the S matrix from Woods-Saxon 
form, a form on which the theory is based. Thus the form for 100 MeV 180 on 120Sn 
(Glendenning 1975) and 100 MeV 32S on 27 Al (Garrett et al. 1975) is closely symmetric 
about the midpoint at I = Ie' while the form for 166 MeV 4He and 217 MeV 3He on 
12C, 40Ca, 120Sn and 208Pb (Willis et al. 1973) is markedly asymmetric. Another 
reason is that Ie is smaller for incident light ions than for heavy ions of the same 
energy, and the theory is valid only for sufficiently large Ie. 
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In spite of the limitations of the theory when applied to incident light ions, it is 
worth comparing the values of d and a for this case. The distribution of density in 
most nuclei is approximately of Woods-Saxon form with width parameter 0·5 fm 
(Hodgson 1971). Taking this asd2 and folding in a small extra width d1 for the incident 
light ion, we obtain a value of rather more than 0·5 fm for d, as indicated by Fig. 4b. 
This is to be compared with the value for a (Hodgson 1971) of 0·7 fm for 1 H, 0·85 
fm for 2H (larger because 2H is loosely bound), 0·7 fm for 3He, and 0·6 ± 0·1 fm for 
4He (largest Igo ambiguity is for 4He). Now our value of d is a little smaller for 
incident heavy ions than for light ions, and we expect the same tendency for the value 
of a, indicating a value for a of less than 0·7 fm for incident heavy ions, but just a 
little above our values of d of between 0·6 and 0·4 fm. It seems therefore that the 
values of a of between 0·7 and 1 ·0 fm used in some of the optical model calculations 
for pairs of heavy ions listed in the references above are too large, and that we have 
been able to reduce the ambiguity. 

5. Conclusions 

We now have a more complete understanding of the collision of heavy ions. This 
study suggests values for the nuclear surface diffuseness which are smaller, and lie 
within a smaller range, than the values tried in some optical model calculations. 
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