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Abstract 

Nonlinear magnetic convection is investigated by the mean field approximation. The boundary 
layer method is used assuming large Rayleigh number R for different ranges of the Chandrasekhar 
number Q. The heat flux F is determined for wavenumbers CXn which optimize F. It is shown that 
there are a finite number of modes in the ranges Q ~ R2/3 and R2/3 ~ Q ~ R, and that the number 
of modes increases with increasing Q in the former range and decreases with increasing Q in the 
latter range. For Q = 0(R2/3) there are infinitely many modes, and F is proportional to Rl/3. 
While the optimal F is independent of Q for Q ~ Rl/2, it is found to decrease with increasing Q 
in the range Rl/2 ~ Q ~ R and eventually to become of 0(1) as Q -> OCR), and the layer becomes 
stable. 

1. Introduction 

The specific problem considered in this paper is the effect of a magnetic field on 
convection between two stress-free horizontal boundaries at large Rayleigh numbers. 
Magnetic convection is important in many areas of geophysics and astrophysics, 
and has been observed in nature, e.g. in astrophysics the darkness of sunspots indi
cates the presence of strong magnetic fields that inhibit convective motions. The 
reason for the stabilizing effect of a strong magnetic field on convective flows is that 
the magnetic field imparts a certain rigidity to the fluid, and affects the convective 
velocities by asserting itself near the boundaries, so making the flow through the 
boundary layers difficult. 

We study here nonlinear magnetic convection, subject to the so-called mean field 
equations for the magnetic field, momentum and heat. Briefly, these equations are 
derived by ignoring the interaction between the fluctuating quantities, but the inter
action between the mean and the fluctuating quantities is retained. For a more 
detailed discussion of these equations and their derivation, see Herring (1963) and 
Busse (1970). Previous studies of these equations for the case of thermal convection 
have shown that, for moderate or large values of the Prandtl number, the derived 
results (as far as the statistical properties of the motion are concerned) do not differ 
appreciably from the experimental results based on the original equations. 

In the present study we are interested in finding the solution which maximizes 
the heat transport F. The flow that maximizes F determines uniquely the horizontal 
scales of the convective modes and also reduces the complexities of the whole problem. 
Although in general the F that maximizes for the mean field equations is not neces
sarily the F that maximizes for the full convection equations, it is known from recent 
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studies of Bernard convection with and without rotation (Chan 1971; Hunter and 
Riahi 1975) that the flow that maximizes F subject to the mean field equations is 
the same as that which gives an upper bound to F in the limit of large Prandtl number 
(j for the full convection equations. The mean field approximation of the magneto
convection equations is believed to represent adequately the average properties of 
the flow subject to the full hydromagnetic convection equations at large (j and diffusi
vity ratio r (the ratio of magnetic diffusivity to thermal diffusivity), since the dominant 
nonlinear effect arises only from the modification of the horizontally averaged 
temperature distribution by the convection heat transport and is retained in the mean 
field equations. Therefore the flow that maximizes F for the mean field equations 
is expected to represent adequately the flow which gives an upper bound to F for 
the full magneto convection equations at least in the limit of large (j and r. The 
success of previous upper-bound studies of thermal convection, which compare 
reasonably well with observation, has encouraged me to undertake the present study, 
which is hoped to provide a deeper insight into the subject of nonlinear magneto
convection. 

The present study is the first attempt to apply the multi boundary layer technique 
to hydromagnetic convection in order to determine the optimal flow quantities of 
the maximized fields for sufficiently large values of the Rayleigh number. This. 
technique was first formulated by Busse (1969). In improving the upper bound on 
the heat flux, Busse (1969) considered a sequence of different boundary layers by 
adjusting the horizontal scale from its interior value to its boundary value. He 
supposed the thickness of each boundary layer to be large in comparison with the 
thickness of the following layer, and the convecting component of the heat flux to 
be approximately equal to the total heat flux in all but the last of the boundary layers, 
where it was of the order of the total heat flux. Later Chan (1971, henceforth referred 
to as Paper I) used Busse's (1969) technique to study turbulent convection at infinite 
Prandtl number, and obtained the preferred upper bound to the heat transport. 
Since then this technique has been used by Busse and Joseph (1972), Gupta and 
Joseph (1973), Chan (1974) and Riahi (1977, 1978). In all such studies, a schematic 
structure was considered for all the modes. Also, it was assumed that higher modes 
have shorter length scales, and that coupling among the different modes occurs only 
between the (n+ l)th and nth modes in the nth boundary layer. Single- and multi
modal regimes and details of the solutions of our governing equations (Section 2) 
are given in Section 3. 

2. Governing Equations 

We consider an infinite horizontal layer of fluid of depth d permeated by a mag
netic field H* = (Hi, Hi, Hn. The upper and lower surfaces are maintained at 
temperatures To and To + I1T respectively. The magnetic field can be written as 
H* = (H*) + h, where the angle brackets denote a horizontal average over the layer. 
Since (H*) is only a function of the vertical height z and V • (H*) = 0, we see that 
(Hj) must be a constant which takes the value of the impressed field. If this value 
is defined as the unit of field strength then we have H* = K + h, where K is the unit 
vector in the vertical direction. The mean field equations of hydro magnetic convection 
are derived from the Boussinesq equations for momentum, magnetic field and heat 
by neglecting all nonlinear terms with the exception of that which enters the equation 
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for the horizontally averaged temperature (Busse 1970). The nondimensional steady 
state forms of these equations, after eliminating the pressure and horizontal velocity 
components, are 

(la, b) 

(lc) 

Here h3 and ware the vertical components of the magnetic vector h and the velocity 
vector respectively, T is the deviation of temperature from its horizontal average, 
the open brackets denote a further vertical averaging over the whole layer, 
and 'Yf = 02/0X2 +02/oy2. Also R = rxg I:1Td 3/Kv is the Rayleigh number, 
Q = (Hj)2d 2/p,po V1'/ is the Chandrasekhar number and T = Yf/K is the ratio of the 
magnetic diffusivity to the thermal diffusivity; while p, is the magnetic permeability, 
Po is the reference density (a constant), v is the kinematic viscosity, rx is the coefficient 
of thermal expansion and g is the acceleration due to gravity. 

We now rescale the dependent variable so that 

o = (R/F}}; T, (2) 

where F = [WT] is the heat flux. The governing differential equations are now 

or%z + 'Y2H = 0, 

which are seen to be completely independent of the parameter T. 

We use the following constraint to determine F: 

1 - R -1 [I 'YO 12] 
F = [(1 _(roO»)2] 

(3a, b) 

(3c) 

(4) 

This is derived by multiplying equation (3c) by 0 and taking the total average over 
the whole layer. The boundary conditions to be considered for free surfaces at 
z = ° and 1 are 

(5) 

Condition (5) represents the simplest kind of boundary condition for the problem 
since, for technical reasons, it is found to simplify considerably the present theoretical 
investigation. The usual form of cellular structure for the dependent variables is 
assumed, so that we have 

(ro, 0, H) = L (roiz), OnCz) , HnCz)) 4>nCx, y), (6) 
n 

where 4>n can be any solution of 
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for some horizontal wavenumber (Xn. Functions with different wavenumbers are 
naturally orthogonal, and are chosen here to be orthonormal. This separation of 
variables leads us to the system of nonlinear ordinary differential equations: 

(7a) 

(7b) 

(7c) 

with boundary conditions 

at z = 0 and.1. (8) 

The subsequent analysis. and solution of the system (7) and (8) suppose throughout 
that both the Rayleigh number and the heat flux are large. The magnitude of the 
Chandrasekhar number varies, and different classes of solutions are found for different 
orders of magnitude of it. In each case, the principal focus is on the unique solution 
that maximizes F. 

3. Single- and Multi-modal Regimes* 

(a) Case Q ~ Rt 

Magnetic effects do not become significant immediately on Q becoming nonzero; 
they can be regarded initially as being small perturbations to the solution with no 
field. 

The solution in the range Q ~ 1 is essentially that given by Howard (1965) for 
Q = o. The problem does not have a multiboundary layer structure. Thus there 
exists a single-mode solution only, and its boundary layer structure is unaffected by 
the magnetic field. This single mode (represented by (Xl) has a nonuniform interior 
and a thin boundary layer of thickness 151 close to each boundary. In the interior 
of the (Xl mode, the dependent variables are all of order one. In the boundary layer 
region we find that Wl ~ 151, 01 ~ 1511 and Hl ~ 151• The heat flux is independent 
of Q and is maximized for the wavenumber (Xl' which is found to be of order one. 
The dependence of F and 151 on R is the same as in the case with no field, that is, 
F oc Rt and 151 oc R-t. 

The solution in the range 1 ~ Q ~ Rt is qualitatively the same as in the range 
Q ~ 1, except that (Xl is now in the maximizing range (Xl = O(Qt). Since (Xl is now 
large, there exists also an intermediate layer of thickness (X11. The interior of the 
(Xl mode is now uniform and we find that W 1 ~ (X1 1 , 01 ~ (Xl and Hl ~ 0 in this 
region. In the intermediate layer we have Wl ~ (X11, 01 ~ (Xl and Hl ~ (X12. In 
the boundary region we havewl ~"1' 01 ~ "11 and HI ~ "1(X1 1• 

* For details of the mathematical analysis of the multi-modal regimes, see Paper I. 
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(b) Case Rt ~ Q ~ RtlnR 

We consider four regions for each an mode (n = 1,2, ... , N): the interior, the 
inner layer, the intermediate layer and the thermal layer. The interior of each mode 
coincides with the thermal layer of the previous mode. Coupling among the different 
modes occurs only between the nth and the (n-1)th modein the (n-l)th boundary 
layer. It is assumed that 

as (9) 

where en (= Qt a,~ 2), a;; 1 and c\ are respectively the thickness of the inner, inter
mediate and thermal layers of the an mode. Without loss of generality we restrict 
ourselves to consider the boundary layer structure near the lower boundary. 

In the interior of the an mode we define (n-1 = Zc5;;~1 as the boundary layer variable 
for the (n-l)th mode. Equations (7a) and (7b) then give 

(lOa,b) 

Use of the relations (9) in equations (10) yields 

(11) 

In the inner layer of the an mode we define ~n = Z e;; 1 as the variable. Since there 
is no coupling between the modes in this layer, and the conductive term is not yet 
important, equation (7c) gives 

(12) 

We then find from equations (7a), (7b) and (12) that as ~n ~ 0 we have 

(13) 

In the intermediate layer of the an mode we define 1'/n = Z an as the variable. Since 
there is no coupling between the modes in this layer, and conductive terms are not 
yet important, equation (12) is still valid in this layer. We then find from the governing 
equations (7a) and (7b), after applying matching conditions (matching solutions to 
the corresponding solutions in the inner layer), that we have 

(14) 
where 

(15) 

In the thermal layer of the an mode we define (n = zc5;;l as the variable. We find 
from the equations (7), after applying matching conditions (matching the solutions 
to the corresponding solutions in the intermediate layer) and a procedure similar 
to that used in Paper I, that 

(16a,b) 
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for (17a) 

= (n- 1 (l7b) 
with 

n=I, ... ,N-l, (18) 
where 

(19a, b) 

The expression (17b) for en is valid for the condition (18). For n = N, equation (7c) 
has the solution 

(20) 

where 
(21) 

To determine Fwe evaluate the expressions [I ve 12] and [(1 -<we) )2] in equation 
(4) and, after a formal procedure to maximize F (see Paper I, Section 5), we obtain: 

(22) 

(23) 

(24) 

where 

for O~n~N-l, (25) 

- 145 (1- 6- N + 1)ln p + 110 (16- 6- N + 1)In{ 5/(8 x 6N - 3)}], (26) 
with 

o 
TI == 1, I = 1'062, p = 1·396. (27) 

K=l 
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To determine the total number of modes we use the relations (9) with equations 
(16)-(23). We find that for either Rl/2 ~ Q ~ R 9/14 or R 15/22 ~ Q ~ R 3/4 there is 
one mode; for either R 9 /14 ~ Q ~ R 57/86 or R87/130 ~ Q ~ R 15/22 there are two 
modes. In general, if we ignore the logarithmic terms, a total of I modes exist when 
either: 

(28a) 
where 

(28b, c) 

or 
(29a) 

where 

(29b, c) 

for a given R. We note that I increases with increasing Q in the range 

RI/2 ~ Q ~ R2/3 (30) 

and decreases with increasing Q in the range 

(31) 

and that I -+ 00 as Q -+ R2/3, and the lower and upper parts of the inequalities merge. 
It can also be shown easily that, for a given Q, I is determined uniquely from the 
inequalities (28a) and (29a). If we include the logarithmic term, it can be shown 
easily, using the relations (9) and equations (22) and (23), that the solution in the 
range (3 I) is also valid in the range 

(32) 

(c) Case R 3/4 ln R ~ Q ~ (RlnR)4/5 

The boundary layer solution (described above) in the range (32) is based essentially 
on the condition that 

(33) 

It is seen readily from equations (22) and (25) that the value of 0::1 which maximizes 
Fis indeed 

(34) 

Now as Q further increases beyond the range (32) we have a new condition that 

(35) 

Consequently F is now maximized by the largest possible value of 0::1 • These 
results indicate that there exists a new boundary layer solution for the case in which 
01 = 0(0::11), and it turns out to be a single-mode solution only. The interior and 
the inner layer of this new boundary layer structure are the same as those discussed 
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for· the range (32). In the thermal layer of the ()(1 mode (there does not exist an inter
mediate layer for the maximizing solution here) we define (1 = Z/(j1 as the variable 
in this layer. We find from the equations (7), after applying matching conditions 
(matching the solutions to the corresponding solutions in the inner layer), that the 
equations (16) hold (n = 1), where 

and that 81 (where 81 = Bl ( 1) must be found as the solution of 

d28dd(i -(I+(D81 = -(1' 

for which 
and 

Specifically, we have 

2Bt 81 = (1 f: (1 + t)-t exp( -t(i t) dt. 

(36) 

(37) 

(38) 

(39) 

To determine Fwe evaluate the expressions [I V8 12] and [(1 _(W8)2] in equation 
(4) and find that 

(40a, b) 

where 
(41) 

The present analysis assumes that 

(42) 

Using the results (35), (36), (40a) and (42) we find that the boundary layer structure 
is valid provided 

(43) 

(d) Case (RlnR)4/5 ~ Q ~ R 

For Q larger than 0(RlnR)4/5, the condition (42) is no longer valid, and we 
must then have a new condition in which 

(44) 

The analysis for the condition (44) (though omitted from the present paper) shows 
that the boundary layer structure has a single mode only and that the value of ()(1 

which maximizes F is O(Qt). 
The ()(1 mode has three regions: the interior, the thermal layer and a thinner layer 

of thickness ()(11. In the interior, z is 0(1), and the equations (7) give the following 
solution as z ~ 0: 

(45a, b) 

(45c) 
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In the thermal layer we define '1 = z611 as the variable, and find from the equations 
(7), after using the condition (44), that 

(46) 
where 

(47) 

The solutions for W 1 and 01 satisfy the required boundary conditions at '1 = O. A 
thinner layer is then needed to adjust the solution to satisfy the correct boundary 
condition on H 1• This is a layer of thickness IX11, with 111 = ZIX1 as its variable. We 
then find from the equations (7) that 

(48) 

To determine F we evaluate the expressions [I VO 12] and [(1 -(wO) )2] in equation 
(4) and find that 

61 = tnQ{Rln(R/Q)} -1, F = (2/n 2)Q-l Rln(R/Q). (49a, b) 

Using the condition (44) for the maximizing wavenumber IXl and equation (49a) for 61, 

we find the range of the validity of the analysis to be 

(RlnR)4/5 ~ Q ~ R. (50) 

As for the calculations of Hunter and Riahi (1975), it is found that the maximizing 
IXl is of the form 

IXl = 2.29 Q*. (51) 

4. Discussion 

The above boundary layer analysis shows that it is appropriate to divide the 
parameter space into three different regions. For a weak magnetic field (Q ~ Rt) 
we find F ex RI;-, and the solution has a single mode only. The stabilizing effect of 
the field is so small that the maximizing flow behaves as if there is no field. According 
to Malkus's (1954) principle, the convective flow organizes itself in such a way as 
to transport the maximum amount of heat. In the thermal convection zone at large 
Rayleigh and Prandtl numbers (Chan 1970; Paper I), it was found that the maximum 
amount of heat is transported (that is, F ex Rt) by the flow which has a single mode 
for free boundaries or infinitely many modes for rigid boundaries. Since the present 
study considers free boundaries which have no stabilizing effect on the convective 
motion, the flow structure contains a single mode only (for a weak field) as is expected. 
From the results of Section 3a and also the transformations (2), we arrive at the 
following conclusions regarding the magnitudes Wm Tn and Hn of the vertical depen
dence of the vertical velocity, the temperature fluctuation and the vertical component 
of the magnetic fluctuation respectively within each region of the IXn mode: (i) W1 

and Hl increase with R; (ii) Tl decreases with increasing R in all regions except the 
thermal layer, where T1 = 0(1); (iii) Hl decreases with increasing 'r; (iv) for 
1 ~ Q ~ R'i:, W1 decreases with increasing Q in the interior and the intermediate 
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layer only; (v) for 1 ~ Q ~ Rt, Ti increases with Q in the interior and the inter
mediate layer only; (vi) for 1 ~ Q ~ Rt, Hi is zero in the interior and decreases 
with increasing Q in the intermediate and thermal layers. 

For a moderately strong magnetic field (Rt ~ Q ~ Rt) there are a finite number 
of modes, although the number of modes increases with Q in this range. The flux 
F is a decreasing function of Q and increases with R. Note that the total number 
of modes N is determined essentially from the condition IXN ~ Qt, where N is the 
maximum positive integer that satisfies this inequality. It can be shown that this 
condition is equivalent to the condition that F ~ Rt (the relations (28a) can be 
derived from either of these conditions), where F is the heat transport for the flow 
structure having N modes. This implies that the convective flow tends to counteract 
and oppose the stabilizing effect of the field by transporting the maximum amount 
of heat (which is as close as possible to Rt) and retaining the smallest scale of motion 
(which is as close as possible to the length scale proportional to Q-t in the non
magnetic case). Thus the convective flow fixes Nonce this goal is reached. Although 
the expression for F (equation 24) shows that the heat transport is a decreasing 
function of Q, the flow structure has a sufficient number of modes for the heat trans
port to approach its nonmagnetic value Rt as close as possible. Chan (1974) obtained 
similar results from his investigation of turbulent convection under a rotational 
constraint for a moderately large Taylor number. He concluded that the flow arranges 
itself so as to tend to offset the stabilizing effect of the rotational constraint, at least 
in so far as the heat transport is concerned. Following Veronis (1959) we may also 
conclude from the present study that, for a high Prandtl number flow, the effect 
of a moderately strong or strong magnetic field is always to suppress the convective 
motion so that the heat transport is always less than in the nonmagnetic case. From 
equation (22) we can see that the wavenumbers IXn decrease with increasing Q, although 
the number of the small scales of motion associated with these wavenumbers in
creases with Q. Increasing the thickness of the thermal layer of each IXn mode is also 
a consequence of the stabilizing effect of the field. From the equations (2) and the 
results of Section 3b we can make the following conclusions for the magnitudes Wn, 

Tn and Hn which are valid for Rt ~ Q ~ (R In R)4/5 : (i) Wn and Hn increase with 
R and decrease with increasing Q; (ii) Hn decreases with increasing '"C; (iii) Tn 
increases with R and decreases with increasing Q in all but the thermal layer, where 
Tn = 0(1) (within logarithmic terms). 

For Q = O(R~) the flow has almost infinitely many modes and we have F oc Rt. 
This is expected because the stabilizing effect of the magnetic field is sufficiently 
strong that the flow retains infinitely many modes so that F can reach its nonmagnetic 
value. 

For a strong magnetic field (Rt ~ Q ~ R) there are three subranges, for which 
separate discussions are needed: 

In the subrange R2/3 ~ Q ~ R 3/41n R there are a finite number of modes, although 
the number of modes decreases as Q increases in this range. The total number of 
modes for this case is determined essentially by the condition F ~ IXN' where N is 
the maximum positive integer that satisfies this inequality. Since the stabilizing effect 
of the field thickens the thermal layer, F decreases with increasing Q. Therefore N 
decreases according to the above condition (F ~ IXN). The rest of the discussion for 
the case of a moderately strong field is also applicable to this subrange. 
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In the subrange R3 /41n R ~ Q ~ (R In R)4/S, the magnetic field is so 'Strong that 
the flow is left with only one mode Cll. The intermediate layer is now merged with 
the thermal layer, and F = O(Cl l ). 

In the subrange (RlnRt/5 ~ Q ~ R, the thermal layer is thicker than the inter
mediate layer, and F ~ Cl l • The flow structure contains a single Cl l mode only, and 
Cl l = O(Q-!-). The length scale for the (Xl mode is now a decreasing function of Q. 
The magnitudes Wl , Tl and Hl now have the following properties: (i) Wl , Tl and 
Hl increase with R; (ii) Hl decreases with increasing 'r or Q; (iii) Tl decreases 
with increasing Q; (iv) W l decreases with increasing Q in the interior. However, 
W l increases with Q in the thermal layer. Since the subrange under discussion is 
that immediately prior to the stability region (Q ~ R), and it is found that the con
vective motion is amplified by the magnetic field in the thermal layer for this subrange, 
then the reason for a qualitative agreement with the finding of Busse (1975) is apparent. 
Busse (1975) investigated the effect of a weak vertical magnetic field on two-dimensional 
steady convection of small finite amplitude. He found, for example, that the influence 
of the magnetic field decreases with increasing amplitude of convection, so that finite 
amplitude onset of steady convection becomes possible at R values considerably less 
than those predicted by linear theory. 

It is seen from equation (49b) that, as Q --+ R, F approaches order unity, which is 
consistent with the linear theory (Chandrasekhar 1961). However, we must note 
that the present study is supposed to be valid asymptotically for strong convective 
flow (large R and F). Therefore, for slow convective motion, we should not expect 
to obtain quantitative agreement with what actually happens. 

Van der Borght et al. (1972) considered the effect of a vertical magnetic field on 
convection using the mean field approximation. They assumed the flow to be laminar 
and to have a single mode only, with a current-free adjoining medium. They investi
gated two special cases: Case I, Q = 0(1) and (Xl = 0(1); Case II, Q = OCR). 
For Case I, they found Fcc Rt, just as in the nonmagnetic case, although the pro
portionality constant decreases monotonically as Q increases. Case II was found to 
be a marginal instability case. Their general result that steady convection seems to 
persist in the face of magnetic inhibition is in agreement with the present study. 
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