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Abstract 

Nonlinear double-diffusive convection is studied using the modal equations of cellular convection. 
The boundary layer method is used by assuming a large Rayleigh number R for a fluid of low 
Prandtl number (J, and different ranges of the diffusivity ratio 7: and. the solute Rayleigh number 
Rs. The heat and solute fluxes are found to increase with R(J and decrease with Rs. The effect of 
the solute is stabilizing, although the convection in a fluid with large (J is less affected by the solute 
concentration. The flow is shown to have a solute layer which thickens as (J, R, .-1 or R;l 
decreases. It is proved that it is only for this layer that the solute affects the boundary layer 
structure. 

1. Introduction 

Considerable progress has been made over the past 10 years in studying the convec
tive motion of fluids in which there are gradients of two properties. The motion 
depends strongly for its driving mechanism on the different diffusive properties 
associated with the stabilizing and destabilizing forces. Double-diffusive convection 
is important in many areas of geophysics, astrophysics and engineering, and has 
been observed in nature. An example in astrophysics is the helium-rich core of some 
stars, in which the fluid is heated from below and is transported upwards by 
double-diffusive convection. (For a more detailed discussion of double-diffusive 
phenomena and their applications, see Turner (1973, 1974).) 

The present paper studies nonlinear double-diffusive convection at small Prandtl 
number under the so-called modal equations of the equations for momentum, heat 
and solute. Briefly, these equations are constructed by expanding the fluctuating 
quantities in a complete set of functions of the horizontal coordinates and then 
truncating the expansion. The single-mode equations are derived simply by retaining 
only the first term in the expansion. A more detailed discussion of these equations 
and their derivations is given by Gough et al. (1975); earlier the same system 
of equations was derived differently by Roberts (1966) using a procedure proposed 
by Glansdorff and Prigogine (1964). Numerical computations of the single-mode 
equations for thermal convection have recently been made by Toomre et al. (1977), 
and they obtained good agreement with the asymptotic results of Gough et al. 
(1975). 

Recently, Riahi (1978) studied nonlinear double-diffusive convection under the 
so-called mean field equations of the equations for momentum, heat and solute. 
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These equations are derived by ignoring the interaction between the fluctuating 
quantities but retaining the interaction between the mean and the fluctuating 
quantities. The single-mode mean field equations are identical with the modal 
equations (equations (7) below) when the parameter C is set to zero. Since the 
equation of motion in the mean field approximation (C = 0) becomes identical with 
the equation of motion in the limit of infinite Prandtl number (J, it must be expected 
that the mean field theory provides a most realistic description in the case of large (J. 

The heat transport predicted by the mean field equations (Riahi 1978) does not depend 
on (J. This deficiency renders the mean field equations unsuitable for use in, for 
example, stellar convection theory. The modal equations for C # 0 include some 
representation of the missing nonlinear interactions of fluctuating quantities in the 
mean field equations, and have the advantage that they restore the Prandtl number 
as a parameter of the problem. In their studies of cellular convection, Gough et al. 
(1975) compared their solutions based on the modal equations with the known 
solutions of the full equations for moderate Rayleigh numbers (Malkus and 
Veronis 1958; SchlUter et al. 1965). They found that accuracy is restricted to 
planforms for which C # 0, and otherwise to (J ~ 1. Therefore, the modal 
equations (for C # 0) are particularly suitable for the study of cellular convection in 
a low Prandtl number fluid. 

On the basis of the postulate first proposed by Malkus (1954) we assume that the 
maximized heat transport F is that which is realized in the diffusive regime (defined 
as the regime in which the energy driving the flow comes from the component having 
the larger diffusivity). For the salt finger regime (the opposite case), the relevant 
postulate is that the flow fields tend to maximize the solute transport Fs. The 
success of previous studies of thermal convection based on Malkus's postulate 
encourages us to modify this postulate for our problem. A discussion of this postulate 
has been given by Lindberg (1971) and Straus (1972). In the latter paper it is found, 
for "eXample, that in the salt finger case the mode which maximizes Fs lies within the 
waveband of the stable modes; this suggests a closed relation between the stability 
of a particular flow and its ability to transport salt across the layer. 

The treatment in the present paper is for the steady case. Numerical studies by 
Veronis (1965, 1968) and Straus (1972) of the diffusive and salt finger regimes 
indicate that a steady state can be reached by a convective flow of finite amplutude. 
Of course, sufficiently strong convective flows are time dependent, but the present 
study aims at exploring the properties of nonlinear double-diffusive convection in the 
simpler case of a steady state, which may be considered as an approximation in some 
sense. The importance of double-diffusive convection to stellar situations, where the 
Prandtl number is small and the nonlinearities are strong, has motivated the present 
study. 

2. Mathematical Formulation 

We consider an infinite horizontal layer of fluid of depth d bounded above and 
below by two free perfectly conducting planes, maintained at temperatures To and 
To + I1T (with I1T > 0) and at solute concentrations So and So + I1S (with I1S > 0) 
respectively. It is convenient to use nondimensional variables in which lengths, 
velocities, time, temperature, solute and pressure are scaled respectively by: d, Kt/d, 
d2/Kt, I1T, I1S and pvKt/d2. Here Kt is the thermometric conductivity, p is the mean 
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density and v is the kinematic viscosity. Then, with the usual Boussinesq approxi
mation that density variations are taken into account only in the buoyancy term, 
the basic equations are 

(J-l(Oujot+U.'7U) = -'7P+(RT-RsS*)K+'72u, 

oT*jot +U. '7T* = '72 T*, 

oC*jot+u.'7C* = "C'72 C*, '7.u=o. 

(Ia) 

(lb) 

(Ic, d) 

Here u = (u, v, w) is the velocity vector, T* is the temperature excess over To, 
C * is the solute excess over So, T is the deviation of T* from its horizontal average, 
S * is the deviation of C * from its horizontal average and P is the deviation of the 
pressure from its hydrostatic value. Also, K is a unit vector in the vertical direction, 
(J = vjKt is the Prandtl number, R = exgd3 AT jKt v is the Rayleigh ~umber, 
Rs = f3gd 3 AS j Kt v is the so-called solute Rayleigh number and "C = Ksj Kt is the 
ratio of the diffusivity coefficients Ks and Kt of solute and heat respectively, with ex 
the coefficient of thermal expansion, f3 the fractional change in density due to a 
change in the solute concentration, and g the acceleration due to gravity. 

We consider only the case of steady solutions. For this case, two relations for 
the horizontal mean temperature and solute can be obtained by averaging equations 
(Ib) and (Ic), and integrating with respect to z: 

d<T*)jdz = < WT) -1 - [WT], "Cd<C*)jdz = <WS*) -"C - [WS*]. (2a, b) 

Here, and subsequently, angle brackets denote horizontal averages and open 
brackets denote a further vertical averaging over the whole layer. 

When the horizontal averages of equations (Ia)-(Ic) are subtracted from the 
steady forms of the original equations (la)-(Ic), the results are 

(J-1(U.'7u-<U.'7U») = -'7P+(RT-RsS*)K+'72u, (3a) 

'72T- w«wT) -I-[wT]) = u.'7T-<u.'7T), (3b) 

"C'72S* -"Cw « wS*) -"C - [wS*]) = u. '7S* -'<u. '7S*) , (3c) 

where equations (2a) and (2b) are used in deriving (3b) and (3c). In studying the system 
(3) we consider the case where the conductivities of the boundaries are far greater 
than that of the fluid, and we apply the so-called free boundary conditions to the 
velocity field. Thus we have 

w = oujoz = ovjoz = T = S* = 0 at z = 0 and 1. (4) 

The modal equations are derived from the system (3) by expanding the fluctuating 
variables in the planform functions InCx,y): 

( ) " ( - 2 oln aWn u, v, w = L.. a --
n n ex ez ' (5a) 

(T, S*) = 2:in(x,y)(enCz), S;(z») , (5b) 
n 
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where the planforms/nCx,y) satisfy 

vt InCx,y) = -a~ln(x,y) (6) 

for some horizontal wavenumber an" Functions In with different wavenumbers are 
naturally orthogonal, and here are chosen to be orthonormal. A similar expansion 
for P is not needed, since P can be eliminated by taking the double curl of 
equation (3a). 

In the present study we truncate the expansions (5a) and (5b) by retaining only 
the first term. Accordingly, we set all the Wm Tn and S: to zero except for the triple 
WI' T1, and S~, say. The indices for these variables are then no longer needed, and 
we may enter the expansions into equations (3) and, by multiplying by II and taking 
horizontal averages, project out the desired equations for W, T and S *. The reductions 
are straightforward and are not given here. Thus, we are led to the following 
governing equations: 

(D2 - a2)2 W = a2(RT - Rs S *) 

+Cu- I {2DW(D2 -a2)W + W(D 2 -a2)DW}, (7a) 

(D2 -a2)T = (WT-F-I)W +C(2WDT +TDW), (7b) 

T2(D2 -a2)S* = (WS*-Fs-T)W +TC(2WDS*+S* DW). (7c) 

Here a is the horizontal wavenumber (its index is dropped for simplicity of notation); 
D == d/dz; F = [WT] and Fs = [WS *] are the heat and solute fluxes respectively; 
C = GJi(x,y) is the parameter derived from the planform function II(x,y). The 
constant C vanishes for rolls and rectangles, and takes the value of 6- t for the 
hexagonal planform. We assume C i= 0, and consider a value such as 6- t as being a 
representative value of C. For C = 0, the equation system (7) reduces to the so-called 
mean field equations for thermo-solutal convection, which have been solved recently 
(Riahi 1978). 

We now rescale the dependent variables such that 

S = (FR)t F s- 1 S*. (8a, b,c) 

The governing differential equations then become 

(D2 _a2)2w = a2«()-KS) +C(FR}iu - 1 {2Dw(D2 -a2)w +W(D2 -a2)Dw} , (9a) 

(D2 -a2)()/FR +(I-w()+F-1)w = C(FR)-t(2wD() +()Dw), (9b) 

T2(D2 -a2)S/FR +(I-wS+TFs-:-l)W = TC(FR)-t(2wDS +SDw), (9c) 

where 
K = FsRslFR. (10) 

We use the following constraints to determine F and Fs: 

l-R- 1 [IV()1 2 ] 

F = [(1-w())2] , 
T - I F = _1 _-_( T_F_s/_F_R_) [_I;;-V_S_I_2] 

s [(1-wS)2]' 
(lla, b) 
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which are derived by multiplying equations (9b) and (9c) by e and S respectively 
and taking the vertical average over the layer. 

The boundary conditions (4) when combined with equation (1d), after using the 
equations (5) and (8), yield 

at z = 0 and 1. (12) 

The equations (9) must then be solved subject to equations (11) and (12). In the 
following section we obtain the solutions by using the boundary layer method, 
treating R as a large parameter. 

3. Solutions by Boundary Layer Method 

(a) Case 'l' ~ 1 

The wavenumber a is supposed to be large (which can be justified a posteriori), 
so that the convection cells are narrow. The solutions can be obtained by matching 
asymptotic approximations in the interior and three distinct regIons near each 
boundary. In the interior of the layer, z is of order one. It is assumed that 

F'$> 1, a ~ {(I-K)FRujC}*, (13a, b, c) 

a(FR)-1/6{(I-K)ujC}1/3 ~ 1, C=O(1). (13d, e) 

The governing equations (9a)-(9c) yield, after using these assumptions, the following 
equations 

we = wS = 1. (I4a, b) 

It is seen from the equations (14) that the inertial, bouyancy and convection terms 
are important in the interior. The equations (14) are satisfied by 

(15a) 

(I5b) 

where the constant of integration is chosen so that w satisfies its boundary condition 
at z = O. Near each surface and adjacent to the interior are intermediate layers of 
thickness O(a- 1), in which vertical derivatives are important in the inertial term. 
Defining appropriate boundary layer coordinates (t = a(l-z) and (b = az for 
the upper (top) and lower (bottom) of these layers respectively, the equations (9) 
and matching conditions (matching the solutions to the corresponding solutions in 
the interior) yield the following equations in the upper intermediate layer 

we = wS = 1. (16a, b) 
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Similarly, the equations (9) yield the following equations in the lower intermediate 
layer 

.1.{ dw(d2 
) (d2 )dW} (KS-e) = aCa- 1 (FR)2 2 d~b d~~ -1 w +w d~~ -1 d~b ' (17a) 

we = wS = 1. (17b) 

The equations (16) and (17) yield the following asymptotic results 

w = (a/2C)I/3(1_K)I/3(FR)-1/6(3~t)2/3 as ~t ~ 0, (18a) 

S = e = (2Cja)I/3 (1- K) -1/3 (FR)I/6 (3~t) - 2/3 as ~t ~ 0; (18b) 

w = (a/Ca)I/3(1-K)I/3(FR)-1/6~b(3In~bl)I/3 as ~b ~ 0, (18c) 

S = e = (Ca/ay/3(1-K)-1/3(FR)I/6~bl(3In~bl)-1/3 as ~b ~ 0. (18d) 

Closer to each surface and adjacent to the intermediate layers are thermal layers, 
in which thermal conduction is significant in the heat equation and e is brought to 
its zero boundary value. We define 15 t and 15b as the thicknesses of the top and bottom 
thermal layers respectively. Also, 1]t = (l-z)/15 t and 1Jb = Z/15b are defined to be the 
corresponding variables in these layers. We then find from the governing equations 
(9), after applying matching conditions (matching the solutions to the corresponding 
solutions in the intermediate layers), that the equations for the lower thermal layer are 

(19a) 

(19b) 

wS = 1. (19c) 

Derivation of the equations (19) requires the following conditions: 

FRA~15~ = 1, (20a, b,c) 

where 

Similarly, the equations for the upper thermal layer are 

(21a) 

(21b) 

wS = 1. (21c) 
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where it is found necessary to have the following conditions: 

FRA~D~ = 1, 

65 

(22a, b, c) 

(22d) 

The solutions to the equations (19) satisfying the boundary conditions (12) for 
wand () are 

(23a, b) 

fl2 = 1 + C- 2 • (23c, d) 

Similarly, we find the following solutions for the upper thermal layer: 

(24a, b) 

(24c) 

There are further layers closer to each boundary, in which solute conduction is 
significant in the solute equation and S is brought to its zero boundary value. Let 
us suppose that these thinner layers are of thickness Bb ~ Db near the lower boundary 
and of thickness BI ~ DI near the upper boundary, and define the corresponding 
appropriate coordinates as (b = Z/Bb and (I = (l-Z)/Bt- The governing equations 
and matching conditions then give the following equations in the lower solute layer: 

(25a, b) 

(25c) 

Derivation of the equations (25) requires the following condition: 

(26) 

where Ab is already defined by equation (20d). Similarly, the equations in the upper 
solute layer are 

(27a, b) 

(27c) 

Derivation of the equations (27) requires 

(28) 

where At is defined by equation (22d). 
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The solutions to the equations (25) satisfying the boundary conditions (12) are 

(29a, b) 

(29c) 

where 
(29d) 

Similarly, the solutions in the upper solute layer are 

(30a, b) 

(30c) 

where 
(30d) 

and ht and hb are constants of order one whose numerical values are not needed 
here. Thus the solutions for velocity and temperature are very similar to the 
corresponding solutions for thermal convection in the first three regions, and are 
essentially unchanged in the solute layer. The solute concentration has substantially 
the same form as the temperature in the interior and a-I layer, is essentially unchanged 
in the temperature layer, and has a similar form to the temperature in the solute 
layer. 

To determine F and Fs we must evaluate the expressions)[ 1 'VB 12 ], [I 'VS 12 ], 

[(1- WB)2] and [(1- WS)2] in the equations (11). Within the boundary layer 
approximation, using the results obtained above and keeping only the leading-order 
terms, we find that 

[I 'VB 12] ,= 3a2(FR)t {(l-K)u/C} -t +c5b"1 Ab"2 11' 

[1'VSI 2 ] = 3a2(FR)t{(1-K)u/c}-t+Bb"lBb' 2J1 , 

where 11 and 12 are the integrals 

and 

(3la) 

(3lb) 

(3lc, d) 

in the lower thermal layer respectively. Similarly J1 and J2 are the integrals 

and 

in the lower solute layer respectively. Use of the equations (31) in (11) and maximiza
tion of the heat flux with respect to the wavenumber a yield the following results 
(see Chan (1971) for more details on the maximization procedure): 
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( 1) 1/5( I )3/20(32)9/40 c5 t = 48 1-y Y {RuC- 1(1-K)}-3 /8(lnRu)-1/40 , (32b) 

(32c) 

8 = c5 7:1/2 b b , (32d, e) 

( 1 )9/8 ( )3/16 F = ~y ;2 {RuC- 1(1-KW /16 (lnRu)3 /16 , (32f) 

F7: 1/2 

Fs = 1 +Y(7:3/2'-:"1)' 
R 7: 1/2 K _ s 

- R{1 +Y(7: 3/2 _1)} . 
(32g,h) 

Here y is a root of the equation 

(32i) 

and it is found that 

(32j) 

Various assumptions, including the conditions (13), (20) and (22), lead us to the 
following conditions for the validity of the solutions: 

l-K ~ (lnRu)-l, (33a,b) 

(33c, d) 

It turns out that the equations (32) with the conditions (33) are valid for all possible 
ranges of 7:. The equations (10), (32f)-(32i) and the conditions (33a)-(33c) could 
be further simplified using the condition 7: ~ 1. If we simplify equation (32i) using 
7: ~ 1, it becomes a quadratic equation for y with two real and positive roots. To 
maximize F we use the root which gives the relative maximum of F. It is easily 
seen that y = t for K ~ 1. For K:::::: 1 and as K - 1 in this range, F and Fs decrease 
rapidly. Thus, for sufficiently small 11-K I, nonlinear maximizing convection is 
inhibited entirely by the solute concentration. 

(b) Case 1: = 0(1) 

It is found that, for the case 1: = 0(1), the solute layer merges with the thermal 
layer. The relations (14)-(19b), (20)-(21 b), (22)-(23a), (23c)-(24a), (24c) and 
(31)-(33) are valid here. However, the equation for the solute concentration in the 
temperature layer takes the form 

(34a) 
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(34b) 

in the lower and upper layers respectively. The solutions to the equations (34) 
satisfying the boundary conditions (12) are 

(3Sa) 

(3Sb) 

in the lower and upper layers respectively. In particular, for T = 1 we find from 
equation (32i) that y = t as expected, since the problem can be reparameterized 
to be equivalent to a singly diffusive case in which y = t. For T > 1, we have 
G ~ 0 for y = t and G < 0 for y = 1 (since K < 1). Hence there is always one 
positive root between these two values of y. Similarly, for T < 1, there is always 
one positive root for y in the interval (0, t). When there is more than one valid 
positive root we choose that which gives the relative maximum of F. 

(c) Case T ~ 1 

For T ~ 1 we have GI ~ 151 and Gb ~ Db. The relations (14)-{18), (32) and (33) 
are valid here. However, we have the following equations for the solute layer after 
using the equations (9) and the matching conditions: in the lower layer, equations 
(2Sa), (2Sc) and we = 1; in the upper layer, equations (27a), (27c) and we = 1. 
The solutions to these equations are found to be: in the lower layer, 

(36a, b) 

(36c) 

where 

in the upper layer, 

(36e,f) 

(36g) 

where 
(36h) 

We obtain similar equations for the thermal layer: in the lower layer, equations 
(19a), (19b) and d2S/d'~ = 0; in the upper layer, equations (2la), (2Ib) and 
d2S/d'~ = O. The solutions to these equations are found to be: in the lower layer, 

(37a, b) 
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(37c) 

where 
(37d) 

in the upper layer, 

(37e, [) 

(37g) 

where 
(37h) 

The boundary layer structure is now valid if 

T ~ {Ra(I-K)}1/16(lnRaf/16. (38) 

Otherwise, the solute layer merges with the intermediate layer, and the boundary 
layer structure breaks down. The relations (10), (32[)-(32i) and (33a)-(33c) could 
be further simplified using the condition T ~ 1. If we simplify equation (32i) using 
T ~ 1, it yields the following solution 

(39) 

which is easily seen to be in the range -t ~ y < 1. 

4. Discussion 

The boundary layer analysis given in the previous section has shown that, 
for given R, Rs and a, the heat and solute fluxes are continuous functions of T. For 
T ~ 1 or T ~ 1, the solute and temperature have different boundary layers. It is 
found from the equations (32) that the relation F ~ b';- 1 holds for the strongly 
convective case (K ~ 1), as in thermal convection problems at high R. However, 
for K ~ 1 the relation between F and bb also depends on K. Detailed calculations 
of F and Fs indicate that bb has essentially the unique role of fixing and determining 
F. By analogy, eb should have the role of fixing and determining Fs in the salt finger 
regime. It is noted from the equations (32) that b t and bb depend on Ra and K, and 
that T and Rs are not free parameters. However, et and eb depend strongly on T as 
well as on Ra and K. If T ~ 1, b t ~ et, bb ~ eb and either T ~ 1 or T ~ 1, the solute 
concentration has a layer distinct from that of the temperature. This is expected 
since et and eb appear whenever the solute conduction term in the solute equation 
becomes important. For example, when T ~ 1, as we approach the boundary z = 0 
from the interior, the solute and thermal conduction terms become important 
successively. The former is OCT), and hence we have eb ~ bb' 

It is clear that the solutions are possible for K < 1. For K ~ 1, the stabilizing 
effect of solute is unimportant. As K --+ 1, however, a, F and Fs decrease rapidly 
and the maximizing convection is suppressed entirely by the solute concentration. 
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Care must also be exercised here since, for the nonlinear regime, our problem is 
valid only asymptotically away from its stability regime. 

The present study is restricted to the case of a single horizontal wavenumber. It 
is known (Busse 1969; Chan 1971, 1974; Riahi 1977, 1978) that multi-wave solutions 
are often possible, and these allow greater heat and solute fluxes than single-wave 
solutions. Riahi (1978) studied nonlinear thermosolutal convection under the 
mean field approximation and through the multi-boundary-layer theory of Busse 
(1969). He showed, in particular, that the solute concentration affects the boundary 
layer structure only in the last mode (the mode having the smallest horizontal length 
scale) for the range r ~ 1 or r ~ l. This result supports his conjecture that the 
layering problem of double-diffusive convection (Turner 1974) is a higher-mode 
phenomenon. The multi-modal analysis of the nonlinear thermal convection for 
C f= 0 poses serious analytical difficulties and has not yet been solved. 

An important result of our present analysis is that the fluxes F and Fs increase 
with u(1 - K). Thus the convection in a fluid with larger u is less affected by the 
stabilizing effects of solute than one with smaller u. Our basic model can be 
transformed easily to the case, in which temperature and solute are higher at the top, 
by interchanging the role of temperature and solute. The results are then applicable 
after replacing F, F., R, R., r, (j and B by F., F, Rs/r, Rlr, l/r, Band (j respectively. 

To what extent does the boundary layer structure considered here resemble 
that actually existing in a laboratory or a natural situation? A detailed correspon
dence is not to be expected, since the present model is highly idealized, e.g. it assumes 
a horizontally infinite layer of fluid and statistical homogeneity in the horizontal 
planes. The present boundary layer structure, similar to that originally discussed by 
Howard (1963) in his study of heat transport by turbulent convection, is independent 
of the horizontal variations and is based essentially on the following discussion. It 
can be seen from the normalization relations (8) that [we] = [wS] = 1. To maximize 
F we find from the constraints (11) that we need to have we and wS, which are zero 
at the boundaries, grow rapidly to the value l. The region in which we differs 
appreciably from 1 is called the thermal boundary layer, though this is not necessarily 
the boundary layer for wand e individually, but only in their product (Howard 
1963). Similarly, the region in which wS differs appreciably from 1 is called the 
solute boundary layer, though this also is not necessarily the boundary layer in w 
and S separately, but only in their product. 

The dynamic balances derived for the boundary layers, however, provide the ele
ments for the understanding of the convective motion and the transport processes. 
Furthermore, the role of the Prandtl number u and other parameters of the problem 
can be illuminated by the boundary layer analysis which is of considerable interest. 
The essential validity of the boundary layer structure developed by Gough et al. 
(1975) for the simpler problem of singly diffusive convection, which is also based on 
the modal equations, has been tested and confirmed by the numerical studies of 
Toomre et al. (1977). The latter considered mostly hexagonal planforms, and their 
results are in agreement with the results of the boundary layer method. 
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