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Abstract 

Elastic scattering of electrons in the energy range 0-25 eV by mercury atoms is investigated by 
applying a perturbation method to the (nonrelativistic) Schrodinger equation. Relativistic correction 
to the potential is treated using two models: a Pauli approximation and a second-order Dirac 
potential. The nonrelativistic Hartree-Fock wavefunction is used to describe the target in the 
zeroth order approximation. Electron exchange is found to be important in the collision. The 
relativistic correction due to mass variation makes a significant contribution, in particular to p-wave 
scattering which is dominated by a low energy shape resonance. Phase shifts for s-, p-, d- and f-wave 
scattering are presented. An analytic expression for the momentum transfer cross section for 
relativistic scattering is obtained. The total cross section, momentum transfer cross section, differential 
cross section and spin polarization are calculated and compared with experiment. 

Introduction 

Relativistic effects in the structures of heavy atoms can be studied by using two 
different theoretical approaches: 

(i) By taking explicit account of relativistic corrections in the calculation of 
wavefunctions by the use of the Dirac equation (Swirles 1935; Grant 1961). The 
calculations can become quite complicated and have been done only for fairly simple 
systems (Coulthard 1967; Kim 1967; Desclaux et al. 1971). 

(ii) By applying perturbation theory to the low-Z Pauli Hamiltonian to calculate 
relativistic corrections using basis set wavefunctions which give a good solution of 
the nonrelativistic problem. In this method the relativistic terms of the Hamiltonian 
are considered to be small in comparison with the leading nonrelativistic operators 
(Bethe and Salpeter 1957). The method is much easier to use than (i) above and 
extensive calculations have been made on the structures of ions and atoms (e.g. 
Blume and Watson 1962, 1963, 1964; Herman and Skillman 1963; Mal1i 1967; 
Beck 1969; Jones 1970). 

The collisions between electrons and heavy atoms can also be treated using these 
two different methods. Earlier calculations based on the Dirac equation have used 
a strongly screened Coulomb field with electron exchange neglected (Bunyan 1963; 
Holzwarth and Meister 1964; Biihring 1968; Weiss 1969). Carse and Walker (1973) 
have used the Dirac equation to formulate a theory of electron-atom scattering, 
and Walker (1969, 1970a, 1970b, 1971, 1975) has made calculations for several 
atoms with nuclear charge Z in the range 2 < Z < 100. The work of Walker gives 
considerable insight into the nature of relativistic effects in scattering problems. 
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However, since the Dirac equation is used, the various relativistic effects cannot 
be separated and their relative contributions are difficult to assess. 

The method (ii) above has been used by Norcross (1973) to study the photo
ionization of caesium, and by Burke and Mitchell (1974) to treat the electron-caesium 
collision. However, the relativistic correction due to spin-orbit interaction only 
was taken into account in these calculations. Browne and Bauer (1966) have also 
used a perturbation method with the second-order Dirac potential, which takes 
higher order relativistic effects into account, but they did not consider exchange in 
the calculation. A formulation of the scattering problem based on the Breit-Pauli 
approximation, with higher order relativistic corrections taken into account, has 
been developed by Jones (1975) using the variational principle. 

Another theoretical approach is phase shift analysis, which has been extended 
by Hutt and Bransden (1974) and Hutt (1975) to treat the elastic scattering of electrons 
by mercury atoms at low energies. The method has been used with success to analyse 
the electron-helium system for which there is an adequate experimental data set 
(Bransden 1976). However, it has been more difficult to apply it to the electron-mercury 
system because of insufficient data until recently. Moreover, for this system there 
are, for every partial wave I > 0, two phase shifts corresponding to spin up and 
spin down. 

In this work we consider the elastic scattering of low energy electrons by a closed 
shell heavy atom. The electron-mercury system has been chosen to test the theoretical 
approach here since, in addition to relativistic calculations by Walker (1969, 1970a, 
1970b, 1975, personal communication), there is a wealth of recent experimental data 
for comparison. Data on the total cross section are available from a beam 
experiment (Jost and Ohnemus 1979), the momentum transfer cross section from 
a swarm experiment (Elford 1980; present issue, pp. 251-9) and the differential 
cross section and spin polarization from double scattering experiments (Deichsel 
et at. 1966; Eitel et al. 1968; Eitel and Kessler 1970; Duweka et at. 1976). A survey 
of earlier experiments and calculations has been given by Kessler (1969). 

We choose a perturbation technique to investigate relativistic effects using two 
methods based on (1) the Pauli approximation and (2) the second-order Dirac 
potential. The importance of exchange is examined. The relativistic correction due 
to mass variation is found to make a significant contribution. The results indicate 
that p-wave scattering is dominated at low energy by a shape resonance, in agreement 
with experiment. Spin-orbit interaction splits this structure into two resonance peaks: 
a broad one for the P3/2 and a sharper one for the Pl/2 partial wave phase shifts. 
An analytic expression for the momentum transfer cross section in the relativistic 
case is derived. Finally, we compare theory with experiment for the total cross 
section, momentum transfer cross section, differential cross section and spin 
polarization. 

Theory 

Consider the collision of an electron with an N-electron atom. The total wave
function of the system can be written as 

N+l 
P(I,2, ... ,N+l) = (N+l)-t L (-)N+l-iljJ(I,2, ... ,i-l,i+l, ... ,N+l)FP(i), (1) 

i=1 
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where i denotes the space and spin coordinates of the ith electron, l/J is the target 
function 

(2) 

and FP is the continuum function which describes the motion of the scattered electron. 
Using the j-j coupling representation, we write the orbital ¢ for an electron with 
quantum numbers (n, K, 11) and the continuum function FP as 

where the angular functions are given by 

XK,ir) = I C~,':ns~ Yl,m,(r) a"ms' 

The symbol K gives both the total angular momentum j and the 
momentum I of the electron according to 

j = IKI-t, 

1= K for K > 0, 

K < O. 

(3a, b) 

(4) 

orbital angular 

(5) 

(6a) 

(6b) 

In equation (4) C~I':nS~ is the Clebsch-Gordan coefficient, Yl,m,(r) is the normalized 
spherical harmonic and a"ms is the usual two-component spinor. Note that the 
relativistic wavefunction, obtained by solution of the Dirac equation, is an anti
symmetrized combination of one-electron orbitals defined as 

( 
r-1PnK(r)xKir) ) 

¢nKir ) = . 1 ' 
1r - QnK(r)x _ Kir) 

(7) 

where r-1 PnK(r) and r-1 QnK(r) are the large and small radial wavefunctions 
respectively, which satisfy the orthogonality condition 

(8) 

The radial part Rnir) of equation (3a) is equivalent to r- 1 PnK(r) of equation (7), if 
the small component r -1 Qnir) is assumed to be negligible. 

The Hamiltonian of the (N + I)-electron system is written as 

N+l N+1 

H N + 1 = I (--fvf -Zjri) + I Iri- rj l- 1 +hr • (9) 
;=1 i>j=l 

The first two terms on the right-hand side of this equation comprise the nonrelativistic 
Hamiltonian while hr is the relativistic correction to the potential. In the present 
calculation we consider only the ground state of the target. Nonrelativistic HF 
wavefunctions (Froese-Fischer 1972) are used in equation (2) and relativistic corrections 
to the potential of the target electrons are not taken into account in equation (9). 
The term hr describes the relativistic correction to the interaction between the 
scattered electron and the target atom. It is treated as a first-order perturbation to the 
Hamiltonian. Two types of potential are used for h" and we now consider these models, 
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(1) Pauli Approximation 

In this model the relativistic correction to the potential is written as a sum of 
one- and two-particle contributions to the Hamiltonian (Bethe and Salpeter 1957; 
Jones 1975). One-body operators make the largest contribution to the relativistic 
corrections and their contribution relative to that of two-body operators increases 
with the nuclear charge (Beck 1969; Jones 1970). Neglecting two-body operators 
and higher order terms, we write 

hr =J(M) +J(D) +J(so) , (10) 
where 

J(so) = ,(r)/.s, (11) 

with the Sommerfeld fine-structure constant rt = 1/137 ,037. Here J(M) accounts 
for the variation of electron mass with velocity, J(D) is a relativistic correction to 
the potential (which has no classical analogue and is sometimes called the Darwin 
operator) and J(so) describes the spin-orbit effect using a suitable choice for the 
radial function '(r) to give the dominant contribution to the one-particle magnetic 
interaction. 

The equation for the continuum function can be derived by applying the variational 
principle to the integral 

1= J P(H-E)Pdr (12) 

(Jones 1975). Using nonrelativistic single-configuration HF wavefunctions to describe 
the target (Froese-Fischer 1972), we obtain 

( d2 1(1 + 0) 
-2 +k2 ---2- fer) = -2V(r)f(r) +2W(r)f(r) +2VR(r)f(r) , 
dr r 

(13) 

with r- 1J(r) equivalent to F(r) of equation (3b). In equation (13) the static potential 
V(r) is 

VCr) = Zr- 1 - L 2(21'+1) YO(Pn'l',Pn'I'; r), (14) 
n'l' 

where the n'l' summation is over all closed subshells, r- 1 Pn1(r) is equivalent to 
Rm«r) of equation (3a) and 

YiPn'l"Pn'l';r) = r-(H1) t Pn'l.(s)Pn-z{s)sAds 

+rA roo Pn'I'(S)Pn'l'(S) S-(H1) ds. (15) 

The exchange term in equation (13) is given by 

W(r) fer) = - L L 221[' +11 (C~~~)2 YiPn'I" f; r) PnAr) , (16) 
n'l' A + 

where the n'l' summation is again over all closed subshells. Following Hartree (1957), 
the functions Y iP,j; r) satisfy the second-order differential equation 

(17) 
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Note that equations (14)-(16) would not be valid if relativistic wavefunctions were 
used to describe the target. 

The relativistic correction VR to the potential of equation (13) is derived using 
equations (1)-(4) and (10) and (11) with the relation 

1,s,XKIl = -t{Jz-Lz--SzhKIl = -t{j(j+l)-I(l+I)-i-hKIl· (19) 

We write 
VR = V(M) +V(D) +v(so) (20) 

where the mass correction is 

V(M) = --/raZ{kz +2V(r)Y, (21a) 

the Darwin correction is 

(2Ib) 

and the spin-orbit coupling term is 

(21c) 

The Darwin correction (21 b) is non-vanishing for s-wave scattering only, while 
the spin-orbit interaction is zero in this case. The potential (21c) which describes 
the spin-orbit effect has the proper behaviour near the origin (Condon and Shortley 
1964; Norcross 1973). Electron exchange effects in the relativistic corrections are 
neglected here (Jones 1970). These effects can be taken into account by using, instead 
of the static potential V(r) in equations (20) and (21a, c), a potential of the form 

Vx(r) = V(r) + 6{-(3jSn)p(r)}t , (22) 

where p(r) is the charge density. The last term on the right-hand side of equation (22) 
is the free electron exchange potential (Slater 1960; Herman and Skillman 1963). 
For electron-atom scattering, relativistic effects become important near the origin, 
where the potential is dominated by the Coulomb field. Thus the static potential 
V(r) can be used here instead of VxCr), which allows for electron exchange. 

(2) Second-order Dirac Potential 

The Dirac relativistic equation for the continuum function can be written in the 
form 

( dZ (1+y)k2 1(1+1)) . z( Z KV'(r) 
d Z + 2 --Z- GJr) = -2yV(r)GJr) -a V (r) - { Z} 

r r r y+l+a VCr) 

V"(r) 3aZV'Z(r)) 
+ 2{y+I+aZV(r)} - 4{y+l+aZV(r)}Z Gir) = 0, (23) 

if electron exchange is neglected (Mott and Massey 1965; Browne and Bauer 1966). 
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Here y = (1 -V2JC 2)-t, with v the electron velocity and c the velocity of light; 
y is equal to 1 for low energies. Comparing equations (13) and (23), we choose as 
another form of relativistic correction to the potential in (13) 

The first term on the right-hand side of this equation is the mass correction which 
is similar to V(M) of equation (2Ia). The remaining terms describe the spin-orbit 
interaction and other relativistic effects. 

Boundary Conditions near the Origin 

We now consider the behaviour of the radial part of the continuum function near 
the origin for the following cases. 

(i) Without relativistic correction, we have 

as r--+O. (25) 

This is the well-known solution of the nonrelativistic Schrodinger equation near the 
origin. 

(ii) With relativistic correction using the Pauli approximation, we have 

as r--+O, (26a) 

(26b) 

The relation (26b) is only valid for I =I 0. With I = 0, the potential is dominated 
by the relativistic correction which is attractive with an r- 2 singularity near the 
origin. Such a potential is inadmissible (Rose and Newton 1951). 

(iii) With relativistic correction using the second-order Dirac potential, we have 

as r --+ 0, (27a) 

(27b) 

Here, for a given value of I, the indicial function is not the same for spin up and 
spin down. 

Cross Section and Spin Polarization 

In the nonrelativistic problem, the collision is described by the scattering amplitude 

1 00 

f(8) = 2ikl~o (21+1){exp(i2171)-1}Plcos8) (28) 

and the differential cross section is given by 

(29) 
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In the relativistic case there are two scattering amplitudes, 

f(B) = 2!kl~o [(1+1){exp(i2t1t}-1} +1{exp(i2t11-)-1}]PlcosB), (30a) 

g(B) = 2~k I~ [exp(i2t11-) -exp(i2t1t}] Pf(cosB) , (30b) 

where Plcos B) and pf(cos B) are the Legendre and associated Legendre polynomials 
(Mott 1929), and the plus and minus superscripts denote spin-up and spin-down 
cases respectively. The differential cross section is 

where the parameters A and B describe the initial spin state of the incident electron. 
For an unpolarized incident beam, we have 

(32) 

The spin polarization P(B) is written as 

P(B) = i(fg*-f*g)/I(B) , (33) 

while the total scattering and momentum transfer cross sections for elastic scattering 
are defined respectively as 

11M = J I(B) (1 - cos B) dO. (34a, b) 

For the nonrelativistic case, we obtain readily 

(35a, b) 

For the relativistic case, we find using equations (30), (32) and (34) 

4n " (I ). 2 + I· 2 -) I1T = 2,L.. + 1 SIll til + SIll til , 
k I 

(36a) 

_ 4n" (1+1)(1+2) . 2( + _. + ) 
11M - k 2 f 21+3 SIll til tlI+1 

I( I + 1) . 2 _ . _ ) 1 + 1 . 2( + _)) 
+ 2/+1 SIll (til -''11+1 +(21+1)(21+3)SIll til -tll+1 . (36b) 

An outline of the derivation of equation (36b) is given in the Appendix. 

Results 

The results of the present calculations for s-wave scattering are shown in Fig. lao 
It is seen that it is important to allow for electron exchange (curve 2). More than 
90 % of the contribution to exchange was found to be given by the n = 5 and 6 
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The phase shift for spin down is increased since the potential becomes more attractive, 
and vice versa for spin up. The relativistic correction based on the second-order 
Dirac potential (curve 4) includes higher order effects and therefore causes a larger 
splitting between the Pi/2 and P3/2 partial wave phase shifts than that due to the 
correction based on the Pauli approximation (curve 5). 

0·1 0·2 0'5 

x Brode 

... Josl 

6 

X X '>-.66 

Energy (eV) 

6 6 --
20 

Fig. 2. Comparison of theoretical results for the total scattering cross section O'T for 
electrons in mercury with the experimental data of Brode (1929) and Jost and Ohnemus 
(1979): 1,2, present results using the second-order Dirac potential and the Pauli 
approximation respectively; W2 , W3 , Walker (1975, personal communication) 
relativistic exchange and polarization by POM and PPP analyses respectively. 

The calculation for p-wave scattering indicates also the presence of a broad 
shape resonance at low energy. Consequently, the calculated phase shift is very 
sensitive to the potential used. There are two resonance peaks: an extremely broad 
one due to the P3/2 partial wave and a much sharper one due to the Pi/2 partial 
wave, at an energy of '" 0·25 e V with the second-order Dirac potential and at 
'" 0·35 e V with the Pauli approximation. The present phase shifts are larger than the 
exchange results (Wi) of Walker (1969), who solved the Dirac equation explicitly 
(Fig. Ih2)' The discrepancy may be due to the use of the nonrelativistic HF wave
function for the target in the present work, whereas single-configuration relativistic 
orbitals were used by Walker. To obtain the low energy resonance, Walker (1975) 
included polarization using the POM analysis and found the position of the Pl/2 
wave resonance to be at an energy of ",0·2 eV (W2 results in Fig. lh3)' 

The results for d-wave and f-wave scattering are shown in Figs Ie and ld 
respectively. Relativistic effects are small for d wave and negligible for f wave. 
The splitting between the dS/2 and d3/ 2 partial wave phase shifts due to the relativistic 
correction based on the Pauli approximation is smaller than that based on the 
second-order Dirac potential. The results obtained with the Pauli approximation 
are not shown in Fig. Ie. Only the n = 5 and 6 orbitals were used when calculating 
exchange for f-wave scattering. 
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The total cross section aT predicted by theory is compared in Fig. 2 with the 
measurements of Brode (1929) and Jost and Ohnemus (1979). The presence of a 
low energy resonance at ",0·63 eV was first reported by Burrow and Michejda (1975). 
In the recent experiment of Jost and Ohnemus, the position of the resonance was 
observed to be ",0·4 eV. Two sets of total cross sections have been calculated, 
based on the second-order Dirac potential and the Pauli approximation, with partial 
wave phase shifts for I = 0-10. Exchange was neglected in calculating the phase 
shift for partial waves with I > 4, while the exchange s-wave phase shift was used in 
the calculation of the total cross section in the Pauli approximation. (The same 
procedure was adopted in the calculation of the momentum transfer cross section, 
the differential cross section and the spin polarization; Figs 3, 4 and 5 below.) 

Table 1. Contributions of Pli2 and P3/2 partial waves to the total cross section in the energy region of 
the resonance 

The results for the total scattering cross section O'T calculated by the two theoretical methods are 
shown. All cross section values are in units of a~ 

Energy Second-order Dirac potential Pauli approximation 
(eV) O'T(Pl/2) O'T(P3/2) O'T(Pl/2)+O'T(P3/2) O'T(Pl/2) O'T(P3/2) O'T(Pl/2)+O'T(P3/2) 

0·1 101·09 20·88 121·97 25·02 25·61 50·63 
0·15 369·12 52·18 421·30 70·83 65·65 136·48 
0·2 698·99 101·28 800·27 152·06 130·45 282·51 
0·25 683·56 168·33 851·19 260·35 220·03 480·38 
0·3 537·90 248·30 786·20 356·75 324·33 681·08 
0·35 424·69 330·08 754·77 403·02 424·63 827·65 
0·4 349·35 401·20 750·55 401·66 501·94 903·60 
0·5 261·19 481·63 742·82 341·77 559·73 901·50 
0·6 212·91 486·37 699·28 281·08 532·05 813·13 
0·7 182·60 454·66 637·26 236·25 478·25 714·50 
0·8 161·67 413·45 575·12 203·89 425·20 629·09 
0·9 146·18 373·96 520·14 179·87 379·58 559·45 
1·0 134·12 339·21 473·33 161·48 341·80 503·28 
1·5 98·27 227 -45 325·72 109·65 227·72 337 ·37 
2·0 78·81 169·82 248·63 84·18 170·82 255·00 

Fig. 2 also shows the results (W 2) for the total cross section obtained by Walker 
(1975), with polarization taken into account by a POM analysis. In a more recent 
calculation, Walker (personal communication) has used a pseudo-polarization 
potential (PPP) with a cutoff parameter chosen to give a best fit to the resonance 
observed by Elford (1980). The results of these calculations are also included for 
comparison in Fig. 2 (W 3 curve). 

It is of interest to analyse the configuration of the resonance observed experimentally. 
Table 1 lists the contributions of the P1/2 and P3/2 partial waves to the total cross 
section in the energy region of the resonance. It is seen that there is a large con
tribution from both partial waves. The P3/2 resonance is broad and lies at a higher 
energy than the P1/2 resonance (Fig. 1b2), but the spin-up case has a greater weight 
than the spin-down one (see equation 36a). The present calculation indicates that the 
structure observed by Burrow and Michejda (1975) and others seems to be most 
likely a mixture of the P1/2 and P3/2 resonances with the configurations (6s2 6P1/2) 2p 1/2 

and (6s2 6P3/2) 2p 3/2 respectively. 
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Fig. 3 compares the present calculated results for the momentum transfer cross 
section CTM with the experimental data of Nakamura and Lucas (1978) and Elford 
(1980). The results of Rockwood (1973), derived from the experimental data of 
McCutchen (1958), are also included. In the swarm experiment by Elford, a low 
energy resonance was observed at ",0·5 eV. As can be seen from Fig. 3, there is 
agreement between theory and experiment at energies above this resonance position, 
but the calculations are much larger at low energies. 

12 

~ 8 

" '" a 

Energy (eV) 

• Rockwood 
x Nakamura 
... Elford 

Fig. 3. Comparison of theoretical results for the momentum transfer cross section 11M 

for electrons in mercury with the experimental data of Rockwood (1973), Nakamura 
and Lucas (1978) and Elford (1980): 1,2, present results using the second-order Dirac 
potential and the Pauli approximation respectively; W2 , W3 , Walker (1975, personal 
communication) relativistic exchange and polarization by POM and PPP analyses 
respectively. 

The results for the differential cross sections /(8) at energies of 1·4, 2'4, 3'9, 7 
and 25 eV are presented in Fig. 4, where they are compared with the experimental 
data of Duweka et al. (1976) at the three lowest energies, Deichsel et al. (1966) at 
7 eV and Eitel and Kessler (1970) at 25 eV. The mean values of the experimental 
cross sections for scattering to the right and left are normalized at 55° to the present 
calculation based on the second-order Dirac potential. The W 2 calculation by 
Walker (1975) is also included; his results at 3·5 eV are shown in Fig. 4c. 

Finally, Fig. 5 shows the results for the spin polarization P(8) at the same energies 
as in Fig. 4. Again included for comparison are the measurements of Duweka et al. 
(1976), Deichsel et al. (1966) and Eitel and Kessler (1970), together with the W 2 

calculations by Walker (1975). The present calculation based on the second-order 
Dirac potential (curve 1) seems to give better agreement with experiment. In particular, 
the calculation based on the Pauli approximation (curve 2) fails to reproduce the 
qualitative features of the measurement at 25 eV. This may be due to the use of the 
s-wave phase shift with exchange only when calculating the spin polarization based 
on the Pauli approximation. 
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Figs 4a-4c [see caption on facing page] 
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Figs 4a-4e. Comparison of theoretical and experimental results for the differential 
cross section 1(8) for electrons in mercury at the indicated energies. The theoretical 
curves are: 1,2, present results using the second-order Dirac potential and the Pauli 
approximation respectively; W2 , Walker (1975) relativistic exchange and polarization 
by POM analysis (his results at 3·5 eV are shown in (c». The experimental data of 
(a,b,c) Duweka et al. (1976) and (d) Deichsel et al. (1966) are plotted as plus and minus 
signs for scattering to the right and left respectively, the mean values being normalized 
to the present calculation 1 at a scattering angle 8 of 55°. Similarly the experimental 
data of Eitel and Kessler (1970), plotted as crosses in (e), have been normalized to the 
present calculation 1 at 8 = 55°. 
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Figs 5a-5c [see caption on facing page] 
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Figs 5a-5e. Comparison of theoretical and experimental results for the spin polarization 
P({}) for electrons in mercury at the indicated energies. The theoretical curves are: 
1,2, present results using the second-order Dirac potential and the Pauli approximation 
respectively; W 2, Walker (1975) relativistic exchange and polarization by POM 
analysis (his results at 3 -5 eV are shown in (c». The plotted experimental data are from 
(a,b,c) Duweka et aI_ (1976), (d) Deichse1 et al. (1966) and (e) Eitel and Kessler (1970). 
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The scattering of low energy electrons by mercury atoms has been investigated 
using a perturbation method, and relativistic effects have been taken into account 
using two models: a Pauli approximation and a second-order Dirac potential. 
We have seen that the relativistic effect due to mass variation makes a significant 
contribution, in particular for p-wave scattering. The second-order Dirac potential 
allows for higher order relativistic effects and gives a larger correction to the potential. 
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There is agreement between the present theory and experiment for the total cross 
section, momentum transfer cross section, differential cross section and spin polariza
tion at energies above the resonance position. However, the theory predicts a momen
tum transfer cross section that is larger than experiment at lower energies. 

The present calculation indicates features which need further investigation. In 
particular, the use of the nonrelativistic HF wavefunction to describe the target 
should be re-examined since it appears that a relativistic wavefunction is required. 
Also, it may be necessary to allow for the polarization of the target electrons of the 
systems by the free electron as well as for the core polarization of the target (Baylis 
1977). These features will be considered in a future report. 
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Appendix 

From equations (30) we have 

+1(1' +1)sin171 sin17~ COS(171-17n]Plcos8)PI{cos8), (Ala) 

(Alb) 

Then, using the relations 

(21+l)zPi(z) = (l-m+l)P?'+l(z) +(l+ m)P?'-l(Z), (A2a) 

(A2b) 
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(Morse and Feshbach 1953), we obtain 

JlfCG)1 2(I-COSG)dQ 

_ 4n ~ { (1 + 1)2 ( . 2 + 2(1 2)· + +. (+ +) 
- k2"T (2/+1)(21+3) -SIn 1JI + + SIn1J, COS1J1+1SIn1JI -1J1+1) 

+ (21+ 1{(2/+3)( -(1+2)sin21J1- +2(1+ 1)2sin 1J1 COS 1JI-+ 1 sin(1JI- -1J1-+1)) 

2(1+1)3 . +. _ (+ _) 
(21+ 1)(21+3) SIn1J, SIn1JI+1 cos 1J1 -1JI+1 

21(/+1)(/+2). _. + (_ +) 
- (21+ 1)(2/+3) SIn1JI SIn 1J1+ 1 cos 1JI -1JI+1 

21(1+1). +. _ (+ _)} 
+ 21+ 1 SIn1JI SIn1J, cos 1JI -1J, , (A3a) 

J 1 g(G) 12(1 -cos G) dQ 

4n~{1(1+1). 2( + -) 1(1+1)(1+2). 2( + + 
= k2 "T 21+1 SIn 1JI -1JI + (2/+ 1)(21+ 3) SIn 1J1 -1JI+1) 

1(1+1)(1+2) . 2( - -) 1(1+1)(1+2). 2( + -
+ (21 + 1)(21 + 3) SIn 1JI -1JI+ 1 - (21 + 1)(2/ + 3) S111 1JI -1J,+ 1) 

1(/+1)(1+2) . 2( - +)} 
- (2/+ 1)(21+ 3) S111 1JI -1J'+1 . (A3b) 

To derive the momentum transfer cross section defined by 

(A4) 

consider first, for example, the sum S of the third and fourth terms on the right-hand 
sides of equations (A3a) and (A3b): 

4n ~ 1 + 1 ((/)2. +. - (+ -
S == -kT"T(21+1)(2/+3) 2 +1 SIn1JI SIn1JI+ICOS 1J1 -1JI+1) 

+/(1+2)sin2(1Ji -1Jl+1)) 

4n ~ 1 + 1 (. 2( + -) (1 1)2{· 2( + -) 
= - kT "T (21 + 1)(21 + 3) - SIn 1JI -1JI+1 + + sm 1JI -1JI+1 

+ 2 sin 1Ji sin 1Jl+ 1 COS(1Jt -1JI-+1)} ) 

4n ~ 1+ 1 (. 2( + -) (1 )2 [ (+ -) 
= -kT"T(21+1)(21+3) -SIn 1J1 -1JI+1 + +1 I-cos 1JI -1JI+1 

x {cos(1Ji -1JI~ 1) - 2 sin 1Jt sin 1JI-+ 1}]) . (A5) 
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Using the identities 

2 cos rx cos f3 = cos( rx - f3) + cos( rx + f3) , 2sinrxsinf3 = cos(rx-f3)-cos(rx+f3) , (A6) 

we can reduce equation (A5) to 

S 4lt '" 1 + 1 ( . 2( + -) (I 1)2(. 2 + . 2 -)) (A7) = k2 7(21+1)(21+3) sm 171 -171+1 - + sm 171 +sm 171+1 • 

The above procedure is applied to simplify the sum of equations (A3a) and (A3b) 
. and, after further algebraic manipulation, the result is the analytical expression for 

CTM given by equation (36b). 
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