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Abstract 

When particle inertia causes the magnetohydrodynamic flux-freezing condition to fail, a flux
vorticity conservation theorem can be valid: for relativistically streaming, multifluid. pressure-free 
plasmas, each species has a 'fluxoid' that is frozen-in to its motion. Here, fluxoid dynamics is treated 
with particular reference to the effects of scalar partial pressure gradients corresponding to non
relativistic thermal speeds. Several forms or the theorem are given, including explicitly covariant 
ones valid in general relativity. The circumstances under which the separate contributions to the 
fluxoid law have significant effects on fluxoid dynamics are made clear by order-or-magnitude 
analysis. The case of steadily rotating systems is developed and used to investigate the applicability 
or the fluxoid theorem to pulsar magnetospheres. 

1. Introduction 

Ohm's law, with scalar conductivity, is obtained for multifluid plasmas after 
neglecting pressure gradients and acceleration differences between the species 
(Burman et al. 1976). When the conductivity is effectively infinite, Alfven's magneto
hydrodynamic 'flux-freezing' theorem follows. In magnetohydrodynamics, Ampere's 
law is used, the displacement current being neglected. However, the magnitude of 
the electric current density is limited because the particle speeds are bounded by c, 
the free-space speed of light. If the maximum electric current density that the medium 
can provide is inadequate to maintain the curl of the magnetic field, then the dis
pla~ement current cannot be neglected. Furthermore, Ohm's law is then invalid: 
acceleration of the plasma particles occurs (Swann 1962a, 1962b; Syrovat-skii 1966 
and (as Syrovatsky) 1970) and their inertial effects must be included in the description; 
flux is not then frozen-in. If the electric current is carried essentially by particles 
of charge q and number density N, and if the magnetic field B varies on a characteristic 
length scale L, then Ampere's law fails when BIL ~ 4nNI q I. It should be noted 
that Alfven (1968, 1971) has emphasized that, for various reasons, the flux-freezing 
theorem is often inapplicable in both laboratory and astrophysical plasmas. 

Because of the above considerations, Buckingham et al. (1972, 1973) developed a 
generalization of the flux-freezing theorem that fully incorporates relativistic inertial 
effects in multifluid plasmas. The component species were represented aspressure-free 
ideal gases that interact through their mutual electromagnetic field but do not 
interact mechanically, except that hydrodynamic sinks were incorporated for each 
fluid to allow for processes such as recombination. For each fluid, a flux-vorticity 
or 'fluxoid' conservation theorem was obtained that generalizes both the vorticity 
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conservation theorem of hydrodynamics and the flux conservation theorem of 
magnetohydrodynamics. For each fluid there is a fluxoid that is frozen-in to the 
motion of that fluid. Both differential and integral forms of the theorem were 
obtained. Later, explicitly covariant forms were given (Burman 1977). 

Wright (1978) has discussed various aspects of magnetic and inertial effects, 
including the flux-vorticity theorem, in pressure-free charge-separated plasmas, 
with particular reference to pulsar magnetospheres. 

The fluxoid theorem should be useful in the description of plasmas in which 
particle acceleration is occurring, a common and important phenomenon in the 
Universe. However, the theorem needs further development in order to establish 
the significance of physical effects neglected so far. The most significant restriction 
in previous work is the omission of pressure effects: in many applications, pressure 
gradients will be important in the plasma dynamics. In this paper, the effects of 
partial pressure gradients on the flux-vorticity or fluxoid theorem will be studied. 
The mean thermal speeds are restricted to being nonrelativistic; hence only pressure 
gradients, not the partial pressures themselves, enter the dynamics. This is not a 
significant restriction for most applications, since only for temperatures greater than 
about 1010 K are electron thermal speeds highly relativistic. It will be shown that 
the neglect of pressure gradient effects in the fluxoid theorem in its application to 
pulsar magnetospheres (Wright 1978; Burman and Mestel 1978,1979; Mestel et at. 
1979; Mestel 1980; Burman 1980) appears to be valid. 

2. The Fluxoid Theorem 

Consider relativistic plasmas consisting of an arbitrary number of species, each 
of which is regarded as a fluid. Viscosity and heat flow will be neglected. Attention 
will be restricted to fluids that are at nonrelativistic temperatures: the mean thermal 
speed of the particles of any species is nonrelativistic so that p ~ Po c2 , where p 
and Po are the pressure and the proper mass density of that species. Thus, effects 
of pressure gradients will be included, but the pressure itself will not enter the dynamics. 

Consider a representative species in the plasma. Let v denote its fluid 3-velocity 
and y the corresponding Lorentz factor (1- V 2/C 2)-t. The charge and rest mass of 
its particles are denoted by e and mo, while n and no represent their number density 
and proper number density, connected by n = yno. The equation of motion of this 
component fluid is 

(a/at +v. '1)p = e(E +c-1 vxB) -n-1'1p, (1) 

where t represents time in an inertial frame, p == ymo v and E is the electric field. 
Since we have (X x (V x (X) == -t'1((X2) -(X. '1(X for any vector (x, it follows that 

v.'1p == -vx('1xp)+moc2 '1y; (2) 

the relationship y 2v2 / c2 == y2 - 1 has been used to eliminate v2 from the last term. 
Invoking the two Maxwell equations that do not involve sources, so that E and B 
may be eliminated in favour of the scalar and vector potentials </> and A, and using 
equation (2), we find that the equation of motion (1) becomes 

:t(P+ e:) -v x {V x (p+ e:)} + '1(ymo c2 +e</» = _n- 1 '1p. (3) 
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Taking the curl of (3) shows that 

or%t-\lx(vxro) = -\lxi, (4) 

where 

-\lx/== (nol\lno +y-l\ly)x(n-1 \lp) (5) 

and 

ro == \l x (p +eA/c) == ep/c, (6) 

with 

p == B + (cmo/e)\l x (yv). (7) 

The vector ro is the generalized vorticity of the species under consideration, while 
p can be regarded as a generalized magnetic field or 'magneto-inertial field' associated 
with that species. Equation (4) holds for each species and describes the development 
of the generalized vorticity field or magneto-inertial field of each species with respect 
to the motion of that species: it expresses the flux-vorticity or fluxoid theorem in a 
differential form. Equation (4) reduces to the previously known theorem (Buckingham 
et al. 1972, 1973) when the right-hand side is negligible. For an uncharged fluid, 
equation (4) reduces to a theorem for the relativistic vorticity \l x (yv) of that fluid. 
For a charged fluid with negligible inertial terms, ro reduces to eB/c and equation (4) 
describes the development of the magnetic field lines relative to that fluid. 

Equation (4) has known implications in certain special cases. When ro x (\l xl) 
is negligible, this equation shows that 

rox{or%t-\lx(vxro)} =0, (8) 

which is the necessary and sufficient condition that the vector lines of the solenoidal 
field ro be material lines (Truesdell 1954, Section 28). When \l x/ is negligible, 
equation (4) reduces to 

oro/at -\lx(vxro) = 0, (9) 

which is the necessary and sufficient condition that the strengths of all vector tubes 
of the solenoidal field ro at a given cross section remain constant as the motion 
proceeds (Truesdell 1954, Section 28). 

For the special case of nonrelativistic motion of barotropic fluids, \l x/vanishes: 
equation (9) holds and ro is 'frozen-in' to the motion of that fluid. It should be 
emphasized that the right-hand side of equation (4) is not usually negligible: the 
theorem, in general, is not one of freezing-in of ro or p but one that incorporates 
diffusion of the lines of ro or p of each species with respect to that species. 

An integral form of the fluxoid theorem can be obtained as follows. Let C denote 
a contour that moves at each of its points with the local fluid velocity of a 
representative species, and let S denote any surface that caps C and is also fixed in 
the fluid. If d/dt == a/at + v. \l is the convective derivative for that fluid then, for 
any vector ex, 

f .. e(~~ ex) - \l x {v x (\l x ex)}) . dS = :t(L (\l x ex).dS) . (10) 
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A proof of equation (10) for the case when V x (X is B has been presented by, for 
example, Tanenbaum (1967); since V.B = 0 is the only property of B used in that 
proof, equation (10) in fact follows for any vector (x. On replacing (X in equation (10) 
by p +eA/e, it is seen that the relativistic flux-vorticity theorem (4) may be expressed, 
after using the Stokes theorem, as 

:t(f c (p +eA/e).dS) = - f c/· ds , (11) 

where ds denotes an element of the curve C. For a charged component fluid the 
quantity tfJ, where 

tfJ == Is B.dS +(elno/e) fc yv.ds 

= Is p.dS = (e/e) Is O).dS = (e/e) fc (p +eAje).ds, (12) 

is the fluxoid through c. When V x/vanishes, equation (11) reduces to the theorem 
obtained by Buckingham et al. (1972, 1973). 

The vorticity theorem of nonrelativistic hydrodynamics has been expressed in 
numerous forms, and the subject has been reviewed in detail by Truesdell (1954). 
These forms can be adapted so as to apply to the relativistic flux-vorticity theorem. 
For example, equation (4) can be written in the form 

dO)/dt = 0). Vv -0) V. v - V xl. (13) 

For a neutral fluid when V x/ = 0, equation (13) is the d'Alembert-Euler vorticity 
equation (Truesdell 1954, Section 94) for the fluid. 

Let wP' vp and/p denote cartesian components of 0), vand! Write Vpq == 2w[p Vq] 
where square brackets around indices denote a skew-symmetric part. The summation 
convention will be used. The flux-vorticity theorem (4) can be written in cartesian 
tensor form as 

aWq/at +arvqr = -Bqrs aris , (14) 

where ar == a/axr and Bpqr is'the permutation symbol. 
I have obtained previously (Burman 1977) two explicitly covariant forms, one 

differential and one integral, of the pressure-free relativistic fluxoid theorem. These 
will now be extended to become explicitly covariant forms of the fluxoid theorem 
of this paper. Take the fourth space-time coordinate to be et and define two skew
symmetric second-rank 4-tensors (VII.) and (Fllv) by the following specifications of 
their components in an inertial frame: vpq == 2w[p vq], V r4 = ew" Fqr = - Bqrsis and 
r4 = O. The equation 

av vltV = av Fltv (15) 

reduces to equation (14) for 11 = q and to the identity V . 0) = 0 for 11 = 4; equation 
(15) is an explicitly covariant form of the flux-vorticity theorem. 
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Let (PIl) denote the canonical fluid 4-momentum associated with each particle 
of one of the component species: pil = mo U" +eA"/c where (U") is the fluid 
4-velocity of the species and (A") is the electromagnetic 4-potential. Note that 
(PIl) = (p +eA/c, W/c) where W is the total energy (the sum of the rest energy, 
kinetic energy and electromagnetic potential energy) per particle. Hence, taking L 
to be some closed space-time path with typical element (dx") = (ds, edt) and using 
the signature - 2, we have 

fLPpdXIl= -fL(p+eA/C).ds+fL Wdt. (16) 

Also, 

fL n- 1p,/ dx" = - fL f .dS + fL n- 1(iJp/iJt)dt, (17) 

where the subscript comma denotes partial differentiation. Consider the equation 

:'t'(f c Pil dXIl) = -y fen -lp,1l dx P , (18) 

where 't' denotes proper time (dt/d't' = y) and C is a closed contour that moves with 
the species under consideration. Since C must be space-like, a Lorentz frame can 
always be found in which C lies entirely in a spatial section of space-time, so equations 
(16) and (17) show that (18) reduces to (11): equation (18) is another explicitly 
covariant form of the fluxoid theorem. 

In their explicitly covariant forms, the fundamental equations of electrodynamics 
and of fluid dynamics can be extended to apply in general relativity by replacing 
partial derivatives with covariant derivatives. Hence equation (18) is already in 
general relativistic form, while equation (15) becomes 

V"V;V = F"V;v, (19) 

where the subscript semicolon denotes covariant differentiation. These generally 
covariant forms of the theorem could be useful in developing the theory of possible 
magneto spheres around black holes. 

3. Analysis of the Fluxoid Theorem 

It is necessary to perform an order-of-magnitude analysis of the fluxoid law so 
as to obtain a general understanding of fluxoid dynamics. This was done by Wright 
(1978) for the pressure-free case, and the extension to include pressure gradients 
will be made here. In this way, the circumstances under which the separate con
tributions to the fluxoid law are likely to be important will be made clear. 

Let L denote a length scale over which the macroscopic plasma properties vary 
significantly. Write WB for I e I B/mo c, the nonrelativistic angular gyrofrequency of 
the species under consideration; for electrons WB ~ 2 X 107 Bwith Bin gauss (10- 4 T). 
The ratio of the magnitudes of the inertial and magnetic contributions to ro or IJ 
is typically, for charged species, of order 8M where 8M == yv/wBL. This number 
was introduced by Wright (1978), who called it the 'magnetic Rossby number' by 
analogy with the Rossby number v/wL used to estimate the relative importance of 
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inertial and Coriolis effects in a nonrelativistic fluid rotating at angular speed w. 
The number 21t8M can be interpreted as the ratio of the distance travelled by the fluid 
in a relativistic gyro-period (of one of its particles that happens to have negligible 
random motion) to the scale length L. As expected from qualitative considerations 
(Buckingham et al. 1972, 1973), inspection of the expression for 8M indicates semi
quantitatively that the inertial contribution is likely to be important in the vicinity 
of magnetic neutral lines or sheets or in regions where rapid relativistic acceleration 
is occurring. For example, there may be thin layers in which I Vy I is large (Mestel 
et al. 1979): if I Vy I ~ wB/c, then 8M ~ 1., When 8M ~ 1, indicating that magnetic 
effects predominate over inertial effects, and, in addition, the right-hand side of the 
fluxoid law (4) is negligible, the magnetic flux is frozen-in to the motion of the species 
under consideration. For 8M ~ 1, inertial effects are important and the magnetic 
flux is not frozen-in. 

Let Sj and Sm denote the ratios of the magnitude of the right-hand side - V xl 
of the fluxoid theorem (4) to the magnitudes of the inertial and magnetic contributions, 
respectively, to the term V x (v x co). 

Consider first the nonrelativistic and moderately relativistic cases, defined as 
satisfying IVy IIY ~ I Vno IIno. Let A denote the angle between Vp and Vno; for a 
barotropic fluid, A = O. Estimating p to be of order mo V~h no, where Vth denotes 
the mean thermal speed of the particles of the representative species in its local rest 
frame, shows that 

Sj '" y-2(vth/v)2sinA, Sm '" y-l(V/wB L)(Vth/V)2 sin A . (20a, b) 

For uncharged species or inertially dominated charged species, Sj is the relevant 
ratio; note that the length scale does not appear in Sj. For magnetically dominated 
species, Sm is the relevant ratio, and it contains the small factor v/wB L. It is seen 
that pressure gradients can be important in fluxoid dynamics for non-barotropic 
species with drift speeds less than about their mean thermal speeds. The electron 
drift speed in plasmas has been observed to be limited above by the ion thermal 
speed (Stix 1962, p. 203; Alfven 1968). Hence, for the electrons in a plasma in which 
the electron and ion temperatures are of the same order T, we have 

(v/wB L)(Vth/V)2 ~ Tt/BL, (21) 

with T in kelvin, B in gauss and L in centimetres. This quantity can exceed 1 in 
laboratory plasmas, but will typically be extremely small in cosmic plasmas except 
for highly localized phenomena. 

Now consider very relativistic species, defined as satisfying IVy I/y ~ I Vno IIno. 
Let I denote the length scale for variation of y and L a common length scale for 
variation of p, no and B. In this case, I ~ L and 8M == YC/WB1. (There may be thin 
regions in which y varies more rapidly than the other macroscopic plasma properties. 
In moderately relativistic plasmas, as defined above, we have I ~ L, meaning that 
the Lorentz factor changes only slightly in distances over which the other macro
scopic plasma properties vary significantly.) The contribution of the partial pressure 
gradient to the fluxoid law is not much affected by whether or not conditions are 
approximately barotropic, because of the presence of the Vy term in equation (5) 
for V xf The estimate p '" mo V~h no shows that 

Sj '" y-2(Vth/C)21/L, Sm '" y-l(C/WB l)(Vth/C)2. (22a, b) 
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The estimates (20) and (22) indicate that partial pressure gradients typically have 
little effect on fluxoid dynamics in relativistically streaming plasmas that are not 
relativistically hot-see, however, Section 4 below. 

Since attention has been restricted to plasmas that are not relativistically hot, 
only pressure gradients, not the partial pressures themselves, can be significant. 
However, in determining the importance of the pressure gradients, the length scales 
have cancelled out of the estimate (20a), entered through small factors in (20b) 
and (22b) and entered through a factor which is less than about 1 in (22a). Note 
that the term oro/at in the fluxoid law can sometimes partially cancel with the term 
- \l x (v x ro), thus increasing the relative importance of the pressure gradient 
contribution; an example of this will be discussed in Section 4 below when considering 
steadily rotating systems. Also, these order-of-magnitude estimations are, of course, 
not rigorous and must be checked in any particular application. 

It must be emphasized that the above considerations apply only to the significance 
of pressure gradients in the fluxoid law, and not to their importance elsewhere, 
such as in a generalized Ohm law for the plasma or in the equation of motion of a 
species. For example, if E +c-1v x B ~ 0 holds for a species, then _n-1 \lp must 
balance the inertial force (a/at + v. \l)p of that species. 

The analysis given in this section is sufficient to indicate that in many circumstances 
pressure gradient effects on fluxoid dynamics can be safely neglected. The important 
special case of steadily rotating systems requires a separate analysis, because of the 
cancellation effect just mentioned. 

4. Steadily Rotating Systems 

The special case of steady rotation is relevant to a number of areas in which the 
fluxoid theorem has been, or could be, applied. These include studies of pulsar 
and possible black hole magnetospheres, and of magnetic field generation in the 
early Universe (Harrison 1970). The term 'steady rotation' here refers to a system 
that is steady in a rotating frame: it means that there exists a structure that rotates 
at a constant rate, but the motions of the individual particles, or the individual 
plasma species, are not themselves so restricted (Mestel et al. 1976). The fluxoid 
theorem, with pressure gradient effects included, will now be developed for this 
special case. 

Let tiJ, c/J and z be cylindrical polar coordinates with the z aXis as the rotation 
axis. The system is steady in the rotating frame: the changes in time at points fixed 
in the inertial frame result only from the steady rotation of the whole structure with 
constant angular frequency Q. Hence it follows from the two sourceless members 
of Maxwell's set of equations, namely Faraday's law and \l. B = 0, that E and B 
are connected by (Mestel 1971) 

E +c-1QtiJtx B = - \lCP, (23) 

where t is the unit toroidal vector and the gauge-invariant quantity cP is defined in 
terms of the familiar scalar and vector potentials by the relation (Endean 1972a) 

cP == c/J-(Qm/c)A",. (24) 

The steady-rotation condition 

a/at = - Q %c/J (25) 
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(MesteI1971; Endean 1972a) is valid for, in particular, cylindrical polar components 
of vectors. Hence the identity (2) for v. Vp gives (Burman and Mestel 1978) 

(a/at + v. \l)p = - u x (\l x p) + \l(yrnc2 - Qmpt/» , (26) 

where u == v - Qmt. Equation (23) and B = \l x A show that (Burman and Mestel 
1978) 

E+c- 1vxB = c- 1ux(\lxA)-\lQJ. (27) 

From equations (26) and (27), the equation of motion (1) of the representative species 
takes the simple form 

u x {\l x (p +eA/c)} = e \l'l' +n- 1 \lp, (28) 

where 

'1' == QJ + yrnO c2 (1 _ Qm Vt/». 
e c c 

(29) 

The quantity '1' was obtained as a constant of the motion in the pressure-free case 
by Endean (1972a, 1972b). Taking the curl of equation (28) we obtain the fluxoid 
theorem in the form 

\lx(uxco) = \lx(n-1 \lp). (30) 

Comparison with the more general form (4) shows that, in the case of steadily 
rotating systems, the time derivative term has cancelled with part of the - \l x (v x co) 
term, leaving - \l x (u x co). 

Typical magnitudes of the contributions to the theorem may be compared, as 
before, by estimating p to be of order rno V:h no. For the nonrelativistic and moderately 
relativistic cases, in which I \ly I/y ~ I \lno I/no, the estimates (20) are replaced by 

Sj '" y-2(v;h/uv)sinA, Sm '" y-l(v/WB L)(V:h/uv)sinA. (31a, b) 

For very relativistic species, in which I \ly I/y ;<: I \lno I/no, the estimates (22) are 
replaced by 

Sj '" y-2(v:h/uc)I/L, Sm '" y-l(C/WB l)(v:h/uc). (32a, b) 

These numbers suggest that the pressure gradient effect on the flux-vorticity dynamics 
can be important when u is sufficiently small, meaning that the species concerned 
is close to being in a state of rigid corotation. In fact, Sj and Sm diverge for perfectly 
rigid rotation, corresponding to the vanishing ofthe left-hand side of the flux-vorticity 
theorem (30), which thus reduces to the degenerate form 

\lx(n-1 \lp) = O. (33) 

The equation of motion (28) of the species reduces, for rigid corotation, to 

e \l'l' = _n- 1 \lp, (34) 

which is, of course, just the integral of the degenerate fluxoid theorem (33). 
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In pulsar magnetospheres, the magnetic field is so strong that magnetic forces 
predominate over inertial forces throughout most of the region inside the 'light 
cylinder', which is defined as the surface m = c/Q on which the corotational speed 
equals c. In some of this region, the magnetic field will enforce approximate corotation 
of charged particles: there v will be approximately Qm and L will typically be of the 
same order of magnitUde as the distance m from the rotation axis. Hence, the 
magnetic Rossby number is estimated by 

EM '" yQ/WB' (35) 

reducing to Q/WB well inside the light cylinder. The estimate (35) shows that the ratio 
of inertial to magnetic effects is of the order of the ratio of a macroscopic rotational 
frequency to a microscopic gyrofrequency, as Mestel (1971) showed by considering the 
corresponding energy densities. When magnetic forces predominate over inertia, the 
relevant number for estimating the effects of pressure gradients on the fluxoid law 
is Sm; this is given by equation (31 b), which becomes, for v '" Qm and L '" m, 

1 c Q v?i. 
Sm '" ----; 

y Qm WB uc 
(36) 

this contains the very small ratio Q/WB and is likely to be very small itself, implying 
that pressure gradient effects are likely to be negligible in the fluxoid theorem for an 
approximately corotating zone. 

In the vicinity of the light cylinder, corotational speeds approach c and the 
relativistic inertial effects will cause the particles to break away from the magnetic 
field lines. From the estimate (32a), we have 

Si ::5 y-2(Vth/C)2, (37) 

which is very small. 
Magnetic field strengths near pulsar surfaces are estimated to be of order 1012 G; 

this is so strong that use of scalar pressures is inappropriate, and a better approximation 
would be to use a uniaxial pressure tensor, the pressure having two different 
components, one along the magnetic field and one across it. But for the purpose of 
making order-of-magnitude estimates of the effects of pressure gradients, formulae 
based on scalar pressures are adequate. 

Mestel et al. (1979) have proposed a model of the axisymmetric pulsar magneto
sphere which contains a corotating zone and a 'circulation zone' in which electrons 
emitted from the pulsar near the magnetic poles travel out along magnetic field lines 
and then back along other field lines, having been caused to drift across the lines by 
radiation reaction forces occurring in a 'dissipation zone' in· the neighbourhood 
of the light cylinder and beyond. In the circulation zone, relatively little acceleration 
occurs and the poloidal flow is nonrelativistic. Taking L '" m we obtain the estimate 
(36) for Sm in this zone: again pressure gradient effects are likely to be negligible 
in the fluxoid theorem. 

Various workers have proposed that electrons emitted from. a pulsar surface 
rapidly reach highly relativistic energies very near the surface, accelerated by a 
substantial local electric field component parallel to the magnetic field. If the 
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particles are accelerated to a Lorentz factor y in a distance of I cm above the surface, 
the estimate (32b) shows that 

Sm'" (10-9Jyl)Vth/UC . (38) 

In particular, Michel (1974) proposed that y '" 104 is reached about 100 m above 
the surface; this would imply that 8M '" 10- 9 and that a very tiny value, of order 
1O- 17(Vth/C)2, obtains for Sm. 

The above estimates suggest that pressure gradient effects will not be important 
in the fluxoid law for pulsar magnetospheres, at least for the region from the stellar 
surface to somewhat beyond the light cylinder; thus the neglect of pressure gradient 
effects in the fluxoid law by Wright (1978), Burman and Mestel (1978, 1979), 
Mestel et al. (1979), Mestel (1980) and Burman (1980) appears to be justified. There 
are so many effects that might be significant that it is a relief to see that one of 
them. probably is not. But since the flow dynamics theory based on only the Lorentz 
and relativistic inertial forces leads to singularities in the Lorentz factors (Mestel et al. 
1979; Burman 1980), some dissipative force must be essential somewhere in the 
dynamical analysis. 

It should be emphasized that pressure gradients may be significant in dynamical 
equations other than the fluxoid theorem. For example, consider electrons and 
positive ions in a corotating zone. The small gravitational, centrifugal and pressure 
gradient forces acting on, for example, the electrons in a negatively charged region 
will generally have a resultant component parallel to the magnetic field, and this force 
will be. balanced by a small electric force in that direction; the corresponding electric 
force in that direction acting on the ions will assist the non-electromagnetic forces 
in draining away the ions, thus increasing the degree of charge separation (Mestel 
1980). 

Failure to detect continuous X-radiation from the Crab pulsar during lunar 
occultations has shown that its effective surface temperature must be less than about 
5 x 106 K (Wolff et al. 1975). Other pulsars, being older, are likely to be cooler. 
Thus temperatures in the magnetospheric plasmas are very likely to be nonrelativistic 
unless violent heating occurs. Ardavan (1976) has claimed that the plasma just 
outside the light cylinder will be relativistically hot, but I have shown (Burman 1980) 
that his analysis is faulty. A referee of the present paper has said that he would expect 
the pressure to be relativistic along the magnetic field and negligible across it; if 
this is so, then the formulae given here are not adequate. 

5. Concluding Remarks 

In this paper, a generalized flux conservation theorem has been obtained for 
plasmas in which Alfven's flux conservation law fails because there are too few 
current-carrying particles to maintain the electric .current density that would be 
required and relativistic particle inertia becomes important. A multifluid plasma 
model has been used. For each species, a generalized flux, the 'fluxoid', is defined and 
the theorem derived here describes its behaviour. When pressure gradient effects are 
negligible in this law, the fluxoid is frozen-in to the motion of the species concerned. 
Conditions for this to be so have been considered. 

The fluxoid theorem should be useful in the description of plasmas in which 
acceleration is occurring; for example, pulsar magnetospheres, for which Burman 
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and Mestel (1978, 1979) have used the theorem together with the Endean integral 
to simplify the equations of motion of the species. Also, Havnes (1971) has discussed 
evidence that low-energy galactic cosmic rays have been accelerated by electromagnetic 
forces acting in partially ionized plasmas; this could also be the case for low-energy 
solar cosmic rays (Lanzerotti et al. 1972). Other areas for application of the fluxoid 
theorem are the study of magnetic field generation in the early Universe (Harrison 
1970) and the description of the dynamics of plasmas in the vicinity of neutral lines 
and sheets of magnetic fields and in possible magneto spheres around black holes. 
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