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Abstract 

An attempt is made to give a consistent account of observed properties of the low-lying levels of the 
mirror nuclei 13C and 13N. In the first stage of this analysis, least squares fits of the data are made 
using R-matrix formulae in the one- and two-level approximations; in the second stage, the resultant 
parameter values are compared with shell model predictions. Fitted properties include level widths, 
neutron scattering data, El radiative widths and El capture cross sections .. The R-matrix formulae 
include external contributions to the El transition matrix elements, calculated using wavefunctions 
with the correct asymptotic forms. Acceptable fits are obtained for channel radii in the range 4-6 fm, 
with the lower values preferred. The parameter values obtained in these fits agree with shell model 
predictions, except for quantities involving the t - levels. Level displacement energies are calculated 
from the fitted parameter values. A reasonable account is given of two notable asymmetries between 
13C and 13N-the very different excitation energies of the first excited states and the very different 
strengths of the El decays of these states. 

1. Introduction 

Nearly 30 years ago, Thomas (1952) summarized the properties then known of 
the low-lying t -, t +,i - and 1+ levels of the mirror nuclei 13C and 13N, and used 
the nuclear reaction theories of Wigner and others to give a consistent account of 
them. Since that time, more experimental data concerning these levels and detailed 
shell model descriptions of them have become available. Some of this new information 
is not consistent with Thomas's assumptions or predictions. It thus seems timely to 
reanalyse the available data and compare the resultant parameter values with shell 
model calculations, to see if a consistent overall description is possible. 

The data fitted by Thomas (1952) included level energy displacements and widths, 
and nucleon scattering and capture cross sections. Thomas mostly used a one
channel approximation, describing the 13C and 13N levels as a single neutron or 
proton outside a 12C ground-state core. Except for the t + levels, he also used a 
one-level approximation. The one-level approximation was not sufficient to describe 
the data on the t + levels, and Thomas included the effect of higher t + levels by 
using the representation of Feshbach et al. (1947) for the logarithmic derivative 
function. 

We prefer to use the formalism of standard R-matrix theory (Lane and Thomas 
1958) rather than that of Feshbach et al. This enables the description to be made 
in terms of constant parameters (eigenenergies EA and reduced width amplitudes 
YAJ instead of an energy dependent quantity Z(E), which is only restricted to be a 
monotonic increasing function of E although it is anticipated to have a fairly smooth 
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energy dependence. The values of these and other constant parameters (the internal 
transition moments Aif between states i and f) required to fit the experimental data 
can then be compared with values calculated from the nuclear shell model. Thus the 
R-matrix treatment separates the problem of relating experimental data and models 
into two parts: 

data +-> parameters, parameters +-> models. 

In practice the separation may not be complete, since restrictions on the number of 
parameters used to fit the data may be based on model arguments, or the values of 
some parameters that are not well determined by the data may be taken from model 
calculations. 

In Thomas's best fit to the available data, the reduced width for the channel 12C 
ground state + p-wave nucleon was greater by a factor of about 2 in the excited 
1-- states of the A = 13 nuclei than in the 1- ground states. Recent experimental 
values, however, as well as shell model calculations, suggest that the factor should be 
only about l Also, the width of the 1+ first excited state of 13C has recently been 
measured and is about t of the value predicted by Thomas's parameters. This small 
width makes the strength of the 1+ ---+ 1- EI transition in 13C less than one-half 
the corresponding strength in 13N, although charge-symmetric forces would require 
such strengths in mirror nuclei to be equal. Shell model descriptions do not support 
the one-channel approximation for some of the low-lying levels of 13C and 13N, and 
it seems that a more general description is needed to explain the different strengths 
of the 1 + ---+ 1- transitions. 

Another obvious evidence of departure from charge symmetry is the 720 keY 
difference in energies of the 1 + first excited states of 13C and 13N, the original and 
most pronounced example of the Thomas-Ehrman shift. Thomas calculated only 
two contributions to such level displacements, namely those from the different 
external wavefunctions in the mirror nuclei and from the electromagnetic spin-orbit 
interaction; we include many other contributions and also do not make the one
channel approximation. Thomas used his fits to the level displacements in obtaining 
best values of the level parameters; we obtain the level parameters by fitting other 
data and use them to predict the level displacements. We do not attempt to fit the 
level displacements exactly since we do not include the effects of any charge-symmetry
breaking potential in the nuclear forces. 

The experimental data that are fitted in order to determine values of the parameters 
EA, )'AC and Aif are given in the next section. We have not included other data that 
do not yield direct information about these parameters, such as Ml matrix elements 
and logft values, which are discussed by Cohen and Kurath (1965). The relevant 
R-matrix formulae are given in Section 3, and fits to the data are made in Section 4. 
In Section 5 the resultant parameter values are compared with shell model values 
and with values deduced from other experimental data. Coulomb displacement 
energies are calculated and compared with experimental values in Section 6. A 
discussion of these results and comments on earlier partial fits to the data are given 
in Section 7. 

2. Experimental Data 

Experimental values of quantities relating to the lowest four levels in each of 13C 
and 13N are taken from Ajzenberg-Selove (1976), unless another reference is given. 
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Fig. 1. Low-lying energy levels of 13e and 13N and the E1 transitions between them. 

Table 1. Values of quantities related to lowest levels of 13C and 13N 

Relevant Quantity Thomas (1952) Adopted value Best fit 
In value a = 5fm 

1 + Eb (MeV) -1·85 -1·858±0·001 -1 ·858A '2 

Er (MeV) 0·42 0·421±0·001 0'421 A 

as (fm) 6'11 6·142±0·0012 6·142A 

ro (fm) 2·9-3·6 3·42±0·1 3·42A 

ro(13N) (keV) 35 3H2 33A 

t+ -+- -!-- r~(13C) (eV) 0·43 ±0'04 0·472 
un/thermal) (mb) 1·8-3·5 2·31±0·21 2·36 
up/Er) (lib) 125±15 102±8 97·1 
up/Ep= 120 keY) (nb) 0·61±0·09 0·61±0·09 0'607 
u pv(Ep=604 keY) (lib) 2·17±0·19 2·03 

3-
'2 r°(13N) (keV) 70± 10 60±5 
-!-~t+ r~(13e) (meV) 6·6±1·4 6·82 

un/thermal) (mb) 1·09±0·10 1·09 
r~e3N) (eV) 0·054±0·014 0·0505 

~+ r°(13N) (keY) 40 52±6 52A 

j-+ -+ t- r~e3C) (meY) 0·019±0·001 0·019A 

A Exact fit. 

The relevant part of the energy-level diagrams of 13e and 13N is given in Fig. 1. This 
shows the energies of the levels and the El transitions that we consider. 

Values of the fitted quantities are collected in Table 1. These are grouped according 
to the J" values of the levels involved. The values that Thomas (1952) used are given, 
along with the presently adopted values and the values obtained in our best fits. Of 
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the quantities fitted, Eb and Er are the energies of the 13C and 13N t + levels measured 
from the threshold of the 12C ground-state channel. The scattering length as and 
effective range ro are obtained from the scattering of slow neutrons on 12C. The 
r o and r~ are total and radiative widths in the c.m. system (the significance of the 
superscript 0 denoting observed width is discussed in Section 3). The CToy and CTpy 

are integrated cross sections for the reactions 12C(n, y)13C and 12C(p, y)13N. We 
comment here only on the adopted values that are not given in Ajzenberg-Selove 
(1976). 

The adopted value of as comes from the measurement of Koester and Nistler 
(1975), who gave acoh = 6·6572±0·0013 fm. In a summary of previous measure
ments (but not including Koester and Nistler), Lachkar (1977) gave for the total 
elastic scattering cross section for neutrons on 12C the value (in b) 

CTT = 4·725 -3·251 E + 1·316E 2 -0·227 E 3 , 

where E is the neutron lab energy in MeV. From this one obtains as = 6·132 fm 
and the adopted value of roo The uncertainty attributed to ro is based on the observa
tion that Heaton et al. (1975) gave ro = 3·33 fm. The thermal-neutron cross sections 
are obtained from the values of 3·4 ± 0·3 mb for the total capture cross section and 
68 ± 1 % for the ground-state branching ratio. Absolute values of the 12C(p, y) peak 
cross section have been given as CTp/Er) = 120,ub (Fowler et al. 1948), 127,ub 
(Seagrave 1951, 1952) and 125± 15,ub (Rolfs and Azuma 1974). Using the one-level 
approximation, Riess et al. (1968) gave rt3N,t + ---+ r) = 0·45±0·05 eV; taken 
with the total width value of r oe3N,t +) = 33 keY, this gives CTp/Er) = 92± 10 ,ub. 
Rolfs and Azuma quoted Vogl (1963) as giving a value of 130±4 ,ub, but YogI's 
error is a relative error only, and he normalized his cross section to Seagrave's absolute 
value. By averaging the values of Rolfs and Azuma and of Riess et al., we get the 
adopted value given in Table 1. We also fit the 12C(p, y) cross section at Ep = 120 
keY, which Thomas took as being representative of early low-energy measurements. 
Cross section measurements at higher energies by Vogi (1963) and by Rolfs and 
Azuma (1974) agree with each other (see Fig. 3). We fit Vogl's tabulated value at 
Ep = 604 keY, renormalized to a peak cross section of 102,ub. 

Many measurements have been made of the total width of the! - level of 13N. 
The adopted value is obtained from an average of these values, converted where 
necessary to the c.m. system: 68 ± 8 ke V (Van Patter 1949), 65 ± 9 ke V (Seagrave 
1951), 53 keV* (Jackson and Galonsky 1953), 60 keV* (Armstrong et al. 1966), 
60±2·5keVt (Andreev et al. 1973), 54·8±11·5keV (Blatt et al. 1974) and 60±3 
keY (Rolfs and Azuma 1974). In order to obtain the radiative width for the! - ---+ t + 

transition in 13N, we use measured values for the peak cross section CTpyo(Ep = 1· 7 
MeV) of 35,ub (Seagrave 1952) and 37·5±7·5,ub (Young et al. 1963), and for the 
r ---+ t + branching ratio of 8 ± 1 % (Rolfs and Azuma 1974). It may be noted that 
the value of 0·04 eV for r~e3N,! - ---+ t +) given by Ajzenberg-Selove (1976) is based 
on the assumption by Young et al. (1963) of a total width of the! - level of 51 ·5 ke V 
(lab), corresponding to a c.m. value of 47·5 keY. 

* These values of the observed width ro are derived from the published values of the formal width 
r of 55 and 63 keY respectively, using relation (12) in Section 3 below. 

t This is based on the assumption that the published value of 65 ± 2·7 ke V is a lab value. 
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Ajzenberg-Selove (1976) gives for the total width of the -1+ level of 13N, 
rO(13N,-V) = 47±7 keY, which comes entirely from the measurement of Blatt et al. 
(1974). Armstrong et al. (1966) gave r = 74 keY, but actually used R-matrix formulae 
and varied the reduced width 'y 2a in fitting their phase shifts. From their values 
y2a = 3'55±O'18 MeYfm and a = 4·77 fm, we find a formal width r = 2Py2 = 

68 ±3·4 keY (where P is the penetration factor) and an observed width ro = 54±2' 7 
keY. Thus, their value of74 keY is presumably a value of the formal width. Similarly, 
the parameters of Jackson and Galonsky (1953) give ro = 46 keY. Our adopted 
value is an average of these. 

It is of interest to compare the strengths of corresponding El transitions in 13C 
and 13N. The strengths obtained from the adopted values in Table 1 are given as 
experimental values in Table 2. In this regard, the value of (jpiE" t + ~ t -) corre
sponds to r~(13N,t+ ~ t-) = O·50±O·04eY. For charge-symmetric forces, one 
expects strengths of corresponding El transitions in mirror nuclei to be equal. Although 
the experimental values in Table 2 for the 1- ~ t + transitions are consistent with 
this, those for the t + ~ t - transitions are not, and several attempts have been made 
previously to explain this discrepancy. The calculated values in Table 2 correspond 
to our best fits. 

Table 2. Comparison of El transition strengths in 13C and 13N 

Values of n in Weisskopf units (l W. u. = O' 376 meV, with Ey in MeV) 

Transition Experiment Ca1culatedA 

13C 13N 

t+ ~ t- 0·039±0·OO4 0'101±0'OO8 
t- ..... t+ 0·083±0·018 0·095 ±0·025 
t+-+1-- 0·0103 ±0·0005 

A Best fits for channel radius a = 5 fm. 
B Exact fit. 

3. The R-matrix Formulae 

13Nj13C 13C 13N 13Nj13C 

2·59±0·34 0·043 0·096 2·26 
1·14±0·39 0·086 0·089 1·04 

O'OI03B 

Formulae and notation are taken from the paper on the R-matrix theory of nuclear 
reactions by Lane and Thomas (1958), unless otherwise noted. Only those formulae 
required for fitting the present data are given. 

We are dealing with an energy region where for each J" value there is at most one 
open channel, the 12C ground-state channel. In extracting values of the parameters 
EA, YAc and Aif from experimental data we assume, as did Thomas (1952), a one
channel approximation, neglecting the contribution of all other (closed) channels 
(except in fitting the width of the 1- level of 13N). We do not make a similar approxi
mation in relating these parameter values to shell model values. The channel radius 
a separates the internal region (r < a) from the external or channel region (r ~ a). 
Properties of the internal region are described by an R function which, for a given 
]1t, is written Rn(J1t, E) or RiJ", E), where the suffixes nand p refer to the 13C and 
13N systems respectively, and E is the channel energy. For simplicity we drop the 
label ]1t unless this could cause confusion, and we assume that an = ap = a for all 
]1t. Quantities measured experimentally are expressed in terms of the R functions 
and certain Coulomb functions evaluated at the channel radius (the penetration 
factor P, the shift factor S and the hard-sphere phase shift - ¢), in addition to the 
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boundary-condition parameter B. In principle, equally good fits to the experimental 
data can be obtained for any choice of B and for any choice of a (provided it is greater 
than the range of the nuclear interaction). In practice, where a one- or two-level 
approximation is made, some choices of a may be better than others; the quality 
of fit is still independent of the choice of B, although the resultant parameter values 
will depend on B (Barker 1972). 

For each value of J'It = 1-, -t - and! + we assume a one-level approximation: 

Rn(E) = yin/(E1n - E), Rp(E) = yip/(E1p - E). (1) 

We use Bn = Sn(E1n) and Bp = Sp(E1P) so that E1n and E1p are just the observed 
energies of the levels as obtained from Fig. 1. The Yln and Ylp are treated as adjustable 
parameters in fitting the El transition probabilities. 

For J'It = 1 +, a one-level approximation is not sufficiently accurate as Thomas 
(1952) pointed out, and we assume a two-level approximation: 

2 yin Y2n 

Rn(E) = E -E + E2n -E' 
In 

2 2 
_ I'tp +~ 

Rp(E) - E -E E2 -E lp p 
(2) 

The level 1 is associated with the low-lying 1 + level (at 3· 088 MeV in 13C and 2· 365 
MeV in 13N), while level 2 represents a background due to all other 1 + levels. 

The energy Er of the 1 + level of 13N is taken as the energy at which the resonant 
nuclear phase shift for scattering of s-wave protons on 12C passes through 11T. From 
the phase shift 

bp(E) = arctan[RpPp/{I-Rp(Sp -Bp)}] -¢P' (3) 

we therefore obtain 

RiEr) = 1/{Sp(Er) -Bp}. (4) 

Similarly, from the formula for the many-level density of states function (Barker 1967) 
applied to the 1 + states of 13C, the energy Eb of the bound 1 + state of 13C is given by 

Rn(Eb) = 1/{Sn(Eb) -Bn}· (5) 

The effective range expansion of the phase shift for scattering of s-wave neutrons 
on 12C is 

kcotbn(E) = -as- 1 +1roe + ... , (6) 

where k is the wave number (k2 = 2ME/h2, with M the reduced mass). Taken 
together with the R-function expression for the phase shift, 

bn(E) = arctan{kaRn/(1 +RnBn)} -ka, (7) 

this gives 

Rn(O) = (_a __ Bn) - 1 , 
a-as 

(8) 

(dR;; 1 (E») 2M a 2a; ( a a2 ro) 
dE E=O = --,;z (a-as)2 1- as +3a; -2a . 

(9) 
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The left-hand side of equation (9) is just the zero-energy value of the quantity 
{ - y~(E)} -1, defined in equation (IV. 2. 8) of Lane and Thomas (1958), 

y2(E) = R2(E){ dR(E)/dE} -1 , (10) 

which is independent of the value of B. 
The observed width of the 1- + level of 13N can be simply expressed in terms of 

y~(Er)' by assuming that Pp and cPP are constant over the width of the level and Sp 
is a linear function of E; then if the observed width ro is defined as the difference in 
the energies at which op(E) is in greater than or less than the resonance value, one has 

(dR;l(E») == _ -2( ) == dSp(Er) 2Pp(Er) (11) 
dE E=Er YP Er dE ro 

We note that y~(Er) is the value of yip corresponding to Bp = Speer)' With this 
choice of Bp , equation (11) can be written as 

T0 = r 
1 + yip dSp(Er)/dE' 

(12) 

where r = 2yip p p(Er) is the formal width. It is the observed width rather than the 
formal width that approximates the full width at half maximum of a resonance peak, 
which is usually quoted as the experimental width of a level. 

Restrictions on the ! + level parameters are then obtained by substituting from 
equations (2) into equations (4), (5), (8), (9) and (11), and fitting the experimental data 
on the! + levels in Table 1. 

In order to discuss the transition probabilities, we now consider formulae for the 
capture cross sections and El radiative widths. In their Section XIII. 3, Lane and 
Thomas (1958) dealt with the inclusion of photon channels in the R-matrix theory 
and showed that photons playa role in nuclear reactions similar to that of heavy 
particles. One difference is that the external region may contribute to the electro
magnetic transition matrix elements. Thomas (1952) showed the importance of such 
contributions in the case of El transitions in 13C and 13N. Thomas used a one
channel approximation to describe the internal as well as the external region. Lane 
and Thomas argued that even in many-channel cases, the external transitions are 
significant only in channels in which there are incident waves. We also assume this, 
limiting external contributions to the 12C ground-state channel alone, with the exten
sion that for transitions between bound states, we also include contributions from 
this channel only. In cases of radiative transitions in which a one-level approximation 
is assumed for the initial state or the initial state is bound, we consider formulae for 
the radiative width, in other cases for the capture cross section. 

For simplicity we first assume the one-channel approximation for both the internal 
and external regions. The El capture cross section in either 13C or 13N, from an 
initial continuum state i to a final bound state f, each with definite J" values, can be 
written (Rolfs 1973) 

2nM I roo . 12/ roo O'y(i -+ f) = h 2kj3 (2J j + l)fiC J 0 r uj(r) uc(r) dr J 0 uf(r) dr, (13) 

where 

fic = 1(}3)2e2(Ey/hc)3(lj 100 IlcO)2 U 2(11c J j!; lJr)· (14) 
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Here J'l and lq (q = i, f) are the total and orbital angular momenta of the state q and 
uk)/r is its radial wavefunction. The long wavelength approximation for the EI 
operator is assumed, and the spin part of the E1 operator is neglected (Blatt and 
Weisskopf 1952). The normalization of the continuum state is such that we have 

ui(r) = FIJr)cosb i +GI,(r)sinb i (r;::,: a), (15) 

where FI , and Gil are the regular and irregular Coulomb functions and bi is the 
nuclear phase shift for the state i, which is given by a formula such as (3) or (7). 

In order to obtain a formula for the radiative width of the transition i -+ f, we 
then use the one-level approximation (1) for the R function and equate the resulting 
expression for uy with the one-level form of the cross section, 

1t 2J. + 1 2yf PJrCi -+ f) 
u/i -+ f) = kf ~ {Ei -yf(Si -Bi) _E}2 +(yf PJ2' 

(16) 

where yf stands for yin(Jfl) or yip(Jfl) as appropriate, and Pi stands for Pn(Jfl) or 
Pp(Jf'), etc. By using the relation 

h2 
/ fa yf = 2Ma uNa) 0 uNr) dr, (17) 

we obtain 

r/i -+ f) = fif 1 fow r ui(r) uf(r) dr 12/ (f: uf(r) dr foW ul(r) dr) . (18) 

This is a formula for the formal radiative width, since the shift factor Si is included 
explicitly in equation (16). The observed radiative width is given by (cf. equation 12) 

r (i -+ f) 
) y • 

r~(i-+f =l+yfdSddE (19) 

For an El radiative transition between two bound states, one has (Blatt and 
Weisskopf 1952) 

r~(i -+ f) = fif 1 fow r Ui(r) uf(r) dr r / (SoW uNr) dr fow ut(r) dr) , (20) 

which can be written in the form of equations (18) and (19), since 

SoW u2(r) dr = (1 + y2 dSjdE) f: u2(r) dr 

for a bound state (Lane and Thomas 1958). 

(21) 

A formula for the cross section for El capture from one continuum state to another 
has been given by Rolfs and Azuma (1974). When one notes that the quantity r 
entering their expression (16) for the cross section is the observed width of the final 
state, and if one makes a one-level approximation for the initial state, one finds that 
the formal radiative width is of the form (18) except that JO" uNr) dr is replaced by 
(1 + yt dSrldE) Jo ul(r) dr (for a bound state f, these are identical because of equation 
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21). Thus an expression for the observed radiative width, valid for the states i and f 
being either bound or continuum states, is 

r~(i -t f) =Jif I LX) rulr)uir) dr 12/ ((1 +ytdSi/dE)(l +YfdSddE) 

x J: ut(r) dr J: uNr) dr) . (22) 

Some authors (Christy and Duck 1961; Tombrello and Parker 1963) have replaced 
fO'uf(r)dr in equation (13) by fguf(r)dr, which is equivalent to omitting the factor 
1 + Yf dSddE in equation (22). The normalization given in equation (13) is also used 
by Thomas (1952) and Lane and Thomas (1958), although we note that in his actual 
fitting of the data, Thomas replaced his factor N by 1, thus effectively using the 
normalization of Christy and Duck. 

As in Thomas (1952), we separate the radial integrals occurring in equation (13) 
into internal and external parts, by introducing the dimensionless internal transition 
moment .4tif and other dimensionless quantities 

.4tif = a-I J: r ui(r) uf(r) dr / ( J: ut(r) dr J: uf(r) dr f, ,(23a) 

8 q = uia)(ta/ J: u:(r)drf, (23b) 

J if = a- 2 LX) r w/r) wir) dr, wk) = uk)/uia) , (23c) 

N q = 1 +Y: dSq/dE. (23d) 

Then, by making use of equation (21), equation (13) can be written 

. 2nM ,a3ut(a) 2 
a/I -t f) = h2k 3(.2J i + 1)fif2 _ Cl21.4tif +28 i 8 f J if 1 . 

i NftiYi 
(24) 

The additional factor of 2 in the external contribution in equation (24) relative to 
Thomas's formula (40c) is due to the additional factor of t in the definition of 8 q 

in equation (23b). This is introduced in order to retain the usual relationship between 
the 8 q and the reduced width amplitude Yq (Lane and Thomas 1958), 

Yq = (h 2 /Ma2 )!8q. (25) 

In a similar way, equation (22) can be written 

r~(i -t f) = fif(a2/Ni Nf) l.4tif +28 i 8 f Jif 12. (26) 

Now we drop the assumption that the internal region can be described in the one
channel approximation. Since we still assume that the external contributions come 
from the 12C ground-state channel alone, the form of equations (24) and (26) is 
unchanged, but the definitions (23a, b) of .4t if and 8 q are changed. Shell model 
formulae for .4tif and 8 q are given in Section 5. 
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In fitting the experimental data on capture cross sections and radiative widths by 
means of equations (24) and (26), we treat the quantities Aif and Bq as parameters, 
the other quantities being calculable in terms of the known asymptotic forms of the 
radial wavefunctions. Among the latter quantities are the radial integrals Jifo The 
uq(r) for r ;?; a, which occur in Jif, are either bound-state wavefunctions, determined 
by the binding energy of the state, or continuum wavefunctions given by equation 
(15) in terms of the nuclear phase shift c5 q• This phase shift is required only for 
J" = t+ or ·r (see Fig. 1); for the ·r case c5q is needed only on resonance, where it 
has the value in - CPq, while for the i + case c5q is given by equation (3) or (7) in terms 
of the level parameters of the i + levels. The integration in Jif can be performed 
analytically for the 13C cases and numerically for the I3N cases. For the ·r -4 i + 

transition in I3N, there is the problem that both the states i and f belong to the 
continuum, so that the integral cannot be evaluated in a straightforward manner. 
Faessler (1965) and Rolfs and Azuma (1974) have shown how the Ehrenfest theorem 
can be used to evaluate the integral* in such a case when the limits of integration 
are 0 and 00. The same method can be used for the integration from a to 00, except 
that additional contributions come from the lower limit. It is still assumed that the 
integrated parts vanish at 00. We find 

fOO h2 {fOO h2 
rUj(r)ur(r) dr = -2 VC'(r) ui(r) urCr) dr -2-u;(a)u;(a) 

a MEy a M 

+ta(Ey + {li(lj + 1) -lr(If + I)} 2~(2) {ui(a) Urea) -ui(a) u;(a)} 

-!( E(i) +E(f) -2VC(a) - {li(li + 1) + lr(lf + I)} 2~a2)Uj(a) uf(a)} , (27) 

where VC(r) is the Coulomb potential, E(q) is the energy of the state q and Ey = 

E(i)-E(f). The right-hand side of equation (27) depends only on uk) for r ;?; a. 
Since VC'(r) oc r- 2, the integral on the right-hand side can be evaluated numerically. 

4. Fits to Data 

The R-matrix formulae of Section 3 are now used to fit the experimental data of 
Table 1 in order to derive values of the parameters E;., Y;'e (or Yq) and Air. Written 
more fully, these are EdJ") or E;.p(J"), ydJ") or Y;'p(J") and A(Jfl -4 Jff). We 
assume that the Aif depend only on Jf! and J;c, and do not depend on the particular 
energies of the states i and f or on whether the transition is in 13C or I3N. Then for 
13C, we note that A(r ~ t +) = A(t + -4 r). In some cases we consider B q 

rather than Yq, since these are related by equation (25). 
For the t + levels of 13C and I3N there are five pieces of data given in Table 1, 

but the formulae (2) for the R functions contain eight unknowns. We therefore 
reduce the number of background parameters, which we cannot expect to be well 
determined by the data, by assuming that E2P - EIP = E2n - Ein and y~P = Y~n' 
provided that, say, Bp = Bn = B (this makes the quality of fit dependent on the choice 

* This method works only for the integral J r uj(r) ur(r) dr, which is obtained after the long wave
length approximation has been assumed, and justification of this approximation is difficult for an 
integral that is not convergent. 
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of B, since yip "# yin, but this dependence is not significant for reasonable values 
of B). We also take E2n = 10 Me V; varying this value does not change significantly 
any of the results, except the value of y~n' Thus for given values of a and B, the re
maining five adjustable parameters E1n, E1p, yin' yip and y~n can be determined. 
Values of yin for B = Sn(Eb) and of yip for B = SpeEr) are shown in Fig. 2a as 
functions of a. As a decreases, values of y~n decrease and become negative for 
a < 4·2 fm so that the solutions are inadmissible; for a :::::: 4· 2 fm, a one-level 
approximation for the! + levels therefore gives an acceptable fit to the data. 
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i 
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~ 0·04 

~ 0 

-0·04 
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:..: 

4 

01 I 0 
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Fig. 2. Values of parameters as functions of the channel radius a: (a) the reduced widths yin and 
yip for the t+ levels obtained by fitting the data in Table 1 and (b) e 1n(t-), ..4(P -> t-) and Xm;n 

obtained by a least squares fit of the data in Table 1. 

The formulae (24) and (26) for the El capture cross sections and radiative widths 
involve level parameters for the ! -, ! +, ! - and i + levels and internal transition 
moments .4tif. Values of the! + level parameters are known from the above fits. 
Thus in formula (24), which is required only for! + ~ ! - transitions, the value of 
Bi is obtained from equations (25), (10) and (2), while ui(a) is obtained from equation 
(15) with bi given by (3) or (7) together with (2). For the levels with J" "# ! + the level 
energies are known, so one is left with the adjustable parameters l' q == l' lc (or B lJ 
for these levels and the .4tif. Because of the scarcity of data we take BIn and B 1P 

as being related but not necessarily equal. We use the shell model expression for the 
B lc (equation 32 in Section 5) and assume yin = yip, but allow u1n(r) and U1/r) 
to be different by taking them as Woods-Saxon wavefunctions with appropriate 
boundary conditions. Thus, B 1p is expressed as a multiple of BIn, and only BIn 
and .4tif are adjusted. They are chosen to minimize the quantity 

X = _1_ f I Vcalc(i) - Vex/i) 12 
N -2 i;l e(i) • 

(28) 
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where Vc_Ic(i), Vexp(i) and e(i) are the calculated and experimental values and the 
error of the quantity i, and N data are fitted. 

For the five pieces of data in Table 1 involving transitions between the -!- + and 
-!- - levels, the best fit values of B ln(-!- -), .,tI(-!-+ --+ -!- -) and Xmin are shown in Fig. 2b 
as functions of a. It is seen that the best fits occur for the smaller values of a, those 
for a ~ 6 fm being regarded as acceptable. Values for a = 5 fm are given in the 
last column of Table 1, and in Table 2. Reasonable changes in the data in Table 1 
involving the -!- + levels and the -!- + --+ -!- - transitions have little effect on either the 
values of the parameters or the quality of fit, except that smaller values of Xmin are 
obtained if r~(13C, -!- + --+ -!- -) is increased or (Jpy(Er) is decreased. 

100 

10 

~ 
bSo 

0·1 

0·01 

O.OOILI-i· ____ -L ____ ~~----~~----~~----~------L------J 
100 300 500 700 

Ep(keV) 

Fig. 3. The 12C(p, Yo)13N cross section U py as a function of proton 
energy Ep. The curve gives the calculated values for a channel 
radius a = 5 fm. Experimental points (plusses, Vogl 1963; 
circles, Rolfs and Azuma 1974) are renormalized to a peak cross 
section of 102 /lb. 

The values of B ln(-!- -) and .,tiC! + --+ -!- -) in Fig. 2b do not agree with the values 
Thomas (1952) obtained, which correspond to region I of his Fig. 6, but do agree 
with his alternative solution in region II (see Barker 1961). Thomas's preference for 
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region I was based mairtly on his study of the displacements of corresponding levels 
in 13Cand 13N (see Section 6). It is our inclusion of the radiative width of the 1-+ 
state of 13C in the fit that excludes parameter values corresponding to region I. 

Among the fitted data are the 12C(p, YO)13N cross section at three energies (Ep = 120 
456 and 604 keY). From the parameter values we can calculate the cross section at 
other energies. Fig. 3 shows the calculated cross section for a = 5 fm, together with 
the renormalized experimental points of Vogl (1963) and Rolfs and Azuma (1974). 
(The Rolfs and Azuma values were deduced from the S factors given in Fig. 5 of 
Rolfs and Azuma and Fig. 4 of Fox et al. (1975), since accurate values could not be 
obtained from the 0° and 90° excitation functions plotted by Rolfs and Azuma.) 
The agreement seems to be reasonable. 
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Fig. 4. Values of parameters as functions of the channel radius a: (a) 9 1nG·-), .L(t+ -+ t-) and 
Xm1n obtained by a least squares fit of the data in Table 1 and (b) 9 1n(t+) and .L(t+ -+ t-) obtained 
by fitting the data in Table 1. 

The S factor for the 12C(p, YO)13N reaction at low energies is required in astro
physical calculations. The value at Ec .m . = 25 keVhasbeengivenas S = 1'33±0'15 
keVb (Hebbard and YogI 1960) and 1·45±0·20 keVb (Rolfs and Azuma 1974). 
Since their normalization of the peak cross section was different from ours, we might 
expect a different value of S. Our best fit for a = 5 fm gives S = 1· 54 keVb, with 
estimated uncertainties of ±0'08 keVb due to experimental errors and ~g:gi keVb 
due.to an uncertainty of ± 1 . 0 fm in the value of a. Thus our S value is somewhat 
higher than the earlier values. 

Similar fits are made to the three pieces of data in Table 1 involving transitions 
between the 1-+ and t - levels. The observed width of the i-- level of 13N is not fitted 
at this stage, since its calculated value is expected to depend appreciably on the 
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contribution to the level shift from the 12C first-excited state channel, and this involves 
a further unknown parameter. The best fit values of BlnG--), ACt + --+ -t -) and 
Xmin are shown in Fig. 4a. Again the best fits occur for the smaller values of a. 
Values for a = 5 fm are given in Tables 1 and 2. Changes in the t + data or the 
-t - +-> t + transition data by the uncertainties given in Table 1 have little effect on the 
values of the parameters and the quality of fit remains acceptable. The effect oflarger 
changes in some of the data is discussed in Section 7. 

The remaining data in Table 1 involve the -t + level and its decay to the -t - level. 
It is reasonable to assume a one-level, one-channel approximation to fit the observed 
width of the -t + level of 13N, and this gives Blp(-t +) as a function of a. From this one 
obtains values of BlnG +), and from the previous fits one has B 1nG- -), so that the 
measured value of r~(13C, -t + --+ -t -) can be fitted by adjusting the remaining param
eter AG + --+ -t -). Fig. 4b shows the values of BlnG +) and the two solutions for 
AG + --+ -t -) as functions of a. 

5. Level Parameters from Shell Model Calculations and Other Experimental Data 

Figs 2 and 4 contain values of the reduced widths yin and yip for the t + .levels, 
dimensionless reduced width amplitudes B ln for the t -, -t - and -t + levels, and internal 
transition moments A(t + --+ t -), Act + --+ -t -) and AG + --+ -t -), obtained by fitting 
experimental data. Calculated values of each of these quantities may be obtained 
from shell model descriptions of the states, and values of B.lee are also available from 
single-nucleon transfer reactions, which have not been discussed so far. 

For the negative (normal) parity A = 13 states, we use the LS coupling represen
tation in the lowest (ls4 1p9) configuration, 

P 13(TMTr) = I a([A] TSLJ) P(ls41p9[A]TSLMTJ), (29) 
[.le]SL 

where T = -!-, MT = +-!-, --!- for 13C, l3N respectively, J = -!- or -t, and [A] is the 
orbital symmetry. For describing the channels consisting of an A = 12 nucleus plus 
a nucleon, we need the A = 12 wavefunctions, which we take to be normal-parity 
states of the lowest configuration, 

P 12(TMTJ) = I a([X] TSlJ) P(ls41p8[1]TSLMTJ). 
[X-]si: 

(30) 

For the present purpose, this description is required only for the 12C ground and 
first excited states (T = M T = 0, J = 0 or 2), but a more general formalism is needed 
for use in Section 6. 

The positive (non-normal) parity A = 13 states are written (Barker 1961) 

P 13(TMTr) = I b(TJjJ) P(Jj)TMTJ) , 
Ij 

(31) 

where T and MT are as before and J = -!- or -to The J in P represents the core states 
PdOOJ) of equation (30) with J = 0 or 2 only, and} is an abbreviation for nlj, with 
n! = 2s or Id. We omit other basis states that are included in some of the more 
elaborate shell model calculations for the A = 13 positive-parity states (e.g. Jager 
eta!. 1971). 
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Formulae for calculating the reduced width amplitude for a level A and a channel 
c are given by Lane (1960). These are of the form 

eM = f/icUcCa)(!a/ f: U~(r)drr, (32) 

which replaces the one-channel formula (23b). The f/ie are spectroscopic amplitudes. 
For the negative-parity A = 13 states, these are given by 

f/Ie == f/t(rMT,JTMTj) 

I a([A]!SLJ) a([J:] TSfJ) f/t([A]!SLMTJ, [J:] TSLMT Jj) , (33) 
[)']SL[:i:]SL 

where 

f/t([A]TSLMTJ, [I]TSLMTJj) 

= 3(T!MTMT -MT I TMT)<lp9[A]TSL{llp8[I] TsL, lp) 

{
s L J} 

x {(2J+l)(2j+l)(2S+l)(2L+l)}t! 1 j , 

S L J 

(34) 

involving a Clebsch-Gordan coefficient, a fractional parentage coefficient and a 9j 
symbol. The labelj is here the angular momentum of the odd lp nucleon. At present 
f/tc is required only for the 12C ground-state channel, for which j = J. For the 
positive-parity A = 13 states 

f/t(J + M T, J TM T j) = bG JjJ) 6( T, 0) 6(M T, 0) . (35) 

The uc(r) in equation (32) are taken as wavefunctions in a Woods-Saxon potential 
with the conventional parameter values ro = 1· 25 fm and a = O· 65 fm, and a uniform 
charge distribution with radius 1·25 fm, the depth in each case being chosen to fit 
the observed separation energy for a wavefunction with the correct I value and the 
appropriate number of nodes. 

Comparison between experiment and calculation is made in the values of f/Ie, 
in particular for the level labelled A = 1 and for the l2C ground-state channel labelled 
c = g. The experimental values of f/Ig for the various In values are obtained by 
making use of equations (25) and (32), and the calculated values are obtained from 
equations (33)-(35). In each case we assume f/I g > 0 and ug(a) > 0, which is con
sistent with the positive values of e AC assumed in Section 4; it also implies a certain 
sign convention for the shell model states, which must be retained in calculating 
values of A if • For the negative-parity levels, shell model values of f/lg are given by 
Cohen and Kurath (1967) and by Varma and Goldhammer (1969). For the positive
parity levels, we give only two sets of values; those of Barker (1961) represent weak
coupling calculations, while those of Jager et al. (1971) are from complete calculations 
within the space of all lliw excitations. These values are given in Table 3. Other 
calculated values are not essentially different from these. The curves in Fig. 5 show 
the experimental values of f/Ig plotted as functions of a, while the calculated values, 
which are independent of a, are indicated on the left. There is reasonable agreement 
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between the calculated and experimental values. For the 1- + case, the experimental 
value of 9'Ig obtained from the best i3N (proton) data is somewhat different from 
that from the 13C (neutron) data, but equal values can be achieved for a ;:5 6 fm when 
allowance is made for the experimental uncertainties in ro and r O( 13N, 1- +). 

Table 3. Spectroscopic factors of 13C and 13N low-lying levels for 12C ground-state channels 

.9'1, Reaction Ref.A 

1- l+ 3- t+ 2 2 2 

Calculated 

0·61 0·19 a 
0'56 0·10 b 

0·97 0·81 c 
0·89 0·81 d 

Experimental 

0·8 0·9 0·26 0·8 12C(d, p)13C e 
1'16 0·22 12C(d, p)13C f 

Q·58±0·15 0'36±0'02 12C(d,p)13C g 
1·1, 1·4 1'1, 1· 2 0'10,0'20 1'1, 1·4 12C( d, p )13C h 

0·53±0·12 12C(d, n)13N g 
0·82 13C(p, d}12C 

0·7-1·48 0·25 ~0·02 ~0'14 12CC'He, d)13N j 
0'68 12CC'He, d)13N k 
0·52 13C(d, t)12C I 
0·80 0·44 0·17 0·74 12CCLi,6Li)13C m 
0'72 12CCLi,6He)13N m 

0·25,0'40 0'38,0'61 0·23,0'37 12C(1°B,9Be)13N n 
0'66 12C(13C, 12C)13C 0 
0·81 12C(13C, 12C)13C P 

0·59±0·12 12C(13C, 12C)13C q 
0·81±0·04 12C(13C, 13C)12C r 

0·72 0·57 12C(14N,13N)13C 
0·62 0·09 0·49 12C(14N,13C)13N s 

A References: a, Cohen and Kurath (1965); b, Varma and Goldhammer (1969); c, Barker (1961); 
d, Jager et al. (1971); e, Glover and Jones (1966); f, Schiffer et al. (1967); g, Pearson et al. (1972); 
h, Darden et al. (1973); i, Taketani et al. (1968); j, Fortune et al. (1969); k, Karban et al. (1976); 
I, Ludwig et al. (1974); m, Zeller et al. (1979); n, Nair et al. (1974); 0, DeVries (1973); p, Von 
Oertzen and Bohlen (1975); q, Bennett (1976); r, Gubler et al. (1977); s, Nair et al. (1975). 

In Section 4, the observed width of the t - second excited state of i3N was not 
fitted, due to the expected importance of 12C excited-state channels. In the one-level, 
many-channel approximation, the observed width is given by 

rO = 2rigPg/ (1 + ~ ricdScldE) , (36) 

where the subscript c = g again indicates the 12C ground-state channel, which is 
the only one open, and the sum over c includes all open and closed channels. For 
c #- g, we use values of ric obtained from calculated values of 9' lc (for the POT 
interaction of Cohen and Kurath 1965). Then the value of rig in equation (36) is 
adjusted for each value of a in order to fit the measured value rO( 13N, t -) = 60± 5 
keY (see Table 1). Table 4 gives the shell model values of 9'lc for the more important 
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excited-state channels, and the corresponding values of ric dSjdE for a few values 
of a. The resultant values of gig == {glg(1-)}t are shown as a function of a by 
the dashed curve in Fig. 5, the uncertainty being of the order of 5 % due to the experi
mental error in roo There is good agreement between the value of gig obtained in 
this way and that obtained in Section 4. 

J7r=I1-
1·1 
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J 
C 
V 
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~::!! 
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~ 0·9 

0·81- Neutron 

I 'y __ r ~:'_-: _ 
0.3 V-

1.0 J7r=5f2+ 
........... 

0.9L,J 

4 6 7 
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Fig. 5. Values of the spectroscopic amplitudes .9'i. as functions 
of channel radius a, for levels with the r values indicated and 
for the 12C ground-state channel. Solid curves are experimental 
values derived from the fits shown in Figs 2 and 4. The dashed 
curve is obtained by fitting ro(13N, t -) using equation (36). Calcu
lated shell model values are indicated along the ordinate with labels 
C (Cohen and Kurath 1967), V (Varma and Goldhammer 1969), 
B (Barker 1961) and J (Jager et af. 1971). 

Analyses of single-nucleon transfer reactions by DWBA or an equivalent formalism 
also provide values of the gIg. Some of these values are collected in Table 3. It is 
seen that they vary widely, particularly for the excited 13C and 13N states, and in 
general their agreement with the theoretical values is much poorer than that indicated 
in Fig. 5. It is interesting to note that the recent work of Franey et al. (1979) on the 
12C(170,160)13C reaction, although it does not quote a value of glir) as such, 
obtains results in excellent agreement with the 12C(13C,13C)12C study by Gubler 
etal. (1977), whose value of glit -) in Table 3 is in good agreement with the experi
mental values in Fig. 5. 
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Table 4. Calculated quantities entering equation (36) for the observed width of 
the '3N t- state 

Channel c .'I"c yicdScldE 
Ex (MeV) JT a = 4fm a = 5fm a = 6fm 

4·44 20 1·143 0·250 0·093 0·036 
12·71 10 0'206 0·015 0·003 0·001 
15·11 11 0·803 0·046 0·009 0·001 
16·11 21 0·120 0'006 0·001 0·000 

Now we require a shell model formula for Aif' which appears in equations (24) 
and (26). The radiative width for an EI transition from a positive-parity bound state 
i given by equation (31) to a negative-parity bound state f given by equation (29) is 
(Blatt and Weisskopf 1952) 

o 1611: (Ey) 3 2 r/i ~ f) = ""'9 he I <Ji II Ql II J f ) I , (37) 

where 

A (N -Z ) 
Q11'.oP = te i~l ~ --rii) rei) Yll'(Q;)· (38) 

Substituting from equations (29) and (31), and making use of formulae (33)-(35), we 
obtain 

<Jill QdJf) = e(~)t~~MT _L (li lOO I10)U(lljit;l;jf) 
411: Jj;ir 

x U(lklJ;jJf) yt(Jt, h) yt(Jf-' Jjf) 

X II) r uJi.(r) uJir(r) dr / (f' uh(r) dr I'" uiJrCr) dr) t , (39) 

where yt(J"MT' JOOj) has been written yt(J",Jj). With {9q given by equation (32) 
we find that equation (37) is of the form (26) provided that 

1 
A . f = -:-:--:-::-::-:-:--:-:-----:----:--:---:-

1 (lg 100 110) U(l11i t; Iglf) 

x ( L'" u6Ji(r) dr fo
OO 

u6Jr(r) dr / f: u6Ji(r) dr f: u6Jr(r) dr r 
x L (Ii 100 110) U(llji t; Uf) U(ljflJ;jJf) yt(Jt, JjJ yt(Jf-,JM 

Jjiir 

xa- 1 J: rU]J.(r)uJir(r)dr/(I() uJj;(r)dr {OO uiJrCr)drr· (40) 

Then equation (40) is the shell model generalization of the one-channel formula (23a). 
In evaluating Aif from equation (40), we make the approximations that the 

uJk) are harmonic oscillator single-particle wavefunctions un/r), and that the upper 
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limits of the integrals in equation (40) can be extended from a to 00 (cf. similar 
approximations in Barker 1978), and assume that the same formula can be applied 
to transitions involving continuum states. Then 

A., = 1 ~ 
1 (lg 100 110) U(11].1-·/ J) _L... (li 100110) U(11ht;l.j,) 

, 12, g f Jhif 1 

X U(lj,Ji J ;ji I,) fj?t(Jt, h) fj?t(J[, Jj,) a-I In!l!' (41) 

where 

12 • = b, lId = (t)tb, (42) 

and b is the harmonic oscillator length parameter.* Thus 

Act + -> r) = ba-l[fj?t(! +, O!) fj?tct -, O-D 

{ I 1 rpt(l + 23) 6 1 1 rpt(1 + 2S)} rpt(1 - 23)] + - '\I TOJ "2,"2 + '\I TIJ "2 , "2 07 2","2 , (43a) 

AG+ -> ~-) = ba-l[fj?t(!+,O!)fj?t(~-,O~) -!.J5fj?t(!+,2~)fj?tG-,2!) 

- Il ,,;>t(l. + 2~) fj?t(~ - 2~) - 3 1 ~fj?t(.1 + 25-) fj?t(~ - 2~)] '\Is J 2' 2 2' 2 '\130 2, 2 2,2, 

(43b) 

A(1+ -> r) = ba-l[!.JlOfj?tG+,O-i)fj?t(r,O~) -tfj?t(-i+,2!)fj?~(r,2!) 

J< 

1-
"2: 

i-
t+ 
t+ 

- .1fj?t(5+ 2.1) fj?t(~ - 2~) +.1 13 5 fj?t(~ + 2~) fj?t(~ - 2.1) 3 2, 2 2, 2 6'\1 2 ,2 2, 2 

-~ 135fj?t(~ + 2~) fj?t(~ - 2~) +l 135fj?t(~ + 2~) fj?t(~ - 23 )] 
1 s'\l 2 ,2 2, 2 s'\l 2 ,2 2,"2· 

(43c) 

Table 5. Shell model values of spectroscopic amplitudes Sf't(JR, Jj) 

J= 0 
j= t i f 

0·783 
0·433 

0·943 
0·899 

t 

0·910 

0·149 

2 
3 
"2: 

-1·059 
0·561 

0·120 
-0·095 

f 

0·270 
-0·373 

Values of fj?t(J-, Jj) for the POT interaction of Cohen and Kurath (1965) and of 
fj?t(I+, Jj) from Jager et al. (1971) are given in Table 5. With these values, the 
coefficients of bla in the expressions (43) for AG + -> r), A(! + -> r) and 
A(1 + -> ~ -) are 0·336, 0 ·173 and 0·186 respectively. With b = 1·67 fm from 
elastic electron scattering on 12C (Ajzenberg-Selove 1976), these values of A are 
plotted as dashed curves in Fig. 6 as functions of a, while the solid curves give the 
best fit values from Section 4. 

* For consistency with our convention that uc(a) > 0 for the 12C ground-state channel, we have to 
choose the sign of u2,(r) opposite to that in Barker (1961); otherwise, our sign conventions are the 
same regarding the order of coupling of angular momenta. 
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Fig. 6. Values of El internal transition moments .It as functions 
of the channel radius a, for the transitions indicated. Solid curves 
are experimental values derived from the fits shown in Figs 2 and 
4, using the upper solution in the t + -> t - case since this gives 
better agreement. Dashed curves give the calculated shell model 
values. 

It is seen that there is agreement between calculated and experimental values of 
JI(-!- + -+ -!- -) for a >:::: 5· 5 fm, but this particular value is probably not very significant. 
The calculated values are very sensitive to the values of 9" jH + ,Jj); for example, they 
are increased by a factor of 1· 6 if these 9" values are taken from Barker (1961), and 
by a factor of 2·3 if the one-channel approximation is used for the -!- + level (9"~H + , 

O-!-) = 1). Thus agreement could be obtained for smaller values of a, which are 
favoured from the fits in Section 4, if 9"~H + ,O-!-) were somewhat smaller than the 
value of Jager et af. (1971). Additional support for this comes from Fig. 5. 

The calculated and experimental values of JIG + -+ 1--) are quite different. The 
small calculated value is due to cancellation between the term having the 12e ground 
state as parent and those having the 12e excited state as parent, being only about 
40 % of the value in the one-channel approximation. Even this, however, is less than 
the experimental value, and agreement would require 12e ground- and excited-state 
contributions of the same sign. This discrepancy is discussed further in Section 7. 
Similarly, the calculated values of JI(1 + -+ 1--) are sensitive to 9"t(! +, Jj), the value 
for the 9" values of Jager et af. being only 27 % of that obtained with 9"t(! + ,01) = 1. 
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6. Coulomb Displacement Energies 

In Fig. 1, the level energies of 13C and 13N are adjusted to make the ground-state 
energies the same. The actual binding-energy difference between analogue states of 
the same J", known as the Coulomb displacement energy, is defined by 

AEdJ") = M(13N,J") _M(13C,J") +bop , (44) 

where bop is the neutron-proton mass difference and all masses are atomic masses. 
The experimental values of AEc for the 1- -, t +, t - and t + states shown in Fig. 1 are 
3003, 2280, 2830 and 2696 keY respectively (Ajzenberg-Selove 1976). 

Thomas (1952) attempted to fit the net displacements of these levels, i.e. the differ
ences of the Coulomb displacement energy for each pair of excited states from that for 
the ground states. These are the energy differences apparent in Fig. 1. Thomas 
considered three contributions to the net displacements, resulting from the internal 
Coulomb interaction, the electromagnetic spin-orbit interaction and the different 
external wavefunctions in 13C and 13N. The last contribution he also called the bound
ary-condition level displacement. The internal Coulomb energies were not calculated 
but were estimated to vary by not more than ±200 keY in the different states. The 
other two contributions were calculated assuming that each state could be represented 
as a single nucleon outside an inert 12C ground-state core. The depression of the 
1-+ state in 13N relative to that in 13C was attributed mainly to the boundary-condition 
contribution, i.e. the Thomas-Ehrman effect. 

Coulomb displacement energies have been studied in other mirror systems, and 
many different contributions to them have been considered. In a recent review 
article, Shlomo (1978) lists and discusses these contributions, in particular for systems 
with one particle or one hole outside closed shells. He finds that, in first-order 
perturbation theory, the inclusion of various correctio.n terms (see Table 6 of Shlomo 
1978) does not remove the discrepancy between calculated and experimental Coulomb 
displacement energies that exists for the point Coulomb interaction alone; this is the 
Okamoto-Nolen-Schiffer anomaly. Shlomo considers also higher order perturbation 
effects, such as isospin mixing in the core, and suggests that the discrepancy of about 
7 % still remaining may, for the lighter mirror nuclei, be attributed largely to charge
symmetry-breaking nuclear potentials. 

We now calculate the Coulomb displacement energies for the 13N_13C pairs of 
levels, including the point Coulomb contribution and the various correction terms of 
Shlomo (1978) in first-order perturbation theory, but omitting higher order pertur
bation effects and charge-symmetry-breaking nuclear potentials. Thus we should 
not expect to obtain quantitative agreement with the experimental values. Because 
we.use shell model wavefunctions (Cohen and Kurath 1965; Jager et al. 1971), the 
calculation of some contributions is more complicated than in the cases considered 
by Shlomo. In particular, the boundary-condition contribution, which Shlomo 
obtained by taking the difference of matrix elements of the Coulomb interaction 
calculated with harmonic oscillator and Woods-Saxon potentials, is calculated here 
using the Bloch operator (Bloch 1957; Lane and Robson 1966). Following the 
procedure and notation of Barker (1978), we write for each J" value 

HPMT = EMT PMT , (45a) 

with 
!l'(SMT) PMT = 0, (45b) 
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where His the total Hamiltonian, ~(S) the Bloch operator and M T = + t, - t for 13C, 
l3N respectively. The eigenfunctions PM T are expanded in terms of states P Tn( M T) 

of good isospin T, 

PMT = L AL-~ PTn(MT), (46) 
Tn 

which satisfy 

HO PTn(MT) = E~n PTnCMT), ~(STn) PrnCMT) = 0, (47a, b) 

where 
H = HO+H e , (48) 

and HO is the charge-independent part of the Hamiltonian. The E~n and STn are 
independent of M To so that the dependence of P Tn(M T) on M T is trivial, whereas 
the dependence of PM T on M T is all important. Then to first order in the charge
dependent effects (He and SMT - STn), one has 

EMT = E~l + (Ptl(MT) I He +~(SMT) -~(Stl) IP.u(MT). (49) 

Then the Coulomb displacement energy is given by 

AEc == E_t-Et = AHe+AL, (50) 

where 

AHe = (Ptl(-t)IHeIPtl(-t) -(Ptl(DIHeIPtlm), (5Ia) 

AL = (Ptt ( -t) I ~(S_t)-~(Stl) IPtl( -t) -(PtlH) I ~(St)-~(Stl) IPtlH). 
(5Ib) 

We include contributions to AL from the nucleon channels c == emt, for which 

(c IPtl(MT) = u~(rc) Y't(TtMT -mtmt I tMT ), 

so that 

AL = - L~u~(aJY'L'L {(Tt -t-mt mt l1- -tYS_tCemt) 
c 2mcac . m, 

(52) 

-(Ttt-mtmt I tt)2 St(emt)}. (53) 

Terms in AL containing Stl vanish. We include contributions to AL from the channels 
involving A = 12 levels identified as belonging to the lowest shell model configuration 
(Cohen and Kurath 1965), i.e. the lowest 0 +, 2 + and 1 + T = 0 states of l2C at 0·0, 
4·44 and 12·71 MeV, and the lowest two T = 1 states (1 + and 2+) of the l2B, 12C 
and l2N triad (at 15·11 and 16·11 MeV in 12 C). The separate contributions to AL 
are listed in Table 6 for a particular choice of channel radius ac = 5 fm. The depen
dence on ac is discussed later. 

Contributions to AHe are calculated for the point Coulomb interaction and the 
correction terms discussed by Shlomo (1978). Matrix elements of the Coulomb 
interaction are calculated with harmonic oscillator radial wavefunctions as discussed 
by Barker (1978), using standard shell model techniques, as are those of the magnetic 
interactions. Other contributions are evaluated as in Shlomo (1978). The results 
are given in Table 6. The shell model wavefunctions are those of Cohen and Kurath 
(1965) with the POT interaction for the negative-parity states and those of Jager 
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et al. (1971) for the positive-parity states (including only the 12C 0+ and 2+ T = 0 
states as core states). The harmonic oscillator parameter is taken as b = 1· 67 fm, 
as before. 

Table 6. Contributions (in keV) to Coulomb displacement energies for 1 3 C and 13N levels 

Contribution JX = 1- t+ t- t+ "Z 

Point Coulomb 2916 2828 2929 2707 
Boundary condition (ac = 5 fm) 

channel 0+, T = 0 -80 -623 -111 -201 
2+, T = 0 -52 -3 -105 -14 
1 +, T = 0 -8 0 -4 0 
1 +, T = 1 4 0 4 0 
2+, T = 1 6 0 1 0 

Total -130 -626 -215 -215 
Centre-of-mass motion -84 -67 -82 -75 
Finite size of proton 107 88 104 95 
Finite size of neutron -49 -50 -50 -45 

" 

Magnetic interactions 

orbit-orbit 4·5 18·8 3·9 4'6 
spin-orbit 42 -6 56 -63 
tensor 1·5 0 0·5 0 
pp(r) term 0·3 3·2 0·8 4·3 
Total 48 16 61 -54 

Vacuum polarization 17 13 16 15 
p-n mass difference 26 36 26 36 
Short-range correlation 59 24 52 30 
Total (calc.) 2910 2262 2841 2494 
Experimental 3003 2280 2830 2696 
Discrepancy 93 18 -11 202 

Some comments may be made on the values in Table 6 in relation to the calcula
tions of Thomas (1952). Although Thomas did not consider many of the terms that 
give large contributions to the Coulomb displacement energies, he did include those 
that contribute most to the net displacements. He included the boundary-condition 
contribution only for the 12C ground-state channels, obtaining values close to those 
in Table 6 except for the t - states. For these, in order to obtain a better fit to the 
net displacement for the 1- levels, he preferred a solution with a small reduced width 
of the t - states (corresponding to his region I) rather than the solution with larger 
reduced width (region II), and so obtained a contribution of only - 27 keY. Such 
a small reduced width is, however, in conflict with more recent experimental and 
calculated values (see Section 4 and Fig. 5). The spin-orbit contributions in Table 6 
agree reasonably with the values obtained by Thomas, except for the 1- states for 
which his value was - 20 keY. This disagreement indicates the deficiency of Thomas's 
model for the! - states of a P3/2 nucleon outside a spin-zero core. 

The discrepancies between the calculated and experimental values of the Coulomb 
displacement energies, which are shown at the bottom of Table 6, appear to be less 
systematic than the 3-9 % deviation obtained by Shlomo (1978) for other mirror 
systems (see his Table 6). In part this could be the result of the sensitive dependence 
of our calculated values on the choice of channel radius (due to the dependence of 
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the boundary-condition contributions). If the channel radius is changed from 5 to 
4·5 fm, the discrepancies in Table 6 are changed to 167, 166, 66 and 267 ke V respec
tively, which are 2-11 % of the total values. The sensitive dependence of AEc on 
channel radius in our calculation is not apparent in Shlomo's calculation where the 
boundary-condition contribution is calculated in a different way. If we use our 
approach for the A = 17 cases considered by Shlomo with his simple wavefunctions, 
then we get agreement with his boundary-condition contributions of about - 100 
and - 570 ke V for the ~ + and 1- + levels, for channel radii of 5·2 and 4·6 fm respec
tively. (Note that these are not values of Shlomo's Coulomb perturbation effect, 
which he refers to as the Thomas-Ehrman effect.) 

Thus it seems that for reasonable values of the channel radius, the discrepancies 
between calculated and experimental values of the Coulomb displacement energies 
for these pairs of levels in 13C and 13N are not inconsistent with those found by 
Shlomo in other light nuclei, and presumably they can likewise be attributed to a 
part of the charge-symmetry-breaking nuclear potential. 

7. Discussion 
The properties of the low-lying levels of 13C and 13N that have aroused most 

interest in the past are the marked difference in excitation energies of the 1- + first 
excited states (Fig. I) and the very different strengths of the E I transitions from these 
1-+ states to the 1- - ground states (Table 2). These differences would not exist if there 
were exact charge symmetry of all nuclear forces. 

We have attempted to fit these and other properties of the 1-+ and 1- - levels in a 
consistent R-matrix description with a two-level approximation for the 1- + levels 
and a one-level approximation for the 1- - levels, and to relate the resultant level 
parameters with those obtained from shell model calculations. Departures from 
charge symmetry were obtained by including effects of the Coulomb and other electro
magnetic interactions and of binding energy differences. An exact fit to the 1- + 

excitation energy difference was not sought, since we did not include the effects of a 
charge-symmetry-breaking nuclear potential, which is believed to contribute to 
Coulomb displacement energies in other cases of light mirror nuclei (Shlomo 1978); 
nevertheless, the main part of the energy difference appears to be attributable to the 
boundary-condition contribution (Thomas-Ehrman effect), as found previously 
(Thomas 1952). 

A least squares fit of all the properties involving the 1-+ and 1- - levels gives a good 
account of the different El strengths of the 1-+ ~ 1- - transitions (Table 2), with level 
parameters agreeing reasonably with shell model values (Figs 5 and 6). In previous 
discussions of the different El strengths, it was initially suggested (Robinson et al. 
1968; Warburton and Weneser 1969) that the asymmetry was due to differences in 
the external radial wavefunctions for the 1-+ states, which are indicated by the large 
Thomas-Ehrman shift. However Marrs et al. (1975), using a simple one-body model 
for the 1-+ and 1- - states, with Woods-Saxon wells generating the radial wavefunc
tions, found no difference in the strengths of the two transitions. They concluded 
that simple binding energy effects of this kind could not explain the large asymmetry, 
and that charge-dependent configuration mixing was required. Kurath (1975) took 
up this suggestion and assumed that the expansion coefficients in the description (31) 
of the 1-+ states were different for 13C and UN, the difference being due to their 
different binding energies. Kurath, however, used inconsistent definitions of B(E1) 
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in deriving his calculated and experimental values. The experimental values he quotes 
are in units of fm2. For consistency the factor e2 in his equation (2) should then be 
replaced by (6/13)2. Fitting the experimental values then requires as = O' 99, ad = 0·15 
for 13C and as = 0,99, ad = -0'11 for 13N, and Kurath's argument does not explain 
the difference in sign of the ad values. This difficulty can be overcome by extending 
the weak-coupling model for the t + state by the inclusion of a third component, 
a dS/ 2 nucleon coupled to the lowest 2+ T = 1 state (D. Kurath, personal communi
cation). Fox et al. (1975) used a coupled-channels approach, but this work is still 
unpublished. In the present treatment, the source of the different strengths is best 
discussed in terms of equation (26), applied to the t + ~ t-- transitions in 13C and 
13N. The factorhr gives no difference in the strengths, which are obtained by dividing 
r~ by E;. The internal transition moment .Air is assumed to be the same for each 
transition, and also the factors Nr and er for the t - state and e i for the t + state 
are approximately the same. The difference comes from the factors Ni (for the t + 
state) and Jir. For example, for a = 5 fm, one has N ie3N)/Nl13C) = 0·66 and 
Jire3N)/Jir(13C) = 2· 25. In order to fit the observed asymmetry, one then needs 
the internal contributions to be small compared with the channel contributions. 
This is expected from the shell model calculations of Cohen and Kurath (1965) 
and Jager et al. (1971), which predict a small value of .Air due to the terms involving 
the 12C excited state as parent, largely cancelling the term involving the 12C ground 
state (see equation 43a). 

In similar fits to properties involving also the i-and 1-+ low-lying levels, the 
experimental data can be satisfactorily fitted (Table 1 and Fig. 4a), but the resultant 
level parameters do not all agree with shell model values (Figs 5 and 6). We note 
particularly the 1- - ~ t + El transitions, which experimentally have about equal 
strengths in 13C and 13N (Table 2). The calculations do not automatically suggest 
equal strengths, since Nr(13N)/Nr(13C) = 0·66 and Jire3N)/Jir(13C) = 1·69. Equal 
strengths then require a relatively large value of .Air, which disagrees with the shell 
model value (Fig. 6). Better agreement would be obtained if earlier experimental 
values of branching ratios were used rather than those assumed in Section 2, i.e. 
for the 13C transition O' 65 ± O' 1 % (Kane et al. 1960) rather than 1· 6 ± 0·3 % (Tryti 
et al. 1975), and for 13N 5 ± 1 % (Woodbury et al. 1954) rather than 8 ± 1 % (Rolfs 
and Azuma 1974). These would require a smaller experimental value of .A(t + ~ 1- -). 
Agreement with the other quantity involving the 1-- and t + levels, Un/thermal), 
could then be retained by slight adjustment in the value of e In(1- -), since the channel 
contribution dominates the internal contribution in this case. The experimental 
value of e1n(F) agrees better with the shell model value of Varma and Goldhammer 
(1969) than with that of Cohen and Kurath (1967) (see Fig. 5), suggesting that the 
former gives a better description of the 1- - state, which might lead to a better value 
of .A(t + ~ ~r). We have, however, been unable to reproduce the results of Varma 
and Goldhammer using the interaction of Goldhammer et al. (1968). Alternativel,y, 
the discrepancies in the .Act + ~ 1- -) and e 1nG -) values may be due to approxima~ 
tions made in our calculations, such as the use of Ehrenfest's theorem in evaluating 
the external contribution to this 13N transition, or the assumption that external 
contributions come only from the 12C ground-state channel; the latter is particularly 
significant for transitions involving the 1- - levels since their reduced width for the 
12C ground-state channel is much less than for the 12C first-excited state channel 
(see Tables 3 and 4). 
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In summary, acceptable R-matrix fits have been obtained to observed properties 
of the low-lying levels of 13C and 13N, including the different excitation energies of 
the t + states and their different El decay strengths. The resultant parameter values 
agree reasonably with shell model predictions, except for quantities involving the 
t- levels. 
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Note added in proof 

In using equation (27) to calculate r~(i-+f) for the r -+ t + transition in 13N, we 
took uk) from equation (15). Holt et al. (1978) have shown that, for this purpose, 
uq(r) should rather have the form of outgoing waves, 

uk) oc G1q(r) +iFlq(r) (r ~ a, q = i, f) , 

since only the resonant part of the channel contribution to ay(i-+f) should be included 
when comparison is made with the one-level approximation in order to extract a 
formula for the radiative width. Consequently, the fits to the t - -+ t + data are 
changed from those shown in Fig. 4a; the quality of fit is much poorer, with Xmin ~ 2 
for a ;;5 5 fm, although the values of BInG -) and A(t + -+t -) are reduced only 
slightly. In these fits a 13C t - -+ t + branching ratio of 1 ·6 ± 0·3 % (Tryti et al. 1975) 
has been used. A recent measurement of the branching ratio (Warburton et al. 1980) 
gives 0·75 ± O' 04 %, in agreement with the early value of O· 65 ± 0·1 % (Kane et al. 
1960). Use of this new value leads to much better fits, with Xmin ;;5 O' 2 for a ;;5 6 fm. 
Values given in Table 2 for the t - -+ t + transitions are changed, with the ratios 
becoming 2·47±0·68 (experiment) and 2·34 (calculated). The B values are about 
10 % below those of Fig. 4a, while the A values are much reduced, particularly at 
the smaller channel radii (e.g. A ~ 0'09, 0·10 for a = 4'5, 5·Ofm). These values 
of A are in much better agreement with the shell model prediction (Fig. 6). 
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