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Abstract 
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The Einstein-Maxwell field equations characterizing a spherically symmetric charged dust distnbution 
are solved exactly without imposing any mathematical condition on them. The solution is expressed 
in terms of two arbitrary variables and these can be chosen to correspond to an arbitrary ratio of 
charge density to mass density, thus allowing the possibility of understanding the interior of the 
horizon in a more precise manner. 

Introduction 

In the study of a static charged dust distribution in general relativity, the condition 
of equality between the magnitudes of charge density and mass density has the 
advantage of reducing the static Einstein-Maxwell field equations to a single nonlinear 
equation (Das 1962). The existence of a nonsingular solution to this equation which 
could be. matched with the extreme Reissner-Nordstrom solution (Le. where charge 
Q and mass M densities are equal) led Bonnor (1965) to conclude that the presence 
of charge can halt gravitational collapse. But it is a well known fact that a static 
charged dust distribution ultimately collapses under perturbation (De 1968; Hamoui 
1969). The theory of gravitational collapse suggests that a material charged sphere, 
whose exterior is represented by the Reissner-Nordstrom metric 

(1 -2Mr-1 +Q2r -2)-1(dr)2 +r2(dO)2 +r2 sin20(d4»2 -(1 -2Mr-1 +Q2r-2)(dt)2, 

can only undergo gravitational collapse if the condition Q2 < M2 is satisfied, since 
the cosmic censorship hypothesis (Penrose 1969) rules out the physical validity of 
the conditions Q2 > M2 and Q2 = M2 (Carter 1973,p. 85). In view of this the 
charged dust sphere in which the magnitUde of the ratio of charge to matter density 
is less than unity warrants a detailed study to understand more fully the interior of 
the horizon. This means we are required initially to find the spherically symmetric 
exact solution of the Einstein-Maxwell field equations. 

In the present paper the Einstein-Maxwell field equations corresponding to the 
spherically symmetric static metric are exactly solved. It is shown that the field 
variables can be expressed in terms of two arbitrarily chosen functions. Since the 
approach is very general, it includes both the possibilities I alp I < 1 and I alp I > 1 
and in the limiting case leads to I alp I = 1, where a and p are the charge and mass 
densities respectively. 
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Field Equations 

The Einstein-Maxwell field equations characterizing the spherically symmetric 
static charged dust distribution are 

113 + 1132 -1 1 13 4 ( -P ,/,2 , a) "2 ,11 4 ,1 -r IX,1 -4IX ,1 ,1 = n e '1',1 -p e , 

-1 +r2ea{r-2 +tr-1(f3,1 -IX,1)} = -4n(e-Pt/I~1 +p'r2), 

113 +1132 + -113 1 13 -4 (-P./,2 + ' a) "2 ,11 4 ,1 r ,1 -4IX ,1,1 - n e '1',1 p e , 

t/I,l1 -1IX ,1 t/I,1 +2r-1t/1,1 -113,1 t/I,1 = (Jea+ 1P , 

where the spherically symmetric static metric is chosen in the canonical form as 

ea( dr)2 + r2( d8)2 + r2 sin28( d¢)2 - eP( dt)2 . 

(la) 

(lb) 

(I c) 

(ld) 

(2) 

The variables IX and 13 are functions only of rand p' = pIJ4n, and the other variables 
have their usual meaning. A subscript 1 following a comma in equations (1) denotes 
differentiation with respect to r. 

Solution 

As mentioned in the Introduction, our object is to solve the field equations (1) 
without imposing any mathematical conditions on them. To effect this we introduce 
an auxiliary function F such that 

eP = 4neF(t/I±J2)2. (3) 

In view of equation (3),13 is eliminated in terms of F and t/I and the equations (la)-(ld) 
reduce to respectively 

~ -r-1IX _ IX,1 t/I,1 _ e-F(~)2 -l.F _l.F2 _ F,1 t/I,l 
t/I±J2 ,1 2(t/I±J2) - t/I±"j2 2 ,11 4 ,1 t/I±"j2 

+iIX,1 F,1 -4np'ea , (4a) 

r- 2(1-ea) + r- 1t/1,1 -l.r- 1IX = _e-F(~)2 -l.r- 1F -4np'ea (4b) 
t/I±J2 2 ,1 t/I±J2 2 ,1 , 

t/I,l1 2r- 1t/1,1 
t/I±J2 + t/I±J2 

IX,1t/1,1 = e-F(~)2 l. 
2(t/I±J2) t/I±J2 -2F ,l1 -tF~l -r- 1F,1 

+ 1 F F,1 t/I,1 + 4 ' a (4 ) 
4IX,1 ,1 - t/I±J2 np e , c 

'1',11 ,1 '1',1 '1',1 ,1 '1',1 '1',1 ./, IX ,I, 2r- 1./, F ./, ('/') 2 

t/I±J2 2(t/I±J2) + t/I±J2 - 2(t/I±J2) - t/I±J2 

±(J J(4n)ea +tF . (4d) 
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For convenience in further calculation and to highlight the significance of the 
variable F, we subtract equation (4d) from (4c) to give 

IF +IF2 + -IF + 3F,1t/!,1 1 F _ (-F 1)( t/!,1 )2 
2:,11 <r,1 r ,1 2(t/!±J2) -<rex ,l .1 - e - t/!±J2 

+4np'ea =+= 0' J(4n)edtF . (5) 

It can be verified that for F = 0, equation (5) suggests that the absolute value of the 
. ratio of charge to matter density is unity, whereas equation (3) reduces to the well
known relationship between the 4--4 component of the static metric and the electro
static scalar t/! obtained by De and Raychaudhuri (1968). In view of equation (5), 
we drop equation (4d) and consider equations (4a), (4b), (4c) and (5) for our further 
calculation. Subtracting equation (4a) from (4c), we get 

2r -1t/! 
r- 1ex + ,1 +r-1F = 8np'ea. 

,1 t/!±J2 ,1 
(6) 

On eliminating 1X,1 from equations (4b) and (6), we find ea to be fully expressed in 
terms of t/!, F and their derivatives as 

r-2ea = (r-l +.iF +~)2 +e-F(~)2 _ (~+l.F )2 
2 ,1 t/!±J2 t/!±.J2 t/!±J2 2,1 , 

which can be reduced to the very compact form 

where 

ea = r2(K2 +MN), 

t/!,1 
K = r- 1 +tF,l + t/!±.j2' 

- 'F./, .(, 
M_ e 2'1',1+ IF + '1',1 

- t/!±J2 2:,1 t/!±J2' 

N - e- tFt/!,l -.iF -~ 
- t/!±J2 2,1 t/!±J2' 

(7) 

It can be verified that F = ° implies N = 0. In view of equations (6) and (7), we 
drop equations (4a) and (4b) and instead consider (4c), (5), (6) and (7) for our further 
calculation. Using equation (7) to eliminate ex in terms of K, M and N from equations 
(4c) and (6), and then adding, we get 

r2(K2 +MN)K,l -tKr2(2KK,1 +NM,l +MN,l) = r2MN(K2 +MN) , . 

which reduces to 
K2 +K 1 -tKL 1 = eL , , , (8) 

where the function L is defined by eL = K2 +MN. In terms of L, equations (5) and 
(6) become respectively 

tF,l1 -tF~l +tKF,l +K2 -tL,l F,l = eL{1 +4np'r2 + 0' J(4n)r 2etF }, (9) 

K +tL 1 = 4np'r3eL • (10) . , 
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Thus our field equations reduce to equations (8), (9) and (10). In view of equation 
(8), we introduce a variable P defined by 

e~ = r2eL = r2 K 2eP , 

so that equation (8) reduces simply to 

2K = p,l/(l-eP) (p "# 0). 

Substituting this value of K into 

K= r- 1 +tF,l +l/J,l/(l/J±J2) 

and integrating, gives us the direct relationship between efl and p, 

efl = 4nA2eP/r 2(1-eP), 

(11) 

(12) 

(13) 

where A is an arbitrary constant of integration. It is worth noting that equation (13) 
places a restriction on p such that eP < 1. In terms of K and p, equations (9) and 
(10) reduce to respectively 

tF,l1 -tF;l +tF,l KeP +K2 -tK,l F,l K- 1 = K2 eP{l +4np'r2 =+= 0" J(4n)r2etF }, 
(14) 

K2 +K,l +tKp,l = 4np'r3K3eP. (15) 

It can be easily verified that F = 0 implies p = 0 (via N = 0), such that equation 
(12) is identically satisfied for all values of K and equation (14) implies 

O"/p=±I, 
whereas equation (15) reduces to 

K2 +K,l = 4np'r3K 3, 

which admits Bonnor's (1965) nonsingular solution. Thus for p "# 0 (which implies 
F "# 0), the final set of equations governing the equilibrium configuration of the 
spherically symmetric static charged dust distribution comprises equations (12), (14) 
and (15). Since these three equations involve the five unknown parameters K, p, 
p', 0" and F, yet to be determined, any two of them can be chosen arbitrarily. It is 
convenient to choose p and F arbitrarily as this choice does not require us to integrate 
equations (12), (14) and (15) to determine the rest of the unknowns; rather by simply 
substituting the chosen values of p and F, the parameters 0", p' and K are determined. 
Thus, the original field variables (r:/., fl, l/J, p, 0") can be expressed in terms of p and F 
with the help of equations (11), (13), (3), (15) and (14) as 

e~ = tr2ePp;l/(1 - eP? , 

l/J = +J2 ±Aet (P-F)/rJ(1 -eP), 

efl = 4nA2eP/r 2(1-eP), 

r- 3e- p (1 -ep)2(2P,l1 p,l(2 +ep)) p = __ __ __ +::....c::...,------,-
-In P,l P,l 1 -eP , 

r- 2e-(p+tFJ(1 -ep)2{ (2P epp ) 
0" = ± /4) -- F2l -2F 11 +F 1 ~ +-1 ,lp 

'V ( n P,l ' , , P,l -e 

+~(2P'll + 2 +eP 
) _ P;l }. 

r P 1 _ePP,l 1 -eP 
,1 
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The expression for the ratio of charge to matter density then reduces to 

p 
±!re-tF{F21 -2F +F (2P,11 + epp,l) 

, ,11,1 1 P,l -eP 

(J 

2(2P,11 2 +eP ) P~l}/ (2P,11 2 +eP ) +- --+--P --- --+--P r P,l 1 -eP ,1 1 -eP P,l 1 -eP ,1 • 

It is interesting to observe that when the space-time variables oc and f3 and the matter 
variable p are completely determined by p, the electromagnetic variables '" and (J 

require both P and F to be completely determined. This reflects the physical character 
of these auxiliary functions p and F, which separate the space-time-matter part 
from the electromagnetic part so distinctly. 

Conclusions 

The most general solution to Einstein's field equations characterizing the static 
charged dust sphere has been presented. This solution generates a class of particular 
solutions when the arbitrary functions p and F are suitably assigned. Only the solution 
of this class that can be smoothly matched to the Reissner-Nordstrom metric at the 
surface has been considered for the physical study of the interior. In a forthcoming 
paper, this aspect of the solution shall be studied in detail. 
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