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Abstract 

An examination of the delocalization of the interface in a three-dimensional simple cubic lattice-gas 
Ising system as a function of the temperature is made using cluster models formulated in terms of 
the low-order lattice correlations of the Ising system. By regarding the cluster as a sample from the 
infinite system, the lattice correlations used in the analysis may be computed in a self-consistent 
manner by taking the correlations defined for the cluster as estimates of the corresponding correlations 
for the infinite system: The important result to come from the present analysis is that, provided 
the cluster properly samples the three-dimensional nature of the infinite system, a comparatively 
small cluster, while not actually yielding an interface critical temperature, can be made to realize a 
good representation of the interface delocalization as a function of temperature. 

1. Introduction 

The lattice-gas Ising model with nearest-neighbour interactions provides one of 
the simplest representations of interfaces between solid and solid, the interface being 
identified as that region lying between a region of mostly up-spins and a region of 
mostly down-spins. In the theoretical study of this model the most important result 
for the three-dimensional case is that of Dobrushin (1972) who showed that at a 
sufficiently low temperature, and with the appropriate symmetry-breaking boundary 
conditions, the simple cubic (s.c.) lattice system possesses an interface which is 
highly localized and remains so up to the two-dimensional critical temperature 
Te(2). Furthermore, it can be shown (van Beijeren 1975) that Te(2) is in fact a lower 
bound for the stability of the interface. The situation in two dimensions is quite 
different and we have the important result of Galavotti (1972) who has proved that, 
for the square Ising model, there always exist large fluctuations which cause the 
interface to become delocalized at all temperatures. That is, the delocalization of 
the interface in two dimensions occurs at zero temperature. 

The existence of a nonzero temperature below which the three-dimensional Ising 
interface is localized suggests that this interface might become delocalized somewhere 
above this temperature-that is, a surface phase transition might occur. Some low­
temperature expansions of moments of density gradients for the s.c. system have 
been made by Weeks et al. (1973), and the results obtained do in fact suggest that 
the interface thickness diverges at a temperature around 0·5 Te(3), which is very 
close to Te(2). Leamy et al. (1973) have simulated the (100) s.c. lattice-gas interface 
using Monte Carlo methods and the results obtained support those obtained from 
the series expansions. We have repeated these Monte Carlo simulations using a 



1018 C. H. J. Johnson 

more stable ensemble method of simulation (Johnson 1978b) and find that the inter­
face phase transition occurs a little above 0·5 Te(3). The existence of a critical tem­
perature for the interface in three dimensions is rather surprising, particularly in view 
of the Galavotti (1972) result for two dimensions. However, the truth of the result 
is reinforced by the argument by analogy, given originally by Burton et al. (1951) 
and presented again by Weeks et al. (1973). Here it is proposed that in three dimensions 
the boundary plane between two aligned spin regions probably behaves like a two­
dimensional Ising system for which the critical temperature Te(2) = 0·502 ... Te(3). 
On the other hand, in a two-dimensional system the interface is one dimensional 
and so the critical temperature is at zero and hence the interface is unstable at all 
positive temperatures. 

Experimentally, it is difficult to observe interfacial phase transitions, particularly 
in solids, and indirect evidence is often the best that can be obtained. For example, 
Kidner (1966) showed experimentally that at a sufficiently high temperature, but 
below the melting points of the metals involved, copper, silver and gold could all 
diffuse interstitially in lead, and in fact form interstitial solutions, despite the fact 
that the available (geometric interstitial) space would appear to preclude this. Again, 
if a gold layer is clamped against a ceramic surface, say, magnesium oxide, and they 
are both heated to a temperature just below the melting point of gold, held there for 
an hour or so and then cooled to room temperature, the gold is found to be bonded 
to the ceramic, the bonding layer being very thin but of high mechanical strength 
(de Bruin et al. 1972). The results of both these experiments can clearly be interpreted 
in terms of interfacial phase transitions. The mobility of the metal atoms increases 
as the critical region is reached and this must allow mixing to take place. This mixing 
is an irreversible process so that, in the metal-ceramic system for example, the bonding 
would appear to form as a direct result of the interface transition. 

In this paper, we discuss some simple cluster models which can readily be used 
to examine interfacial phase transitions and so obtain estimates of critical temperatures, 
and for the metal-ceramic bonding system in particular, estimates of the bond 
strength, as expressed in terms of interfacial excess energy. To examine these models 
we consider the structure of the (100) interface in an s.c. Ising system as a function 
of temperature. The layers of lattice sites parallel to the (100) dividing surface are 
assumed to be unbounded with the lattice site correlations (hereafter simply correla­
tions) varying across the layers only. That is, the space variation is across the layers 
only and so the system is in effect one dimensional. Proceeding away from the dividing 
surface on the one side, the layers eventually contain all up-spins, while on the other 
side the layers eventually contain all down-spins. 

Consider a cluster of lattice sites, not all necessarily lying in the same layer. First, 
compute the probability distribution function (p.d.f.) for a given state (configuration) 
of the cluster particles by taking the p.d.f. for the entire system and (formally) 
contracting over the states of all the particles lying outside the cluster. In the course 
of this contracting, in order to estimate the total energy, the interactions between 

. the cluster particles and the nearest-neighbour external particles must be determined. 
Regarding the cluster as a sample from the infinite system, we assert that the states 
of the external particles are not arbitrary but depend in probability on the current 
state of the cluster particles. Accordingly, we estimate the states of the nearest­
neighbour external particles (all that is necessary here, since this is the range of the 
interaction) using p.d.f.s whose moments-that is, correlations-are equal to those 



--------------_. ""-"'--"'""""'"..,"""""""'-'"""""",~~="'"""""'''''''''-'''''''"'''-~-~='''''~'''-''''''''-"'''~~~... ~''''~-=''''='''''' 

Interface Structure 1019 

of the cluster. This estimation process is in accord with statistical estimation theory, 
and is identical with the estimation process we have used in other Ising problems 
not involving interfaces (Bolton and Johnson 1976; Johnson 1978a, 1978b). Having 
computed the p.d.f. for the cluster we may then compute the cluster partition function 
and the various lattice correlation functions as they apply to the cluster. The next 
step is to make the problem self-consistent by taking the cluster correlations as esti­
mates of the corresponding correlations for the infinite system. This estimation 
process is consistent with the assumption that the cluster be a sample from the infinite 
system. We assume these estimators to be unbiased, although there is some evidence 
to suggest that this might not be true. * By centring the cluster on the various lattice 
layers parallel to the dividing surface in turn, and repeating the estimation for the 
moments each time, we obtain a self-consistent set of nonlinear algebraic equations 
for a restricted set-that is, a finite set-of correlations, the size of the set depending 
on the highest order correlation available from the cluster. These equations are 
generally solvable directly by simple iteration-substitution. In point of numerical 
computation, since we must sum over all states (configurations) of the cluster particles 
in order to compute the cluster partition function, there is a practical upper limiUo 
the cluster size that can be considered in this way, and hence to the maximum order 
of correlation that can be considered. Clusters containing about 20 particles are 
about the largest that may reasonably be considered, the partition function then 
being a sum over about 106 terms. 

The finite number of correlations available from the cluster and their use in esti­
mating the states of the external particles implies a closure at the order of the maximum 
cluster correlation used in estimating those of the infinite system. This closure can 
be simply expressed by saying that the fluctuations corresponding to correlations 
beyond this maximum are independent so that the corresponding co variances are 
zero. From this it follows that all-that is, the infinite set-correlations for the 
infinite system are defined although, of course, the higher ones will not be independent. 
For example, if the maximum order of correlation is at the site magnetization <s), 
then all the higher correlations will simply be powers of <s). It follows that, since 
the full set of correlations is defined, a representation of critical phenomena is pos­
sible. This is in contradistinction to using either free or periodic boundary conditions 
on the cluster where the higher order correlations are simply not defined, and hence 
critical phenomena cannot be defined with the finite set of correlations available. 

The clusters we consider in this paper are based on those of one, two and four 
particles all lying within one layer and with extensions of these clusters to neigh­
bouring layers. None of the clusters considered give rise to a clear transition tem­
perature, such as we found for the infinite 'free' system without interfaces (Johnson 
1978a), although the slope of the curve of interface thickness as a function of tem­
perature steepens with increasing temperature, the more rapidly the more correlations 
are taken into account, particularly those within layers rather than those between 
layers. It is not enough to simply increase the number of particles in the cluster 
without at the same time increasing the number of correlations that are explicitly 
considered. Thus, the four-site cluster, with all the sites lying in the same layer and 

* In Johnson (1978a) it was found that, from these methods with a two-particle sample, the estimate 
for the critical temperature for the three-dimensional Ising system on an s.c. lattice is slightly lower 
than the result from the high-temperature series, implying that the estimate of the free energy is 
too low. 
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taking into account all five-layer cluster correlations in the estimation of the states 
of the external particles, gives a thickness curve whose slope increases very much 
more sharply after Te(2) than does that for the planar five-particle Bethe cluster using 
all its correlations, namely the two lowest ones. For each of these planar clusters, 
the estimation of the states of particles in adjacent layers was made using a one­
particle p.d.f. based on the lowest moment for the particular layer. This is a probabilis­
tic extension of mean field estimation. Now, if we consider the two-particle cluster 
extended over all layers, we find that the probabilistic mean field estimation is in 
fact accurate to better than 5 % up to Te(2), becoming much less so as the interface 
becomes delocalized. The four-particle planar cluster with all its correlations taken 
into account gives an interface thickness curve which steepens after Te(2) much more 
rapidly than that obtained from the two-particle cluster even when extended. Even 
the single two-particle cluster approximation is superior to other cluster methods, 
for example, the pair approximation used by Weeks and Gilmer (1975) which is 
based on a simple Bethe (1935) approximation. We conclude that the four-particle 
cluster is a satisfactory approximation with which to investigate the delocalization 
with temperature of the interface in an actual physical system. It is true that series 
approximations for the layers with mean field coupling between the layers could be 
used and would give quite good results. However, the cluster approximation is more 
readily applicable to general lattice structures than the series approximations and 
indeed can be used to examine the details of the metal-ceramic bonding process. 
This will be described in a later paper. 

2. Interface Model 

At each vertex i of a connected subset A of the (infinite) s.c. lattice7L3 let there be 
a spin particle whose state is described by a scalar spin variable Si = ± 1. Every 
site of A is occupied. The system of particles is to function as an Ising ferromagnet 
with nearest-neighbour interactions only so that the Hamiltonian Jf'(s) as a function 
of the spin configuration s = (Sl' S2' ... ), specifying the state of every particle on A, 
may be written 

Jf'(s) = - L JijSjSj -
<ij> 

L JijSjSj - L hjs j , 

ieA,jeB ieA 
(1) 

where <ij) denotes nearest-neighbour pairs and B refers to the boundary of A. The 
coupling constants Jij are all positive and the hi are the values of a site-dependent 
magnetic field. 

Let the coordinates of each lattice point be written in the form (ito i2 , i3) with A 
defined by 

I ill < N l , I i21 < N2, I i31 < N 3 , (2) 

and B by the planes ip = ±(Np + I), p = 1,2,3. We shall refer to the plane of lattice 
sites i3 = n, V il , i2 as the 'layer' 1m - N3 ~ n ~ N 3 • 

The boundary conditions are the symmetry-breaking conditions 

Sit,h.iJ = ±I, i3 = ±(N3+1), V il ,i2 • (3) 

For the moment we shall leave unspecified the conditions on the remaining parts of B. 
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Restricting our considerations to the isotropic form of J ij , we write Jij = J > 0, 
V i,j. Furthermore, we take the applied magnetic field hi to have the symmetry­
breaking form 

hi! .h.i) = sgn(i3) h, V i1 , i2 , (4) 

although we shall be concerned essentially with the limit h -+ 0. The surface i3 = ° 
may be regarded as the dividing surface between two subsystems A + , A -, such that, 
if these two were separated, we should have at zero temperature 

Sj = +1 (-I), i E A+ (A-). 

Using the Hamiltonian (1), we define the (canonical) partition function Q for 
the particles on A as 

Q = L exp{ - p £(s)}, (5) 
s 

where p = IjkB T. Here kB is Boltzmann's constant and T is the temperature. 
We now ascribe to layer In> - N3 ::;::; n ::;::; N3, a set of lattice correlations (J~kl, 

7:~k), k = 1,2,3, ... , where the (J~k) are the correlations within layer In and the 7:~k) 
are the correlations between sites of In and those of other layers In'' n' =1= n. The 
intralayer correlations are defined by 

(J~1) = (Sj) , (J~2) = (s j Sj) , (J~3) = (Sj Sk)' .•• , (6) 

where 

(/(Sj, Sj' Sk' ... » ,= Q-1 L I(sj' Sj' Sk' ... ) exp{ - p £(s)} (7) 
s 

for any function f Here i,j, k, ... are nearest neighbours on In> with i and k being 
next-nearest neighbours, and so on. While the (J~k) describe the correlation field 
within layer In> the variation in these quantities with n will be a measure of the correla­
tion between layers and, in particular, the variation in (J~1) defines the concentration 
profile across the dividing surface. The interlayer correlations 7:~k) are defined in a 
similar way to the (J~k), but with i, j, k, ... not all in the one layer. However, there is 
a slight difficulty in definition. If Sk' k = n-I,n,n+ 1, are the spin variables on three 
nearest-neighbour lattice sites on the same lattice line normal to the dividing surface 
then, for example, we might define the nearest-neighbour interlayer correlation 7:~1) 
either as . 

7:~1) = (Sn Sn+1> (forward definition) , (8) 

or as 

7:~1) = (t(Sn-1Sn +Sn Sn+1» (central definition) ; (9) 

similarly for the higher order correlations. If the number of layers is large enough 
so that the concentration profile does not change greatly from layer to layer, the 
two definitions (8) and (9) will approach one another. 

The boundary conditions on the lattice system are such that the layers distant 
from the dividing surface on the one side contain all up-spins and on the other all 
down-spins. It follows that we may regard the system as essentially one dimensional 
with the correlations constant within a layer and varying only from layer to layer. 
With this assumption we now formulate the interface model in terms of the (J~k) 
and 7:~k). 
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Consider a cluster e of lattice sites on A, with not all the sites necessarily in the 
one layer 1m for some n. If SC is a configuration of the particles of e, the probability 
that the cluster particles are in this configuration can be obtained from equation (5) 
by contracting over the states of the particles outside C. Thus, we have 

Pr(sC) = Q-l I C exp{ - f3 :If(s)}, (10) 
s 

where the summation is over all those configurations S of the particles of A for which 
the particles of e are in configuration sC. Separating out the interactions of the 
particles of e, we write 

:If(s) = I siEf + I SiEi, (11) 
iEC iEA\C 

where, in particular, Ef depends on the interactions of the particles of e with each 
other as well as with those of enm the set of external sites which are nearest neighbours 
of C. Substituting equation (11) into (10), we find 

Pr(sC) = ~ eXP(-f3 ?: SiEf)g(S;n), 
Snn lEC 

(12) 

where 

g(S;n) = Q-l I eXP(-f3 I SiEi) , 
s' iEAIC 

(13) 

the summation s' being over the configurations of particles of A\( e venn). From the 
definition (13) we see that g(s;n) is proportional to the probability of finding the 
nearest neighbours in enn in state s;m given that the particles of e are in state sC. 
Using this fact we now estimate g(s;n) and then compute Pr(sC) using equation (12). 

If we regard the cluster particles as a sample from the infinite system, the external 
particles must behave statistically in the same way as the sample particles. On this 
basis, the conventional way of estimating the states of the external particles in a 
particular layer would be to introduce periodic boundary conditions on e so that 
each external particle in the same layer behaves in exactly the same way as the equiva­
lent internal particle. Because of the gradient in chemical potential across the layers, 
we may not apply periodic boundary conditions in this direction and so the states of 
the external particles in adjacent layers must be estimated in a different way, for 
example, in a mean field sense. A better estimation process, one which unlike periodic 
boundary conditions maintains some level of continuity in the correlations across 
the boundary of e, and which also relates directly to the definition (13) of g(s;n), 
is based on estimating the states of the external particles by means of probability 
distribution functions (p.d.f.s) whose moments-that is, correlations-are equal 
to those of the cluster particles. It is then a simple matter to construct the appropriate 
conditional p.d.f.s and so compute g. The details of this process will be clear from 
the examples we consider in the next sections. Having estimated the states of the 
external particles in this way, the next step is to make the whole process self-consistent 
and, maintaining the spirit of statistical estimation, we regard the cluster correlations 
as estimates of the corresponding correlations for the infinite system. By locating 
the cluster e on the various layers in turn and applying the estimation process each 
time, we obtain a self-consistent set of nonlinear algebraic equations for the correla-
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tions. In the following sections we apply this analysis to a number of cluster types, 
beginning with the single-particle cluster, which yields a probabilistic mean field 
approximation, and considering finally a four-particle square cluster which, with its 
set of five correlations, yields a good representation of the interface delocalization. 
We also consider extensions of these clusters to adjacent layers. The planar clusters 
necessarily involve only the intralayer correlations, with the interlayer correlations 
expressed essentially by the variation in these quantities from layer to layer. The 
extended clusters involve the interlayer correlations quite explicitly. Larger clusters 
would doubtless lead to better representations of the interface delocalization, but 
direct evaluation of the partition function is generally not feasible here and expansion 
in low-temperature series is the only method of dealing with these larger clusters. 

3. One-particle Cluster Approximation 

The simplest cluster approximation is based on one particle and is realized using 
one-particle p.d.f.s defined by the (In = (J~1) alone. Thus, let C = C(1)(p), pEA, 
and let q E A be a nearest-neighbour site and lying in the same layer In" Then, to 
this approximation, 

PreSq I sp) == Presq I sp I A) = t(1 + (In Sq) (14) 

may be interpreted as a conditional probability of the particle at q having spin Sq' 

given that the spin at pis sp' The conditional nature of the p.d.f. (14) is to be under­
stood in terms of the equivalence class of the configurations of the particles of In as 
defined by the value of (In" The set [(In> -N:::;; n :::;; N] (N = N 3 ) defines the equiva­
lence class of configurations of the entire system. It follows from this, that if q is 
in layer In ±l' then we may take the required probability as 

PreSq I sp) = t(1 + (In± 1 Sq). (15) 

As we indicated in the Introduction, the use of this one-particle cluster approxi­
mation through the p.d.f.s (14) and (15) implies a closure in the sequence of moments 
for the entire system, the closure here being at the first term (In" It follows that the 
central moment «Sl -<Sl»)(S2 --<S2»)), for example, is zero, as are all higher central 
moments. For the second moment we find immediately <Sl S2) = <Sl)<S2), so that 
all the intralayer moments for In are simply powers of (In, while the interlayer moments 
for layers 1m In+1' for example, are multinomials in (Jm (In±l' By its nature the one­
particle cluster approximation can give results little better than those of mean field. 

In the present s.c. system let the nearest neighbours of pEA in layer In be (p, k), 
k = 1,2,3,4, the nearest neighbour in In+1 (p,5) and that in In- 1 (p,6). Then, using 
the p.d.f.s (14) and (15) we define g(s;,nn) through 

4 

g(s;,nn) = An TI tel + (In sp,kH(l + (In+ 1 sp,sH(l + (In-l Sp,6) , (1'6) 
k=l 

where An is a constant of proportionality. The representation (16) would appear 
to be the best possible using only the (In> and moreover is one which maintains explicitly 
the local probability field associated with p and its nearest neighbours. 

Substituting the representation (16) in (12), and using the energy expression 

E; = -J(± Sp,k+Sp,S +Sp,6) -hn' 
k=l 

(17) 
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we have for the probability of the cluster configuration sC, on replacing sp by Sm 
since we are dealing directly with spin particles in layer In> 

Pr(sn) = Anexp(Phnsn)(1 +O'nsntanhK)4(1 +O'n+lsntanhK)(I +O'n_lsntanhK), (18) 

where K = pl. The constant of proportionality An has been redefined and is deter­
mined by the normalizing condition 

Pr(+I) +Pr(-I) = 1. (19) 

In order to determine the layer moments an we assume for all n that an is equal to 
<sn>, the mean value of Sn with respect to the p.d.f. (18). That is, 

an = <sn> == I SnPr(Sn)· (20) 
Sn= ± 1 

Equations (20), together with the boundary conditions 

O'-(N+m) -1, O'N+m + 1, m > 0, (21) 

form a self-consistent set of 2N + 1 nonlinear algebraic equations for the layer values 
of the long-range order am - N ~ n ~ N. These equations may be solved directly 
by simple iteration-substitution, starting with the initial values (i.e. low-temperature 
values) 

an = ± 1, n >0, 0'0 = 0, an = -1, n < 0. (22) 

Note that Pre-I) = ° for n = N+m and Pr(+I) = ° for n = -(N+m), facts that 
are used implicitly in the solution of equations (20). 

4. Two-particle Cluster Approximation 

This cluster approximation is based on two particles, both in the one layer, and 
is realized using the two-particle p.d.f. defined by an = 0'~1), <Pn = 0'~2) and introduced 
by Johnson (1978a). Let C = f,cz)(p, q) be a nearest-neighbour two-site cluster on 
A with p, q E In for some n, - N ~ n ~ N. Then, with this cluster approximation, 

Pr(sp,Sq) == Pr(sp,sq I A) = (1/{I + O'n(sp+Sq) +<PnspSq} (23) 

may be interpreted as a conditional probability of the particles of C being in state 
(sp, Sq), given that the other particles on In are in a configuration belonging to the 
equivalence class defined by the pair (am <Pn). Hence the entire layer system is in a 
state defined by the equivalence class defined by the entire set of (a., <Pn), V n. If the 
state of the particle at p is known, and equal to sp' then on using equation (14) we 
may interpret 

Pr(sqlsp) = HI + O'n(sp+Sq) + <Pnspsq}/(I +O'nsp) (24a) 

as the probability that the particle at q is in state Sq' given that the particle at p is in 
state sp' Further, if the site q is in layer In ±l then we should expect to write this as 

Pr(sqlsp) = t(1 + an sp +O'n±lSq +TnSpSq)/(1 +O'nsp)' 
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However, as both cluster particles lie in the one layer In> the value of the correlation 
is not available from the cluster and we shall simply use the one-particle p.d.f. 

PreSq I sp) = t(l +O"n±1 Sq). (24b) 

As with the one-particle cluster, the two-particle cluster and its associated p.d.f.s 
imply a closure in the sequence oflayer moments, this time at those moments involving 
more than nearest-neighbour correlations. Thus, if 2 is the nearest neighbour of any 
two sites 1 and 3, 1 and 3 being next-nearest neighbours, and if S1' S2' S3 are the 
particle states at these sites, then 

<S1 S3> = <S1><S3> = 0"; , <S1S2S3> = 20"n(¢n-0";); 

similarly for higher moments. Since both O"n and ¢n are necessary to describe the 
system, we might expect a better representation of the interface delocalization with 
this cluster than with the one-particle cluster. 

Denoting the nearest neighbours of p and q by (p, k), k = 1 ... 6 and (q, I), I = I ... 6 
as in the previous section, we write for the cluster energy E C 

_PEC = -P I siEf 
iEC 

6 6 

= KSpsq +PhnCsp+Sq) +K If SpSp,k +K If SqSq,l' (25) 
k= 1 1= 1 

where the primes on the summations indicate that those k and I values that correspond 
to q and p respectively are to be omitted. 

Using equations (24a) and (15) to estimate the states of the nearest-neighbour 
particles outside C, we have 

g(S;n) = An CD: HI +O"nCSp+Sp,k) +¢nSpSp,k}!(1 + O"nSp») 

x CV: HI + O"n(Sq+ Sq,l) +¢nSqSq,z}/(1 +O"nSq) 

xt(1 +O"n+1 sp,sH(1 +O"n-1 sp,6H(1 +O"n+1 Sq,sH(1 +O"n-1 Sq,6»)' (26) 

with the primes having the same meaning as before. Substituting this equation in 
(12) and using the energy expression (25), we find for the probability of the cluster 
configuration SC = (sp, Sq) 

Pr(sp,Sq) = An exp {KspSq + PhnCsp + Sq)} 

x {G~1l(sp) G~l)(Sq) }3G~~ 1(Sp) G~:! 1 (Sp) G~~ 1 (Sq) G~:! 1 (Sq). (27) 

where 

Gh1l(S) = I + (¢n-O";~ +O"~(l-¢n)s tanhK. 
-O"n 

(28a) 

G~2l(S) = 1 +O"nstanhK. (28b) 
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Note that Pr(sp, Sq) is symmetric in sP' Sq. As before, the constant An is defined by the 
normalizing condition 

L L Pr(sp,sq) = 1. (29) 
Sp= ± 1 Sq= ± 1 

We now assume the layer moments an> ¢n to be defined self-consistently by 

an = <Sp) = <Sq) = I L Sp Pr(sp, Sq), (30a) 
sp=±l Sq=±l 

¢n = <SpSq) = L I Sp Sq Pr(sp, Sq) • (30b) 
Sp = ± 1 Sq= ± 1 

These two equations, together with the boundary conditions 

a ±(N+m) ± 1, ¢±(N+ni) = ± 1, m> 0, (31) 

form a self-consistent set of 2(2N + 1) equations for the 2(2N + 1) unknowns an> ¢n> 
-N~ n ~ N. 

5. Four-particle Cluster Approximation: Square Cluster 

The two clusters already considered are what might be called linear clusters-that 
is, the sites of the cluster all lie on the same lattice line and so might be expected to 
represent the interface in a two-dimensional lattice system rather than a three­
dimensional one. A proper cluster representation of the three-dimensional system 
is obtained by allowing the cluster to have sites on adjoining lattice lines and so is 
itself two dimensional. For these more general clusters, correlations characteristic 
of a two-dimensional Ising system are defined and we should therefore expect a 
better representation of lattice interface transitions in three dimensions. The simplest 
cluster which provides these moments is the square cluster. Thus, let 

c = C(4)(p\p2,p3,p4) 

be a cluster of four sites in layer In, each site being the corner of an elemental square 
on the s.c. lattice. For C we may define five different site-correlation functions 
associated with In' Thus, to the present approximation, 

0'(1) 0 0'(2) 0 0 0'(3) 0 0'(4) 0 
n 'n 'n 0 n 0 0' 

0'(5) 0 0 
n o 0' 

(32) 

where the diagrams define the a~k) in terms of particle state averages over the sites 
indicated. For the cluster C, it follows then, with the usual notation, that we may 
interpret 

Pr(sp" Sp2> Sp3> sp41 A) 

= (t)4{1 +a~l)(spt +Sp2 +Sp3 +Sp4) +a~2)(spt Sp2 +Sp2Sp3 +Sp3Sp4 +Sp4Spl) 

(3)( ) (4)( ) +an Sp1 Sp3 +Sp2Sp4 +an Sp1Sp2Sp3 +Sp2Sp3Sp4 +Sp3 Sp4 Spt 

(5) } 
+an Sp1 Sp2 Sp3 Sp4 (33) 
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as the probability that the particles of C are in state (sp1> Sp2> spJ> Sp4)' conditional on 
the particles of In being in a state belonging to the equivalence class defined by the 
set [O'~k>, k = 1,2,3,4,5]. The closure in the moments here is at the first moment 
whose correlation length is greater than the cluster diameter. 

To use the probability (33) in the estimation of the states of particles on In outside 
C, we first set up a cluster involving two external particles as well as those of C, from 
which we see that we must estimate the states of pairs of external neighbours rather 
than those of single particles. Consider a square cluster in In consisting of two nearest­
neighbour external sites Xl, X 2 , which are themselves nearest~neighbour sites of 
pl, p2, say, the four sites together forming an elemental lattice square. Then, on using 
equation (33) we may define 

Pr(sxu sX21 sp" spz) = Pr(sX1> SX2> Sp1> spz)/Pr(sp" spz) (34) 

as the conditional probability of (SX1> SX2) given the state (sp1> sp,). The form (34) 
uses all the correlations of the cluster C. 

To estimate the state of a single external particle, we consider the square cluster 
(xl, X 2,pl,p2) and write 

Pr(sX' I SP1> spz) = Pr(sX1> SP1> spz)/Pr(sp" Spz) , (35) 

where Pr(sx" Sp1> sp,) is obtained from equation (33) by contracting over the states 
of one of the particles of C, that at p4 for example, so that 

Pr(sp"Sp2>Sp3) = (t)3{1 +O'~l)(Sp, +Sp2 +Sp3) +0'~2)(Sp,Spz +SPZ Sp3)} 

(3) + (4) 
+O"n Sp,Sp3 O'n Sp,Sp2Sp3· (36) 

Note that this equation does not involve all the correlations of C. 
Denoting the nearest-neighbour external sites of pi by (pi, k) as before, then if 

the cluster particles are in configuration sC, we can write the energy of the cluster 
particles as 

where 

_PEC = -P :L siEF = KEEnt +KE~t +PHc , 
iEC 

Ei~t = Sp,Sp2 +Sp2Sp3 +Sp3Sp4 +Sp4 Sp,' 

4 

E;xt = :L' [sp.{(Spi,l +Spl,2) +(Spi.5 +SPI,6))] ' 
i=l 

4 

HC = hn :L Spl' 
i=l 

the prime on the summation having the same significance as before. 

(37) 

(38a) 

(38b) 

(38c) 

The states of the external particles may be estimated either singly, using equation 
(35) or in pairs, using (34). As equation (34) uses all the available cluster correlations, 
we shall estimate the states of the external particles in pairs. Proceeding as before 
we find 

g(S~n) = IT Pr(spk;X, Spk+';Y I Spk' Spk+ ,), 
k 

(39) 
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where k runs over the sequence 1,2,3,4 with 4+1 = 1. The subscripts X, Y refer 
to the pair of nearest-neighbour sites external to (pk,pk+ 1). There are thus four factors 
in the product in equation (39). Substituting this equation into (12) and using the 
energy expression (37), we find for the probability of the cluster configuration 
SC = (sp"spZ,SP"Sp4)' 

Pr(sC) = An exp(KEi~t + PH C) 
4 

X IT L (1 +SXSpk tanhK)(1 +SySpk+l tanhK) 
k= 1sx=±1,sy=±1 

4 

X Pr(sx, Sy I Spk' Spk+ 1) IT G~~\(Sp,) G;~)1(Sp.), 
;=1 

(40) 

where Pr(sx, Sy I sp, sp') is given by equation (34) with the 1110ments U(k) taken in 
layer In. The constant An is defined by the normalization 

LPr(sC) = 1. (41) 
se 

We now define the layer moments U~k) self-consistently in the usual way, taking 

U~1) = (Spl) == L Spl Pr(sC), 
se 

U~2) = (Spl Sp2) == L Spl Sp2 Pr(sC), 
se 

U~3) = (Spl Sp3) == L Spl Sp3 Pr(sC), 
se 

U~4) = (Spl Sp2 Sp3) == L Spl Sp2 Sp3 Pr(sc), 
se 

U~5) = (Spl Sp2 Sp3 Sp4) == L Spl Sp2 Sp3 Sp4 Pr(sC). 
se 

These equations, together with the boundary conditions 

(1) _ (4) - +1 
u±(N+m) - u±(N+m)- _ , m > 0, 

(2) _ (3) _ (5) - 1 
U ±(N+m) - U ±(N+m) - U ±(N+m) - + , m > 0, 

(42a) 

(42b) 

(42c) 

(42d) 

(42e) 

(43a) 

(43b) 

form a self-consistent set of 5(2N + 1) equations for the 5(2N + 1) unknowns a(k). 

6. Bethe Cluster Approximation 

Each of the clusters considered so far may be characterized by the property that 
all of the lattice sites in each cluster are equivalent in the sense that the cluster partition 
function is symmetric in each of the site variables. From this it follows that the site 
correlations are uniform across the cluster, and hence the cluster may be regarded 
as a proper sample from the layer from which it is drawn, since in the present inter­
face model the (thermodynamic) properties of the system vary only from layer to 
layer and not within layers. If larger clusters, which necessarily have non-equivalent 
sites, are to be considered, then local constraints in the form of a site-dependent 
applied magnetic field must be imposed in order to achieve uniformity in the correla-
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tions across the sample. Setting up such a cluster with its constraints we may then 
proceed as before, taking the internal interactions into account in an exact manner 
and estimating the interactions with the external particles with p.d.f.s which depend 
only on the lower moments of the cluster. This last point implies that only those 
correlations that appear in these p.d.f.s will be uniform across the sample. For a 
system without interfaces and with external interactions estimated by a mean field, 
this cluster method is essentially the classical Bethe (1935) cluster method. The clusters 
that might be considered may be obtained in sequence from the simple square lattice 
by selecting a central site and its neighbours in the first shell, a central site and its 
neighbours in the first and second shells, and so on. The first cluster has 5 sites with 
two classes of equivalent sites, and so requires only one constraint, while the second 
cluster has 13 sites and four classes of equivalent sites and so requires three constraints. 
This sequence of clusters can be extended, but as the first cluster has 25 = 32 con­
figurations and the second has 213 = S192, the second cluster is at the limit of direct 
numerical computation, even after dividing up the configurations into equivalence 
classes. However, for the 13 particle cluster it is numerically feasible to use one­
particle p.d.f.s only in the estimation of the external states, and even with this the 
amount of computation is considerable. The indications are that the results for the 
13 particle cluster are little better than those for the 5 particle cluster. Accordingly, 
we shall consider only the 5 particle Bethe cluster. 

Consider the 5 particle Bethe cluster on the simple square lattice, consisting of a 
central site p and four nearest neighbours qi' i = 1,2,3,4 in the first shell. In order 
to maintain the proper lattice coordination over the cluster we shall assume each 
site qi to have three equivalent external nearest neighbours ti,k, k = 1,2,3. The 
ti,k do not lie on the original square lattice but rather form the second set of vertices 
of a directed tree with root on qi and with every vertex, except the root, having 
indegree unity and outdegree three. The root has indegree zero and outdegree four. 
This tree is the so-called Bethe lattice. The present cluster has two classes of equivalent 
sites, not counting the external sites, which are essentially equivalent to the central 
site. One class contains the central site p and the other the sites qi' i = 1,2,3,4. 
We therefore need one constraint and indeed only one may be applied, which may 
be conveniently imposed as a parametric magnetic field Hq acting at the sites qi' 
Assuming no external magnetic field to be applied to the entire lattice, we may 
write for the cluster Hamiltonian 

4 ( 3) 4 
J'l'(s) = -J i~l Sqi Sp + k~l Sti,k - JiHq i~l Sq,. (44) 

The magnetic field Hq will, in general, be different from zero and is to be determined 
from the requirement that the cluster correlations, in this case only the one-particle 
correlations (site magnetizations), (sp) = (Sq,) be equal. 

If we now estimate the states of the particles on the t sites by means of the two­
particle p.d.f. (24a)-thus using all the statistical information available-we find for 
the cluster partition function 

Q = S~q eXP((KSp +Phq) it1 Sq,) til G(l)(SqJf, (45) 

where Phq = pBq/kB T and G(l)(s) is defined by equation (2Sa). We now establish 
uniformity of (s) = (Sq,), i = 1,2,3,4, which yields an equation for hq. 
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To apply this cluster to the present interface model, we must first add to the 
Hamiltonian (44) those terms expressing the interactions between particles of layers 
In and In±l' As before, we construct the function g from which we determine the 
p.d.f. for the cluster configuration in layer In. We find 

Pr(sp,sq) = AneXP((KSp+Ph~n) itl Sq.)G~~\(Sp)G~:?l(Sp) 
4 

x n G~l)(Sqy G~~.\ (Sq,) G~:? 1 (Sq) . 
i=l 

(46) 

Note that Pr(sp, Sq) is no longer a symmetric function of all its arguments. The 
constant An is again defined by the normalization 

L: Pr(sp, Sq) = 1, 
Sp,Sq 

and the field hq, which is layer dependent, is defined by the internal consistency condition 

(sp) = (Sq,) V i, i = 1,2,3,4. (47) 

The entire problem is now made self-consistent in the same manner as before, 
taking Un and cPn to be defined self-consistently by the conditions 

Un = (sp) == L: sp Pr(sp, Sq), (48a) 
Sp,Sq 

cPn = (spSq,) == L: spsq,Pr(sp,sq)' (48b) 
Sp,Sq 

These equations (48) together with the boundary conditions (31) form a self-consistent 
set of 2(2N + 1) equations for the 2(2N + 1) unknowns Uno cPn, - N :::;; n :::;; N. 

7. Results of Computations 

In examining the properties of the cluster approximations for the interface system 
we first tested the effectiveness of taking the cluster sites all in the one layer. To this 
end we considered the two-particle cluster of Section 4 extended over all layers of 
an 11 layer (i.e. N = 5) system. Taking the cluster sites all in the one layer implies, 
for example, that the interlayer nearest-neighbour correlation 't"~1) is equal to u~1) uW l' 
as follows from equation (8), whereas for the extended cluster the accurate form (9) 
must hold. Expressing the temperature T in units of Jj k B , we found that up to T ~ 2· 5 
the error 't"~1)(exact) -'t"~l)(approx) is less than 8%. This error increases with tem­
perature, so that at T = 4· 0 the error is 50 %. However, this is unimportant since 
the interface is well delocalized at this stage. It follows that taking the cluster particles 
in the one layer and using one-particle p.d.f.s for estimating the states of particles 
in neighbouring layers is adequate up to the (actual) delocalization temperature for 
the two-particle cluster and a fortiori for the four-particle cluster. 

The interface thickness d(T) may be defined by means of a linear extrapolation of 
the density profile at layer 11 to the 'infinity' layer IN (Cahn and Hillard 1958). Inter­
preting this in terms of the long-range order uP), we have 

d(T) = u<;)/ui1). (49) 
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Table 1 gives the behaviour of the thickness d(T) as a function of the temperature T, . 
measured in units of J/kB , for the various cluster approximations given in the previous 
sections. All these results are for the case N = 5, so that there are 11 layers. It was 
found that for N > 5 the interface thickness was not strongly dependent on N, 
although the details of the density profile changed as N increased beyond this value. 

Table 1. Interface thickness d(T) asa function of temperature for yarious cluster models 

The temperature T is in units of JjkB 

(I) (2) (3) (4) (5) 
T One-particle Two-particle Two-particle Four-particle Five-particle 

cluster cluster cluster (extended) cluster Bethe cluster 

1'00 1·000 1·000 1'001 1·007 1·000 
1·50 1·002 1·003 1·012 1·063 1·002 
2·00 1·009 1·015 1·060 1·219 1·011 
2·10 1·012 1·019 1·075 1·267 1·015 
2·20 1·015 1·025 1·093 1·323 1·018 
2·30 1·017 1·032 1·113 1·389 1·023 
2·40 1·022 1·040 1'135 1·467 1·028 
2·50 1·026 1·049 1·160 1·561 1·035 
2·75 1·038 1·080 1·236 1·907 1·055 
3·00 1·054 1·123 1·336 2·578 1'084 
3·25 1·075 1·184 1·471 4·081 1·125 
3·50 1·102 1·267 1·661 7·316 1·181 
3·75 1·137 1·385 1·949 13·012 1·261 
4·00 1·184 1'557 2·430 21·705 1·377 

From the table it is clear that the four-particle (square) cluster (column 4) represents 
the delocalization of the interface with temperature better than any of the other 
clusters, and in particular, considerably better than the one-particle cluster (column I), 
which gives essentially a mean field approximation. It is also superior to the Bethe 
cluster (pair approximation) of Weeks and Gilmer (1975), their results (Fig. 3 of 
their paper) lying close to those for the two-particle cluster extended over all layers 
(column 3). Comparison of the results for the five-particle Bethe cluster (column 5) 
with those of column 4 shows that the size of the cluster alone is not sufficient to 
describe the interface delocalization and that higher order correlations must be taken 
into account explicitly if an acceptable description of the delocalization is to· be 
obtained. A larger cluster with all possible correlations considered, for example 
the 13 particle Bethe cluster mentioned in Section 6, would presumably give a very 
good description of the delocalization process. However, the computation appears 
quite unfeasible. The four-particle cluster, on the other hand, is readily computed 
even with different couplings within and between layers and seems to be adequate 
for dealing with, for example, the metal-ceramic bond problem. 
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