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Abstract 

The calculation of electric field gradient (EFG) lattice sums over point charges in ionic crystals is 
considered. Although the de Wette method gives rapidly converging sums under favourable circum­
stances, direct summations over a unit cell-shaped cavity are found to produce lattice sums which 
converge regularly as N- 2 (N is the number of unit cells in a side of the cavity), allowing accurate 
extrapolation to their values for an infinite lattice by means of Neville tables. This convergence 
behaviour can be explained mathematically for orthogonal lattices using the Euler-Maclaurin 
formula. A point charge calculation of the EFGs at low symmetry sites in GdFe03 has been carried 
out to compare the convergence of the direct summation and de Wette techniques and to illustrate 
the N- 2 convergence of the direct lattice sums. 

1. Introduction 

In an ionic crystal the electric field gradient (EFG) at a particular site depends on 
the charge distributions of the surrounding ions. The simplest electrostatic model 
of such a crystal is to consider the ions as stationary point charges located at the 
lattice sites. Then the EFG tensor components at the site of interest due to this 
periodic array of point charges may be expressed as summations over all the ions 
in the crystal, namely 

Vu = I, Z(I1) 3xi"x j " -6U r; 
" r5

' " 
i,j = 1,2,3, 

where Z (11) is the charge and (Xl", X 2", X3,,) the cartesian coordinates of the 11th 
ion which is a distance r" from the origin at the site of interest. 

Although the point charge model only sometimes provides a realistic description 
of an ionic compound, it illustrates the techniques involved in the calculation of 
lattice EFGs. This paper investigates both the direct summation and de Wette methods 
of evaluating the EFG lattice sums with particular emphasis on their convergence 
behaviour. A mathematical foundation is given to the observed regular convergence 
of direct lattice sums. This convergence behaviour and the equivalence of the two 
summation techniques are illustrated by means of a point charge calculation for 
different sites in GdFe03 • 

2. Lattice Summation Techniques 

A real crystal may be considered to be composed of a number of interpenetrating 
sublattices, one for each set of ions of a given type located at identical sites (defined 
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here as sites at which the EFG has the same principal component, asymmetry param­
eter and principal axes). * Then the ijth component of the EFG at a site of the oth 
sublattice may be written as . 

Vu(u) = L Z(r) Su(u, r), , 
where 

02 

" 11/r", I Sij(u,r) = ';'o(r"Jio(rt,J j 
(1) 

is the appropriate lattice sum over the rth sublattice with a site of the uth sublattice 
as origin. The sum over K is for all sites of the rth sublattice (except the origin when 
u = r) and r tl, is the position vector of the Kth site. Such lattice sums depend only 
on the crystal structure and not on the type of ion at each sub lattice site. 

Because it is impracticable to sum the contributions to the EFG from every ion 
in a quasi-infinite crystal, the lattice summations are performed overall the charges 
within a finite mathematical cavity which lies within the crystal and surrounds the 
site of interest. The size of the cavity is then increased until the sums converge. The 
two summation techniques which have been employed to calculate lattice EFGs on 
the basis of a point charge model of an ionic compound involve several different cavity 
shapes. Direct summations have been carried out over all the ions contained within 
either a spherical or a unit cell-shaped cavity centred at the site of interest, whereas 
in the de Wette method of planewise summation a slab-shaped cavity is considered. 
The relevant features of both techniques are now briefly reviewed. 

In the earliest calculations of EFGs a direct summation was performed within 
a spherical cavity (Bersohn 1958; Bernheim and Gutowsky 1960; Belford et al. 
1961). Not only did the lattice sums converge slowly, but they also oscillated as the 
radius was increased because the number of ions within a spherical boundary does 
not increase smoothly with the volume enclosed. When the cavity is changed to one 
having the same shape as the unit cell of the crystal and containing an integral number 
of such unit cells, the convergence of the lattice summations becomes regular because 
the ratio of the number of ions within the cavity to the volume of the cavity is a 
constant (Bolton et al. 1962). 

Nijboer and de Wette (1958) introduced an alternative method for the computation 
of lattice sums and this was applied to the evaluation of lattice EFGs in crystals by 
de Wette (1961) and de Wette and Schacher (1965). If a1, az, a3 denote the lattice 
basis vectors, the contributions from all point charges in an a1 , az plane parallel to 
the faces of a slab-shaped cavity are summed in two-dimensional reciprocal space, 
allowing the contributions of all the planes to be added together analytically. The 
one exception is the summation over the plane in which the origin is situated. When 
this sum is not zero, it may be evaluated by using an auxiliary convergence function 
(Nijboer and de Wette 1957; de Wette and Schacher 1965) or by the direct summation 
technique with the ion at the origin excluded from the summation. 

* Note that this may not be the same as identical crystallographic sites. For example, gadolinium 
ions in GdFe03 (see Section 4) are all located at 4c sites, but the EFG principal axes for two of the 
ions are mirror images across the a-c (or b-c) plane of the axes for the other two ions. Although this 
distinction between orientation of principal axes is not required for the point charge model, it must 
be taken into account when the ions are considered as nonspherical charge distributions. 
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The mathematical details of the de Wette method are described by de Wette and 
Schacher (1965) and Sholl (1966). The expressions for the EFG lattice sums quoted 
by these authors have been checked independently and agreement is obtained with 
the revised ones given by Massidda (1976). 

3. Convergence of the Summations 
Although the lattice contribution to the EFG at a given site must be independent 

of the shape of the crystal, the lattice sums (1) are only conditionally convergent 
(Sholl 1966), i.e. their values depend on the shape of the cavity in which the summation 
is performed. However, it may be shown that the lattice sums over all the charges 
within an electrically neutral volume are absolutely convergent (Sholl 1966). When 
the contribution from one type of ion is being calculated, the cavity shape must be 
taken into account by the inclusion of the appropriate Lorentz factors /3ij defined 
by Sholl (1966). Then the invariant quantity is 

Z (r){ Sij(<T, -r) + z(-r)/3ij/v}, 

where z(-r) is the number of ions per unit cell in the -rth sublattice and v is the unit 
cell volume. 

When summing over unit cell-shaped cavities, care must be taken in treating the 
ions which lie on the surface of the unit cell. In order to preserve the symmetry of 
the site at which the EFG is being calculated, fractional charges should be assigned 
to ions located on the cell's corners, edges and faces. The appropriate fraction is 
given by the reciprocal of the number of cells which share the ion, i.e. t for ions on 
faces, t for ions on edges and i for ions at corners of the unit cell. 

In the de Wette method the sums over the reciprocal lattice converge quite rapidly 
provided that the atomic parameter in the a3 direction is not too close to either 0 or 
1 (Sholl 1966; Massidda 1976). Otherwise, oscillations due to the sine or cosine 
factor in the lattice sum expressions do not quickly die away with distance from the 
origin. With the added complication of having to evaluate the sum over the plane 
containing the origin either by a direct summation or by introducing an auxiliary 
convergence function, the de Wette technique appears to be straightforward only for 
certain lattices with small numbers of ions per unit cell. However, in a more recent 
paper Massidda (1976) shows how these difficulties can sometimes be overcome by 
transforming to a different coordinate system. 

Because the de Wette method involves summations in only two dimensions, 
convergence to seven significant figures may be obtained in favourable circumstances 
after summing over a few hundred lattice points. On the other hand, the slow con­
vergence rate of the direct summation method necessitates a three-dimensional 
summation over several thousand unit cells to achieve convergence to three or four 
significant figures. However, the regular convergence of lattice sums over a cavity with 
the shape of the unit cell may be exploited to extrapolate the sums to an infinite lattice. 

A convenient method of extrapolating lattice sums is by means of Neville tables 
(see Section 4) as used by Bolton et al. (1962) in the calculation of the electric fields 
at the ionic sites in rutile due to induced dipoles at all the other sites. If N is the 
number of unit cells in the side of the rectangular cavity, these authors found that 
the extrapolations to N = Cf) went as N -1 for cavities with ions on their faces or 
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edges and as N - 2 for cavities with no surface ions. However, our calculations showed 
that, with fractional charges on the surfaces of unit cells, the EFG lattice sums for 
compounds with a variety of structures all converge to N = 00 at least as fast as N - 2. 

The rate of convergence was observed to be independent of whether the sum is over 
both positive and negative ions in the lattice or over ions of just one charge sign. 
Extrapolation procedures indicated that the lattice sums actually approach their 
convergence behaviour (proportional to N- 2 etc.) even at N values as small as 4. 

Mathematical Justification of N - 2 Convergence 

Since this regular convergence behaviour of direct EFG lattice sums cannot be 
explained simply on the basis of the multipolar order of the unit cell as described 
by Coogan (1967), a mathematical argument using the Euler-Maclaurin formula 
(see e.g. Mathews and Walker 1970) is now presented. 

Consider a lattice with parameters aI' a2, a3 containing point charges of one 
particular sign. The site (0,0,0) at which the EFG, due to all such charges, is to be 
calculated is surrounded by a unit cell-shaped cavity with sides 2Nal , 2Na2, 2Na3. * 
Since the assertion that the EFG lattice sums SN over all the charges within the 
cavity converge as N - 2 implies that the EFG summations over all charges outside 
the cavity are proportional to N - 2 for sufficiently large N, it is adequate to show 
the latter property, i.e. 

S 00 - S N = con st. x N - 2 + higher order terms. 

The contribution to any component Vij of the EFG tensor at the centre of the 
cavity due to the charges outside the cavity may be evaluated by summing over all 
such charges. Alternatively, one may integrate over the region outside the cavity 
assuming a uniform· continuous distribution of monopoles and then subtract the 
difference between the integral and the sum. In other words, Sum == Integral- (Integral 
- Sum). Although the former method is generally used to evaluate EFG components 
numerically, the latter has advantages in the algebraic determination of the con­
vergence behaviour of the lattice sums. 

No generality is lost by considering just the one charge with atomic parameters 
ul , U2' U3 in each unit cell outside the cavity. Let us first select the charges with 
UI = U2 = U3 = O. The generalization to arbitrary Ui is carried out later. For the 
sake of simplicity the argument will also be restricted to lattices with orthogonal axes. 
Since the ionic charge Z is just a constant factor in the EFG expression, it may be 
omitted for the moment, leaving the function 

Xij(XI ,X2 ,X3) = (iJ2/iJx;i}x) (xi +x~ +x~)-t, i,j = 1,2,3, 

where Xl' X 2 , X3 are the coordinates along the three mutually orthogonal crystal axes. 
The region R outside a rectangular cavity with sides 2Nal , 2Na2, 2Na3 may be 

divided into six semi-infinite rectangular volumes, allowing us to write the integral 

* Because the origin is chosen to be at one corner of a unit cell, there must be an even number of 
unit cells in each side of the cavity. In this section it is convenient to denote this number of unit 
cells by 2N rather than N. 
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of Xiixl' Xz, X 3) over R as 

I == fR dXl dxz dX3 X ij(X 1, Xz, X 3) 

= L( roo dX1 fOO dxz fOO dX3 Xij 
± )Na! -00 -00 

f Na! foo foo fNa! f Na2 foo ) + dXl dxz dX3 Xij + dX1 dxz dX3 Xij ,(2) -Na, Na2 -00 -Nal -Na2 No, 
where L± indicates a summation over both INa dx and f=:!a dx. When i = j, the 
integrand of I becomes 

Xii(X1 , Xz, X3) = (3x;- r Z)/r 5 , i = 1,2,3, 
where 

r = (xi+x~+x~)t. 
It may be shown that 

f ai2 fa}2 f ak2 
dXi dXj dXk (3x;-rZ)/r5 

ail ajl ~1 

z z z (CI. ja ctkv ) - " " "(-I)A+a+V+larctan z z Z)t' 
- L... L... f- ctiJ'(Cl.iA +Cl.ja +Cl.kv .'.=1a=lv-1 

i, j, k = 1,2,3, i =F j =F k, 

provided that the region of integration does not include the origin of the coordinates. 
By applying this general result to each triple integral in equation (2), it is found that 
for i = j the contributions to I cancel to zero if the outer surface of R retains the 
shape of the unit cell when all three coordinates Xl' Xz, X3 simultaneously tend to 
infinite limits. Since Xij(x1 , Xz, X 3) is an odd function of two coordinates when 
i =F j, its integral is zero over a region such as R which is symmetrical with respect 
to the origin. 

The fact that the EFG expressions are analytic functions at all points within the 
region R allows the Euler-Maclaurin formula to be invoked to calculate the difference 
between the integral and the sum. Since the EFG in a three-dimensional lattice is a 
function of three variables, the one-dimensional analysis given by Mathews and 
Walker (1970) is extended by considering the trapezoidal approximation for the 
triple integral. For a general rectangular volume of sides Nl aI' Nzaz, N3a3 this 
approximation may be written as 

S = Ca azC!+E1+Er+ ... +Efl-1+!Efi»)Xij(nla1,nzaz,n3a3) 

Ca azCEfl-I){t + I/(EI-I)} )Xij(n1a1, nzaz, n3a3), (3) 

where the n I a I are the initial values of X I and the operators El are defined by 

El Xij(n 1a1, nzaz, n3a3) = X ij«n1 + l)a1, nzaz, n3a3) , etc. 

It can be seen that the above approximation is simply the lattice sum over all the 
charge sites within the rectangular volume plus the appropriate fractions of sites on 
the surface. The corresponding lattice sum over all the charge sites within and on 
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the surface of the region R may be obtained by adding together the contributions 
from the six rectangular volumes defined by the limits of integration in equation (2). 

The exact value of the integral lover the rectangular volume of sides N1 a1, Nzaz, 
N3a3 is given by 

I = (Ef'-1)(E~2-1)(E~3-1) Uij(n1a1,nZaZ,n3a3)' 
where 

Uij(X1, X2 , x 3) = f f f Xij(x1, Xz, X3) dX1 dxz dX3 . 

With the definitions 

DXk Uij(x1, Xz, X3) = (O/OXk) Uij(X1, Xl' x 3), k = 1,2,3, 
we have 

DX1 Dxz DX3 Uij(X1, Xl' X3 ) inqaq = Xij(n1 a1, nzaz, n3a3), 

and therefore 

q = 1,2,3, 

I = (Efl-1)(Ei2 -1)(E~3 -1) DX;1 DXz1 DX11 Xij(x1, Xz, X3 ) inqaq ' (4) 

From equations (3) and (4), we have 

Integral-Sum = (E~1-1)(E~2-1)(E~3-1)Dx31 DXz1 DXll 

X{l- IT aIDXI(-!-+ (1) 1)}XiiX1,Xl,X3)1 
1= 1 exp al DXI - nqaq 

= (E~'-1)(E~2-1)(E~3-1)Dx31 DXz 1 DXll 

{ 
3 ( Bl(aIDx/)l. Bia/Dx/)4)} 1 

x 1 - (I 1 + 2' + --4-'-- + ... Xij(X 1,Xl ,X3) , 
1-1 .. nqaq 

(5) 

where the substitutions E/ = exp(a/ Dx/) have been used and Bz and B4 are Bernoulli 
numbers which have the respective values 1/6 and -1/30. After expanding the 
expression in the braces in equation (5) and using the fact that 

1 J, %lal 
(E~l -1) DX11 Xiix1, nZal, n3a3) Xij(x1, nlal , n3a3) dx1 , 

Xl =n101 nlal 

and similarly for the other two cases, one finally obtains 

B (J,%mam J%nan 0 1%lal) 
Integral- Sum = - -f I af dXm dXn a Xij(X1, Xz, X3) 

2. l,m,n nmam nnan Xl n,a, 

( B )1 ( J%nan OZ 1%lall%mam) 
- 2~ I af a~ dXn -~-;:,-Xij(Xl' Xl' X3 ) 

. I,m,n nnan OX1 uXm n,aZ nmum 

B (J,% mam J,%nan 03 1 %Ial) 
-~ L ai dXm dXnpXij(X1,Xl,Xl) 

4. I,m,n "mOm nnan Xl n,ar 

+ higher order terms. 
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In the above equations, .;V I = n 1+ NI and Ll,m,n denotes a cyclic permutation of the 
coordinates XI' X m, Xn (I #- m #- n). When these integrals and derivatives are evaluated 
over each of the six rectangular volumes which comprise the region R outside a unit 
cell-shaped cavity of dimensions 2Na1, 2Na2, 2Na3' the infinite limits give zero 
contributions and the finite limits of the lowest order terms produce contributions 
proportional to N - 2 when i =, j. There are no contributions of order N - 3, the 
remaining terms shown giving contributions proportional to N -4. However, for 
i #- j the N- 2 and N- 4 contributions are always zero because at least one integral 
or derivative in each term shown above is evaluated over an even function of the 
relevant variable. 

Let us now consider the EFG at the origin due to the Kth sublattice of charges 
located at points (u1at. u2a2 , u3a3) within each unit cell outside the cavity. The above 
procedure gives the N dependence of the lattice sums at the point (u1 a1, uZa2, U3a3) 
relative to the origin if the centre of the cavity is chosen to be at this site of interest. 
In order to calculate the sums at (0,0,0) the entire cavity is translated to make this 
point its centre. This translation does not change the lattice sums evaluated at 
(u1 a1, u2a2, u3a3). * One may write 

Sij(O, K) = Sij( J, K) + {Sij(O, K) - SJ J, K)} , (6) 

where the parameters ° and J indicate that the sums are evaluated at (0,0,0) and 
(u1 a1, u2a2, u3a3) respectively. 

Again consider a general rectangular volume of sides N1a1' N2a2, N3a3' The 
difference in the braces in equation (6) then becomes 

ASij == Sij(O, K) - Sij(J, K) 

~~~[ ] 1~1 m~n2 n~3 Xi/(l +u1)a1, (m+u2)a2, (n +u3)a3) - Xij(la1' ma2, na3) . 

The expression in square brackets may be expanded in terms of the Taylor series for 
Xij(x1, X 2, x 3) about the point (la1, ma2, na3), i.e. 

%1 %2 %3 l OXij(X1, ma2' na3 ) I 
AS·· = ~ ~ L u 1 a 1 '" 

lJ 1~1 mf-:,2 n=n3 UX 1 Xl =la1 

oXij(la1, X2' na3) I 
+ U 2 aZ OX2 X2 = ma2 

oXuC1a 1, maz, X3) \ 
+ U3 a3 OX3 X3= na3 

+ higher order derivatives of Xij(X1, X2, X3)] . (7) 

* In translating the centre of the cavity from (ular. U2a2, U3a3) to (0,0,0), equal numbers of ions in 
the Kth sublattice are gained and lost by the region outside the cavity. If an ion at (x" X2, X3) relative 
to (ula"uZaZ,u3a3) enters this region another at (-Xl, -Xz, -X3) is removed from it. Since Xi' 
components are invariant under inversion of cartesian coordinates, the cavity translation does not 
alter the lattice sums. 
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Because of the symmetry of the region outside the cavity with respect to the origin, 
each index I, m and n either runs from - 00 to 00, or from - 00 to - (N + 1) as well 
as from N to 00, or has - Nand N -1 as its summation limits. Combined with the 
factthat each term in the first-order partial derivatives of Xi;(Xl , Xz, x 3) contains one 
of lal , ma2, na3 as a factor, the resultant cancellation of terms leaves at most one 
term in the summation over the corresponding index I, m or n. The remaining double 
summation yields a result proportional to N - 2 at large N. Two of the first-order 
derivatives of Xij(Xi> X 2 , x 3) with i =F j also have the same property, whereas the 
third such derivative has all of lal> ma2 and na3 as factors and the consequent can­
cellation of terms in the summations over I, m and n causes it to converge as N -4. 

The summations over the cavity of the higher order derivatives converge at least as 
fast as N - 2 in general. 

This procedure may be repeated for each relevant ion in the unit cell and the 
results added without affecting the dependence on N. Therefore, it has been shown 
that in general the EFG summations for a periodic array of discrete charges converge 
to their values for an infinite lattice as N - 2, even when summing over ions whose 
total charge is nonzero. 

Table 1. Structural information for GdFe03 used in EFG 
calculations 

The atomic parameters shown in parentheses are uniquely deter­
mined by the symmetry 

Atom Site Site Atomic parameters 
symmetry Ul U2 U3 

Gd 4c m 0·98444 0·06284 (0' 25) 
Fe 4b I (0·5) (0·0) (0'0) 
Oem) 4c m 0·1005 0·4672 (0' 25) 
0(1) 8d 0·6957 0·3016 0·0506 

In carrying out lattice summations over certain structures with cubic unit cells, 
it was found that the off-diagonal EFG components converged more rapidly than 
N- 2 , appearing to be more closely proportional to N- 4 for N;:;: 4. The conditions 
under which both the N - 2 and N - 3 terms vanish in equation (7) (which gives the 
only nonzero contributions to off-diagonal components) have been examined. The 
necessary symmetry property at the origin which enables ASij (i =F j) to behave in 
this manner seems to be inversion symmetry in the ai direction with the atomic 
parameter along the aj direction remaining constant in the inversion process, plus 
inversion symmetry in the aj direction with the ai axis parameter constant during 
the process. For example, in the case of AS12 there must be identical crystallographic 
positions (footnote in Section 2) at (ul al' u2a2, x 3), ( - Ul al' u2a2, x;), (Ul al' - u2a2, x'3) 

and ( - Ul al' - u2a2, x'3'). 

4. Illustration and Comparison of Techniques 

To illustrate the summation techniques and convergence properties discussed 
above, the point charge EFGs at the various ionic sites in gadolinium orthoferrite 
GdFe03 are considered. The calculations have been carried out both by the de Wette 
method and by direct summation over unit cell-shaped cavities. In the latter method 
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the N - 2 convergence behaviour of the lattice sums has been used to extrapolate to 
the EFG values in a quasi-infinite crystaL 

Gadolinium orthoferrite is a distorted perovskite (space group Pbnm) and has an 
orthorhombic unit cell with lattice parameters al = 0·5349 nm, a2 = 0·5611 nm and 
a3 = 0·7669 nm (Wyckoff 1964; Marezio et al. 1970). This is the lowest symmetry 
lattice for which we have proved the N - 2 convergence. Also, the ionic sites have low 
symmetries of 1, I and m, providing a good test of the applicability of the convergence 
behaviour. Other structural information used in the calculations is given in Table I. 

Table 2. Neville tables showing (a) the rapid convergence of V12(0(1),O(I» and (b) the slow conver-
gence of V33(0(m),0(m» 

In (a), the number in parentheses is the rounding error in the last figure. Convergence is obtained 
in the first difference column. The units are 10-zmms-1 for the ground state splitting of 1550d; 
to convert to Vm- z, multiply by 3·63102x lOzl. In (b), the units are 1O-3 mms -l. The entries 
in the first difference column are changing monotonically so that convergence is not obtained until 

the second difference column. Rounding errors are the same as for (a). 

N (a) VdO(1),O(1) (b) V33(0(m),0(m» 

VdN) V,,(N,N+1) VdN, ... ,N+2) VdN, ... ,N+3) V33(N) V,,(N,N+l) V,,(N, ... ,N+2) 

2 l' 536188 -3'571016 
1 . 520873(1) -1'875335 

4 1'524702 l' 517639(2) -2,299255 -2'703738 
1· 517999(2) 1'517982(3) -2'611694 

6 1·520978 1 . 517960(3) -2·472832 -2·643121 
1 . 517970(2) 1· 517967(4) -2·635264 

1· 519662 1'517966(4) -2'543896 -2·637415 
1 . 517968(3) 1· 517971(6) -2'636640 

10 1· 519052 1· 517970(5) -2'577284 -2,637214 
1 . 517969(3) 1· 517964(7) -2'636959 

12 1'518721 1,517966(6) -2·595518 -2,637217 
1· 517967(4) 1'517965(9) -2'637085 

14 1'518521 1'517965(7) -2'606546 -2·637216 
1· 517966(4) 1,517970(10) -2·637142 

16 1'518391 1 . 517968(8) -2·613717 -2·637210 
1· 517967(5) 1'517956(12) -2'637169 

18 1·518302 1'517962(9) -2·618639 -2·637217 
1 . 517965(5) 1'517982(13) -2·637186 

20 1·518238 1'517971(10) -2·622163 -2·637215 
1'517967(6) 1'517950(15) -2·637196 

22 1·518191 l' 517962(11) -2'624772 -2·637209 
l' 517966(6) -2'637200 

24 1·518155 -2·626757 

Direct Summation Results 

To study the convergence properties of individual lattice sums, the EFG com­
ponents due to each group of ions of the same type were calculated separately at 
each of the different ionic sites, i.e. the EFG components at a Gd site due to Gd 
ions, at a Gd site due to Fe ions, and so on. Each lattice sum was found to converge 
linearly with N - 2 at least by N = 8 and in many cases as early as N = 4. 

A convenient method of extrapolating lattice sums possessing this N - 2 convergence 
property is by means of Neville tables (see e.g. Hartree 1952), which do not require 
the data to be tabulated at equal intervals of the independent variable. This may be 
seen in Table 2 where each entry in the columns for VliN) and V3iN) represents 
the sum of EFG contributions from a cavity of side N unit cells with N an even 
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integer. Since we are trying to estimate the EFG function at N - 2 = 0, the next 
columns in the difference tables are given by 

V;iN ,N+l) = (N+l)2V;iN+l) -N2V;iN) 
(N+l)2-N 2 ' 

V;j(N,N+l,N+2) = (N+2)2V;iN + 1,N+2) -N2V;iN ,N+l) 
(N+2)2 _N2 etc. 

Convergence is obtained quite rapidly, but care must be taken in estimating the 
rounding errors. For a conventional difference table and starting with an error of 
± 0·5 in the last figure for Vij(N), the likely error increases slightly slower than a 
simple doubling for each successive column (see e.g. Hartree 1952). However, in 
our case this rounding error also increases as one goes down a column, being weighted 
by approximately (2N2 + 2N + l)j2(2N + 1) in the first difference column. This slightly 
reduces the expected increase in reliability of entries with larger N. This increased 
rounding error can be interpreted graphically because the points are getting closer 
together on the N - 2 scale, hence allowing greater uncertainty in the slope of the line 
joining them. One could reduce this uncertainty by taking differences between EFG 
elements separated in N values by more than two when the convergence accuracy 
could be seen to be limited by rounding. 

Two of the EFG components have been selected to illustrate the convergence 
properties. The first component, which exhibits one of the fastest convergence rates 
found, is V12(0(1), 0(1)) where 0(1) denotes the no-symmetry oxygen ions. * Since 
this is an off-diagonal EFG element which involves only sites of symmetry 1, it may 
be regarded as a stringent test of the general validity of the N- 2 convergence. No 
difference was observed between the behaviour of the diagonal and off-diagonal 
EFG components. The second example, illustrating one of the slowest convergence 
rates found, is V33(0(m),0(m)) where Oem) denotes the mirror-symmetry oxygen 
ions. This corresponds to one of the highest symmetry summations performed. 
Although both of these cases are for the effect of a group of ions at the site of another 
of the same type, no different properties were found for summations involving the 
effect of one group of ions at the site of an ion of another group. 

The data for these two examples are presented in two different ways. In Fig. 1 
the EFG components are plotted against N - 2, clearly showing the regular convergence. 
In the slowly converging example, the initial entries corresponding to N = 2, 4 and 6 
(see Table 2b) are not monotonic, a feature observed in 20 out of the 77 summations 
performed. This effect, which is presumably due to large higher order terms, in no 
case continued beyond N = 4. It is interesting to note that in one case, V1zCFe, Gd), 
the sum changed sign between N = 4 and 6, but still converged linearly with N - 2. 

The Neville tables are also given for both examples (Table 2) with the rounding 
error in the last figure of each entry in Table 2a shown in parentheses to indicate its 
variation. The more rapidly converging example can be seen to have converged to 
the seven significant figures used by N = 8 (see the first column of differences) and the 
effect of differencing errors then becomes apparent as one moves successively to the 
right of Table 2a. In the slowly converging example of Table 2b, which is presented 

* More generally, Vi/a, r) denotes the ijth component of the EFG at a site of the ath sublattice 
due to all the ions on the rth sublattice. 
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in more abbreviated form, the entries in the first difference column are still changing 
monotonically whilst the second difference column gives a more accurate estimate of 
the final answer. In no case did we find that the answer improved after the second 
difference column. 
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Fig. 1. Convergence of the EFG components Vu(O(1), 0(1)) (circles) and V33(0(m), O(m)) (triangles) 
as a function of N - 2. 

In order to estimate the cavity size necessary to obtain a certain desired degree of 
accuracy, Table 3 shows the number of significant figures correctly obtained at different 
N values for the fastest and slowest convergence rates observed, starting from seven 
figure data. At worst, one can expect to gain one significant figure each time N 
increases by two units, but the accuracy usually increases considerably faster than 
this. The numbers in this table apply of course only to summation values of approxi­
mately the 'normal' size (EFG ,...., 1022 V m - 2); those smaller by n orders of magnitude 
will, on average, have n less significant figures since the effects of higher order terms 
would be expected to occur at the same absolute magnitude. 

Attempts were made to fit the tabulated data to a polynomial in N -~ as an alter­
native to the Neville table extrapolation. The extrapolated values obtained were not 
as reliable as those from the Neville tables, even when including coefficients up to 
IX = 8. However, it was instructive to see that the sizes of the coefficients did not 
decrease with increasing IX and it was easy to monitor the rapid decrease of the terms 
with increasing N. 

de Wette Method Results 

The same EFGs at various ionic sites in GdFe03 , calculated by means of the direct 
summation technique, were also evaluated using the de Wette method. As indicated 
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in Section 2, this method involves summing in two-dimensional reciprocal space the 
contributions from ions in a1 , a2 planes parallel to the faces of a slab-shaped cavity. 
In obtaining the results for this paper, the sum over the plane which contains the 
origin was evaluated by a two-dimensional direct summation. Since this lattice sum 
was found to converge regularly as N -1 (here N is the number of unit cells in a side 
of the plane), it could also be extrapolated by means of a Neville table. 

Table 3. Number of significant figures obtained at different values of N 
(or M) for the fastest and slowest convergence rates found in a normal 

magnitUde summation 

Direct summation method de Wette method 
N No. of significant figures M No. of significant figures 

Slowest Fastest Slowest Fastest 

4 4 4 0 
6 2 6 6 0 
8 3 7 8 0 2 

10 4 10 0 3 
12 5 12 0 4 
14 6 14 0 5 

16 0 5 
18 1 6 
20 1 7 
22 
26 2 
30 2 
34 2 
38 2 

In the de Wette method the rate of convergence of the sums over the reciprocal 
lattice depends on the positions of ions along the a3 direction relative to the site at 
which the EFG is being evaluated. If U3 denotes the atomic parameter in the a3 

direction relative to that at the origin, convergence is most rapid when U3 = 0·5 and 
becomes slower as U3 approaches either 0 or 1. In the cases where all U3 values lie 
between 0·2 and 0·8, EFG cOl;nponents of the order of 1022 V m - 2 were found to 
converge to at least seven significant figures after summing over about 500 lattice 
points in two-dimensional reciprocal space. However, for U3 values of approximately 
0·05 or 0·95, the sums could be estimated to only three or four significant figures 
after 1600 lattice points had been included because oscillations due to the sine or 
cosine functions were still evident. The irregular behaviour of these poorly converging 
sums does not allow them to be extrapolated by means of a Neville table. 

It is useful to be able to estimate the minimum size of the planes in two-dimensional 
reciprocal space over which the summations must be carried out in order to obtain 
a certain desired degree of accuracy. Let M be the number of basis vectors in a side 
of such a plane. Table 3 shows the number of significant figures correctly obtained 
at different M values for the cases of fastest and slowest convergence of a normal 
magnitude summation (EFG ~ 1022 V m - 2). The sums which converged most 
rapidly gain approximately one significant figure each time M increases by two units 
and correspond to cases in which U3 is equal to 0·25 or 0·75. In the most slowly 
converging sum, which involves U3 values of approximately 0·05 and 0·95, only two 
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significant figures have been obtained at M = 38, illustrating the inefficiency of the 
de Wette method when U3 is close to ° or 1. 

Comparison of Results 

In order to compare the results of the direct summation and de Wette methods, 
four of the EFG components have been selected. These components include examples 
of fast and slow convergence for the direct summation technique, cases in which the 
de Wette method produces rapid and poor convergence, and illustrations of the use of 
a direct summation over the plane containing the origin as an adjunct to the latter 
method. 

Table 4. Comparison of four point-charge EFG components at ionic sites in GdFe03 obtained by 
each method 

For each EFG component the upper line refers to the direct summation method, the lower line to the 
de Wette method. All entries are in units of 1O-2 mms -1 

EFG Value Lorentz Total Nature of convergence 
component factor term 

V33(0(1), Gd) 11·99469 5·69936 17·69405 fast 
-8,287162 25·981209 17'694047 fast 

V13(Fe,Gd) 1·734666 0 1'734666 slow 
1·734667 0 1'734667 fast 

Vll(Fe,O(1)) -11·81619 -14·01732 - 25·83351 fast 
-25·83 0 -25,83 slow, oscillatory 

V33(0(m),0(m)) -0,263721 -3'799570 -4'063291 slow 
13·25741 -17'32081 -4,06340 slow, N -1 extrapolation 

Table 4 compares the values of the chosen EFG components at ionic sites in 
GdFe03 obtained by the two different methods. When the EFG at an ionic site due 
to each group of ions of the same type is considered, the lattice sums depend on the 
cavity shape, and appropriate Lorentz factors {3ij have to be included to render them 
invariant (as described in Section 3). For a rectangular cavity 

{3H = 8arctan[aj ad{a i(a; +a;+af)t}] , i,j,k = 1,2,3, i #-j #- k, 

{3ij=o, i#-j; 

whereas for the de Wette slab-shaped cavity {333 = 4n is the only nonzero factor. 
In Table 4 it may be seen how the inclusion of these Lorentz factors gives equivalent 
values for the EFG components and hence the lattice sums, obtained by the direct 
summation and de Wette methods. 

Because the rate of convergence of EFG lattice sums calculated by means of both 
the direct summation and de Wette methods can vary considerably, it is useful to 
have a criterion for determining the most efficient technique. Although a direct 
summation over all ions within a cavity, whose side contains N unit cells, followed 
by extrapolation by means of a Neville table generally produces a more accurate 
result than a summation in two-dimensional reciprocal space over planes containing 
N basis vectors in their sides, it must be remembered that the former method involves 
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Fig. 2. Comparison of the convergence of (a) V33(0(1), Gd), (b) V13(Fe, Gd), (c) Vu (Fe,O(1)) and 
(d) V33(0(m),0(m)) by direct summation (squares) and de Wette (circles) calculations. The 
appropriate Lorentz factors are included so that both sums converge to the same values, here 
normalized to unity. 
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a three-dimensional summation whereas the latter involves a summation in only 
two dimensions. The relative efficiency of the two techniques, as determined by the 
computer times required to evaluate the same sum to a given accuracy, depends on 
the relative number of lattice points which need to be included in the summations. 

When all the ions included in a summation have U3 values relative to that at the 
origin between 0·2 and O· 8, the de Wette method uses less computer time to achieve 
any. desired accuracy and is particularly favourable when six or seven significant 
figures are required in the result. For example, the EFG components V33(0(1), Gd) 
and V13(Fe, Gd) given in Table 4 (see also Figs 2a and 2b) are both more efficiently 
calculated by the de Wette method. However, when one or more ions have relative 
values of U3 which are close to 0 or 1, the de Wette method becomes less efficient 
than the direct summation technique which is particularly advantageous if not more 
than five significant figures are sufficient. The EFG component Vll(Fe,O(I)) given 
.in Table 4 is an example of this situation and its oscillatory behaviour is clearly seen 
in Fig. 2e. 

n should be noted that a far greater variation is observed in the rate of convergence 
of lattice sums calculated by the de Wette method compared with those evaluated 
using a direct summation. This larger variation can be a drawback, especially in 
the determination of the ,EFG at a given site due to all surrounding ions, because a 
single ion with a relative U3 value close to 0 or 1 can seriously reduce the convergence 
rate of the total EFG components. As shown by Massidda (1976), this difficulty can 
often be overcome by making a different choice of axes for ions with such U3 values. 
However, in compounds such as cubic sesquioxides with the bixbyite structure 
(Barton and Cashion 1979), whose unit cells contain large numbers of ions, all three 
relative atomic parameters of some ionic sites may be sufficiently close to either 0 
or 1 to significantly reduce the usefulness of such a transformation of coordinates. 

The de Wette method also suffers from the disadvantage of requiring a separate 
summation for the plane containing the origin. Unless an auxiliary convergence 
function is employed, this summation has to be performed directly and then extra­
polated, e.g. by means of a Neville table. The component V33(0(m),OCm)) is such 
an example where the N -,1 convergence property was used and its slow approach is 
shown in Fig. 2d. 

In the direct summation technique the rate of convergence of the total EFG 
components at a given site is not greatly reduced by the contribution from one 
particular type of ion. Although an extrapolation procedure is required to improve 
the accuracy of the lattice sums, no special functions are used and the total EFG can 
be computed by a single summation. 

5. Conclusions 

A comparison has been made of the direct summation and de Wette methods for 
the evaluation of EFG lattice sums according to a point charge model of an ionic 
crystal. The calculation of EFGs at ionic sites in GdFe03 has been used to illustrate 
these two techniques and particularly their convergence properties. 

For simple arrays the de Wette method often has the advantage of producing 
more rapid convergence. But the regular convergence of direct summations over 
unit cell-shaped cavities enables this more versatile method to have greater efficiency 
in certain cases, especially where the unit cell contains a large number of ions. When 
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the direct summation technique is used, the components of the EFG tensor converge, 
in general, as N - 2 to their values for an infinite lattice even when summing over 
ions whose total charge is nonzero. We believe that the criterion for this convergence 
is a constant ratio of charge to summed volume. 
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