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Abstract 

A mathematically improved analytical approximation is obtained to the solutions of the phenom
enological equations of H. Hasegawa that describe the electron spin resonance of local moments in 
metals and the bottleneck effect that frequently occurs. The approximation shows that at all tem
peratures above the Curie point () the Iinewidth is proportional to T -- () for any degree of bottle
necking, and not to temperature T. The solution also reveals that the g shift remains explicitly 
independent of temperature down to the Curie point. The expressions obtained take into account 
explicitly the direct local moment spin lattice relaxation rate and show that it is effective in breaking 
the bottleneck. 

Introduction 

The phenomenological theory of the bottleneck in the electron spin resonance 
(e.s.r.) of local moments in metals due to Hasegawa (1959) and its various improve
ments and extensions (Giovannini 1967; Cottet et al. 1968; Dupraz et al. 1970; 
Barnes et al. 1971) has proved to be of great importance in gaining an understanding 
of the spin dynamics of metals (Taylor 1975). However, available solutions of the 
equations of motion (see also Schultz et al. 1967; Monod and Schultz 1968; Pifer 
and Longo 1971, 1972) are unsuitable for providing a transparent resolution of one 
of the major problems, identified by Taylor (1975), in the reflection spectroscopy of 
magnetically concentrated materials: the 'negative' residuallinewidth. In the present 
paper we show that a suitable approximation to the analytical solution of Hasegawa's 
equation is able to resolve this problem. 

Equations of Motions 

In this and the following section we will define the notation used, set the work 
in context, and correct an error in the literature. The physical system that we consider 
consists of a set of S state local moments denoted by d, a conduction electron system 
s and a lattice L. The d and s systems have similar gyromagnetic ratios y and the 
various relaxation rates are given by the bij. The equations of motion we need to 
solve are 

8Md/8t = -yMd x (H+AMs) -(bds+bdL)(Md-Md) +bsiMs-Ms), 

8Ms/8t = - yMs x (H+AM~) -(bsL +bsd)(Ms-Ms) +bds(Md-Md). 

(1) 

(2) 

* The results of this paper were presented at the Irtternational Conference on Magnetism at Munich 
on 7 September 1979. 
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In these equations H is the total applied magnetic field and A the molecular field 
coefficient that couples the sand d systems. The M are the instantaneous magnetiza
tions and the M are the values of the instantaneous equilibrium magnetizations to 
which the systems relax. These quantities are given by 

Md = X~(H + AMs) , Ms = X~(H+AMd)' 

where X? is the static susceptibility. There is also a detailed balance condition 

X~ /X~ = [)ds/[)sd' 

(3a, b) 

(4) 

These phenomenological equations have been justified from the s-d Hamiltonian 
at high enough temperatures with varying degrees of complexity and rigour by Barnes 
and Zitko va-Wilcox (1973), Zitkova-Wilcox (1973), Langreth and Wilkins (1972) and 
Smith (1973). The derivations are restricted to the case of low concentration and 
might not be fully applicable to the situation considered here. 

Formal Solutions 

Static Solution 

The values of the magnetizations obtained under a static field, for example the 
steady field in an e.s.r. experiment, are derived by putting M = M in equations (3). 
Hence, we get 

Md/H = Xd = x~(1 +AX~)(1 -8/T)-1, (5) 

where 

8/T = A2X~ X~. (6) 

The parameter 8 is the paramagnetic Curie temperature of the system if X~ obeys 
a Curie law and X~ is a Pauli susceptibility. We shall only consider the behaviour 
of the system in the paramagnetic phase. 

An equation similar to (5) holds with the suffixes sand d interchanged, and lastly 
we obtain 

X = (Md+Ms)/H = x~(1 +2AX~ +X~Ix~)(1-8/T)-1. 

Dynamic Solution 

We take the applied field to be 

H = zH + xh cos OJt + Ph sin OJt , 

and the magnetization of component i to be 

Mi = i;Mi + xmi cos OJt + ymi sin OJ! . 

(7) 

(8) 

(9) 

When these two expressions are substituted into the equations of motion (1) and (2), 
we obtain 

where 

(
LlOJ-Sd 

's 
'd )(md) = _h(YJd) , 

LlOJ-ss ms YJ. 
(10) 

LlOJ = OJ - yH, (11) 
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ed = YAMs +ibds(1 +L+AX~), es = YAMd +ibsd(1 +B+AX?)' (12a, b) 

Cd = YAMd +ibsd{1 +AX?(1+L)} , Cs = YAMs +ibds{l +Ax~(1+B)}, (13a, b) 

11d = yMd +iLX~ bds> 11s = yM. +iBX? bsd ' (14a, b) 

The bottleneck factor B and the lattice relaxation factor L are respectively 

B = bsL/bsd , L = bdL/bds ' (ISa, b) 

The formal solution to equation (10) is the frequency and field dependent suscep
tibility 

where 

x(w, H) = (md +ms)/h = N(w)/D(w) , 

N(w) = 11ies+Cs-Llw) + 11.(ed + Cd- Llw) , 

D(w) = (LlW-ed)(Llw-es) - Cd Cs· 

The resonant frequencies are given by 

D(w) = O. 

(16) 

(17) 

(18) 

(19) 

Our quantity X(w, H) is the same as the [X+( -w)]* of Giovannini (1967) with C1 
and C2 reversed. The expression (19) vanishes at the roots of the K20 of Pifer and 
Longo (1971, 1972). 

Resonant Frequencies 

In solving the quadratic equation 

Llw2 - LlW(ed + es) + ed e. - Cd Cs = 0, (20) 

previous workers manipulated the coefficients into a form that enabled the roots to 
be expanded in powers of A. We have found it preferable to evaluate the coefficients 
directly as they stand. Thus, we get 

ed+e. = ibsd{1 +B+2AX? +(I+L)X?/X~ -iD}, 

where the dynamical factor D is given by 

D = YA(Md+Ms)/bsd 

or 

D = YAX?H(I +2AX? +X?Ix~)/bds(1-()/T). 

(21) 

(22) 

(23) 

Since the term in the first set of parentheses in equation (23) will be close to unity for 
the usual experimental conditions of reflection spectroscopy, the dynamical factor 
is essentially equal to the ratio of the lineshift to the linewidth at any temperature 
in the unbottlenecked limit, as we shall confirm later. Further, after a certain amount 
of algebraic manipulation we obtain 

edes -CdC. = -(1-()/T)b;d{L +B(l+L) -i(B+L)D/(1 +2AX? +X?/X~)}X?/X~. (24) 
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At this stage we can expand the square root in the solution of equation (21), 

Aw:= -!(ed+es)[1 ±{I-4(edes -Cd Cs)/(ed + es)2}t], 

to get the frequency shift of the observable resonance 

AWl = (edes -CdCs)/(ed+es)' 

(25) 

(26) 

Combining equations (21) and (24) gives the expansion parameter in equation (25), 

-4(1-8/T/~ {L +B(I+L) -i(B+L)D/(I +2AX~ +X?/X~)} (27) 
X~ {I +B +2AX~ +(1 +L)X~/X~ _iD}2 

Under the usual conditions of reflection e.s.r. we will have L ~ 1, D ~ 1 and 
2AX~ ~ 1. The expansion parameter will therefore be small in any of the following 
cases: (a) B + L ~ 0 the bottlenecked limit, (b) B ~ 00 the unbottlenecked limit, 
(c) X~/X~ ~ 1 or (d) T ~ 8. We note that the coupling parameter A only appears 
explicitly in condition (d). In a usual reflection experiment at least one of these 
conditions is likely to be valid, and the errors created by using only the first term 
in the expansion of equation (25), the only approximation made in this paper, will 
be negligible. 

From equation (26) we may then obtain the g shift defined by Ag = g ReAwt/yH 
and the linewidth defined by DH = ImAwt/y : 

B2 +L2XO/XO -2AXo BL A - s d S A 
g - {I +B+2AX~ +(I+L)X~Ix~}2 +D2 go, 

(28) 

where Ago = gAX~, and 

D H = ..:..{ B_(,-I_+_L_) +_L.:...}{-,-I_+_B_+_2A_X_~_+_(,-::I _+_L-,-,-)X,-~ /_X-,~ }'-;,-+-=(B-;:-+_L_)--,Do--'2 /....;.(I_+_2A...;..X;.:..~ _+...;..X;.;;..;~ /...:..:.::..X~) 
{I + B +2AX~ +(1 +L)X~/x~}2 + D2 

xKo(T-8), (29) 

where Ko = bd./yT is a constant which is independent of temperature because the 
Korringa relaxation rate bds is itself proportional to temperature. 

Discussion 

The results of this paper, equations (28) and (29), may be compared with previous 
results by letting the quantities L:X~/x~and 2AX~ become much less than unity. The 
latter quantity is typically O· 1 for rare earth systems and five or ten times larger for 
3d systems. We thus obtain 

A - B2 A 
g - (1+B)2+D2 go, (30) 

B(I+B+D2) 
DH =.. __ , _, Ko(T-8). (31) 

These two expressions are identical to those of Hasegawa (1959) except for one 
important feature. In Hasegawa's result the linewidth is proportional to T; in ours 
it is proportional to T-8. Experimental data (Than-Trong et al. 1976, 1977) favour 
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the latter dependence. Further, if we have shown that important terms in A 2 occur 
in the expression for DH, we have also shown that they do not occur in the expression 
for Ag and that this quantity is independent of temperature above the Curie point 
apart from the implicit dependencies of Band D. 

Finally, using the approximations of this section, we are able to obtain a simple 
expression for· the dynamic susceptibility itself, equation (16): 

MiyH+Awl) 
X(w,H) = H(yH+Awl-W)' (32) 

where AWl is given by equations (30) and (31). This non-Lorentzian form of suscep
tibility is associated with relaxation to the instantaneous internal field (Spencer and 
Orbach 1968). For magnetically concentrated materials the spin-flip mean free path 
is much shorter than the skin depth and conduction electron diffusion effects are 
unimportant. The magnetic susceptibility is therefore a local quantity, and the skin 
effect will cause the measured absorption to have the form of the sum of the real 
and imaginary parts of equation (32). 
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