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Abstract

Nonlinear magnetic convection is investigated using the modal equations for cellular convection.
The boundary layer method is used assuming large Rayleigh number R and small Prandtl number a
for different ranges of the Chandrasekhar number Q. The heat flux F is determined for the value
of the wave number which maximizes F. For a weak field, F is independent of Q but increases with
Ra; for a moderate field, F decreases with Q but increases with R and a; for a strong field, F
decreases with Q, increases with R and is independent of a. F eventually becomes 0(1) as Q 4- OCR),
and the layer becomes stable.

Introduction

This paper studies nonlinear magnetic convection at small Prandtl numbers under
the so-called modal forms of the equations for momentum, heat and magnetic field.
Briefly, these equations are constructed by expanding the fluctuating quantities in a
complete set of functions of the horizontal coordinate, and then truncating the expan
sion. The single mode equations are derived simply by retaining only the first term
in the expansion. A more detailed discussion of these equations and their derivations
are given by Gough et ale (1975); earlier, the same system of equations was derived
in a different way by Roberts (1966) using a procedure proposed by Glansdorff and
Prigogine (1964). Numerical computations of the single mode equations for thermal
convection have recently been carried out by Toomre et ale (1977), and good agreement
with the asymptotic results obtained by Gough et ale (1975) was found.

The treatment in this paper is for the steady state. Numerical studies by Weiss
(1975) indicate that a steady state can be reached by a hydromagnetic convective
flow of finite amplitude. Of course, sufficiently strong convective flows are time
dependent, but the present study aims at exploring the properties of nonlinear magnetic
convection in the simpler case of a steady state, as an approximation to the physical
situation. The particular interest and importance of magnetic convection in geo
physical and astrophysical situations, where the Prandtl number is not large and
nonlinearities are strong, have motivated the present study.

Before we start formulating the problem and considering the technical details,
it is useful to note briefly the physical effects on the flow conditions for various
strengths of the external field. When the imposed vertical field is weak, the convection
and the heat transport are unaffected and the fluctuating field is produced' kine
matically. For a moderate or. strong field, the Lorentz force is significant, the con
vective cells are reduced in horizontal size and the heat transport is decreased. The
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rigidity imparted by the external field tends to suppress the convection and thus
seriously reduce the heat transport. For a sufficiently strong field, the convection is
suppressed entirely and the layer becomes stable.

Governing Equations

We consider an infinite horizontal layer of fluid of depth d permeated by a magnetic
field. The upper and lower surfaces are assumed to be stress free and are maintained
at temperatures To and To +~T (~T > 0) respectively. The magnetic field
H* = (Hr, Hi, H;) can be written as H* = [H*] +h*, where the open brackets
denote a horizontal average. Since [H*] is only a function of the vertical variable
z and we have V . [H*] = 0, the component [Hj] must be a constant, taking the
value of an assumed impressed field with vanishing horizontal components. If the
field strength is measured in units of [Hi] then we have H* = K+h*, where K
is a unit vector in the vertical direction.

The modal equations of the hydromagnetic convection are derived from the
Boussinesq equations for momentum, magnetic field and heat by expanding the
fluctuating variables in the planform functions In{x, y) of linear theory (Gough et ale
1975). The nondimensional steady state forms of these equations, after truncating
the expansion by retaining only the first term, are

{D2-a2)2W = Ra 2T +Ca- l{2DW{D2-a2)W + W{D2-a2)DW}

- -rQ{D2
--- a2)Dh

3 ,

-r{D2-a2)h
3 +DW = 0,

(D 2-a2)T+{I- WT+F)W = C{2WDT +TDW).

(la)

(lb)

(Ic)

The advection of the magnetic field in equation (I b) and nonlinear interactions of h*
with h* andu in equations (l a) and (I b) are neglected, since the present analysis is
restricted to the parameter range r ~ 1, where -r = 11/K is the ratio of magnetic
diffusivity 11 to thermaldiffusivity K. In equations (I), h3 / l and Wil are the vertical
components of the magnetic vector h* and velocity vector W respectively, Til is
the deviation of the temperature from its horizontalaverage, R = exg ~Td3/Kv i:§
the Rayleigh number, Q = [H;]2d2/flPoV11 is the Chandrasekhar number and
a = v/Kis the Prandtl number, Jl being the magnetic permeability, Po the reference
density (constant), v the kinematic viscosity, ex the coefficient of thermal expansion
and. g the acceleration due to gravity. Also, a is the horizontal wave number, D
denotes d/dz,F = <WT> is the heat flux, the angle brackets indicating a further
vertical average over the whole layer, and C = [t/i{x, y)] is the parameter derived
from the planform functionft{x,y). The constant C vanishes for rolls and rectangles
and has a value of 6- t for a hexagonal planform, We shall assume here that C is
nonzero and takes the value of 6- t as a representative magnitude. For C = 0, the
system of equations (1) reduce to the so-called mean field equations for magnetic
convection; these have been solved for this problem recently (Riahi 1980).

We shall rescale our dependent variables such that

OJ = {FR)-tW, () = {R/F)tT, H = (FR)-t-rh 3 • (2)
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The governing equations then take the forms

(D 2 _a2)2w = a2()+ Ca- 1(FR}!{2D W (D 2 -a2)w+w(D2-a2)Dw}

- Q(D2- a2)DH, (3a)

(D 2-a2)H +Dw = 0, (3b)

(FR)-1(D2-a2)()+(1-w()+F- 1)w = C(FR)-t(2w:D() +()Dw). (3c)

We shall use the following constraint to evaluate the heat transport:

F = (1-R-1</V()/2»)/«1-w())2), (4)

which is obtained by multiplying equation (3c) by () and taking the vertical average
over the layer.

The boundary conditions to be considered for the free surfaces at z = 0 and 1 are

w=D2w=()=H=0. (5)

The subsequent analysis and solution of equations (3)-(5) supposes throughout that
both the Rayleigh number and the heat flux are large. The magnitude of the Chan
drasekhar number Q is allowed to vary, and different classes of solutions are found
for different orders of its magnitude. In each case, the principal focus is on the
unique solution that maximizes F.

Solutions by Boundary Layer Method

(a) Weak Field

The wave number a is supposed to be large (which can be justified a posteriori),
so that the convection cells are narrow. The solutions can be obtained by matching
asymptotic approximations in the interior with two distinct regions near each
boundary. In the interior of the layer, the inertial, buoyancy and convection terms
are important, and equations (3) are satisfied by

H = !(aC -1 z-2)1/3(FR)-1/6a-2 .

to = to C -1 Z)1/3(FR)-1/6 , ()=w- 1 , (6a, b)

(6c)

Near each surface and adjacent to the interior are intermediate layers of thickness
O(a- 1

) , in which vertical derivatives are important in the inertial term. Defining
appropriate boundary layer coordinates 't = a(l-z) and (b = az for the upper and
lower of these layers respectively, we find that equations (3) yield: as (t ~ 0,

H = ~(a/C)1/3(FR)-1/6a-1(t)2/3(~/3 ;

H = -ta-1(aICa)1/3(FR)-1/6(~(310g (;1)1/3 .

and, as (b ~ 0,

co = (a/C)1/3(FR)-1/6(!;)1/3(3(t)2/3 ,

w = (a/Ca)1/3(FR)-1/6(b(310g (;1)1/3 ,

()=w- 1 ,

() = w- 1 ,

(7a, b)

(7c)

(7d, e)

(7f)
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Closer to each surface and adjacent to the intermediate layers are thermal layers,
in which thermal conduction is significant and () is brought to its zero boundary
value. We define bt and bb as the thicknesses of the top' and bottom thermal layers
respectively. Also, l1t = (1- z)jb t and l1b = Zjbb are defined to be the corresponding
variables in these layers. We then find from the governing equations (3), after applying
matching conditions (matching the solutions with the corresponding ones in the
intermediate layers), that the solutions in the lower thermal layer are

where

OJ = Abl1b'
C

t f JL
2

() = --.!!:! (/12 - t2 )- t exp{tCl1~(l- t)} dt,
2Ab 1

H= - tbb Ab11~ ,

(8a, b)

(8c)

A
b

= (ujCa)1/3(FR)-1/6abb{310g(abb)-1 }1/3, /12=1+C- 2 • (9)

Similarly, we find the following solutions in the upper thermal layer :

where

OJ = A tl1t,
ct fJL 2

e= - -.!J.!. (Jl2- t2)- t exp{!C1J;(t-i)} dt ,
2A t 1

H = tb t A tl1;,

At = (uj2C)1/3(FR)-1/6(3ab t)2/3 .

(lOa, b)

(10c)

(11)

To determine F, we must evaluate the expressions <I V'() 12) and «1-W())2) in
equation (4). After use of a formal procedure to maximize the .heat flux (Chan
1971), we find

a == (t)1/2(32)1/32(-+)lS/32(-t I)3/16(RujC)9/32(log Ru) -1/32 , (12a)

bb = (-t I)1/8(224)3/16(RujC)-S/16(logRu)-3/16 , (12b)

s, = (418)1/S(-tI)3/20(224)9/40(RujC)-3/8(logRu)-1/40, (12c)

F = (710)3/16(tI-1)9/8(156)3/16(RujC)S/16(logRu)3/16 , (12d)

where

I = 1·062(1+C2)1/4 . (13)

The detailedanalysis (not included here) shows that the conditions for the validity
of the solutions are

R-1 ~ U ~ (R-110gR)1/9 , Q ~ RS/8u- 3/8(log RU)1/24 . (14)

(b) Moderate Field

The solutions for this case can be obtained by matching asymptotic approximations
in the interior with three distinct regions near the lower boundary and two distinct
.regions near the upper boundary. The solutions (6) hold again in the interior of the
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layer. Near the lower and upper boundary and adjacent to the interior are an inner
layer of thickness e and an intermediate layer of thickness O(a- 1

) respectively. In
the inner layer the inertial buoyancy and Lorentz forces' are all of comparable
magnitudes, and equations (3) yield, as C~ 0,

H = (u/C)I/3(FR)-1/6(j-)1/2 a-2e-2/3(logC- 1)1/2,

co = (ue/C)1/3(FR)-1/6(j-)1/2C(logC-1)1/2 , ()=co- 1 , (I5a, b)

(I5c)

where C= z/e is the layer variable. The detailed analysis indicates that

s = (Q/3a2)3/4(u/C)1/2(FR)-1/4

and that e must satisfy the condition

1 ~ e~ a-to

(I6a)

(16b)

The intermediate layer near the upper boundary has essentially the same structure
as the corresponding one for the case of a weak field and so equations (7a)-(7c) hold.

Closer to the lower boundary is another intermediate layer of thickness O(a- 1
) .

The solutions in this layer obtainedafter applying matching conditions are

co = (ue/C)1/3(FR) -1/6(j-)1/2(ae)-I(log ae)I/2Cb' () = CO-I, (I7a, b)

H = (j-)1/2(u/C)1/3(FR)-1/6a:-2e-2/3(logae)I/2{I-exp( - Cb)}, (I7c)

with Cb= az as before.
There are further layers closer to each boundary and adjacent to the intermediate

layers, in which thermal conduction is significant and () is brought to its zero boundary
value. Using the same notation as in subsection (a) above, the governing equations
(3) yield the expressions (10) and (11) and the following results:

where

co = Abl1b '
ct fll2

() = --.!!.2. (1l2
- t2

) -t exp{tCl1~(I-t)} dt ,
2A b 1

H = a- 1Ab17b '

(18a, b)

(I8c)

Ab = (ue/C)I/3(FR)-1/6(i)1/2(bb/e)(logae)1/2.

Using equation (4) to evaluate F, we find

(19)

e = (5QR- 1)3/4 , (20a)

a = 3-9/20.2-7/20 .5'-1/4 /1/5(U/C)3/10Rl/4Ql/20{log(QI6/5U6/5R-2)} -1/20, (20b)

bb = 33/10.2:-1/10.51/2 /1/5(U/C)-1/5Q3/10R-1/2{log(QI6/5U6/5R- 2)}-3/10, (20c)

b
t

= 3-4/25 .23/25•53/10 /4/25{U/C)-9/25R- 2/5Q 1/25{log(Q16/5u6/5R- 2)}-1/25 , (20d)

F = (i")3/2(l4)3/l0/-6/5R1/2Q-3/10(U/C)1/5{log(Q16/5cr6/5R- 2)}3/10. (20e)
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The conditions obtained for the validity of these solutions are

N. Rhihi

R5/ 8U - 3/8 ~ Q ~ R5/ 7U- 2/7 log Ra ,

R5/ 8U - 3 / 8 ~ Q ~ u- 610g(u- 1R1/ 9 )

for

for

R- 1 ~ U ~ R- 1/ 8 ; (2la)

R- 1/ 8 ~ a ~ R- 1/ 9 • (2lb)

(c) Moderately Strong Field

The preceding boundary layer solution in the ranges (21) was based essentially
on the condition a ~ bbl. Now as Q further increases beyond the ranges (21), we
will obtain a new condition a = bbl. Thus near thelower boundary, the intermediate
layer will coincide with the' thermal layer. The solutions in this new thermal layer
are then found to be

OJ = Ab1Jb'

(
Jl +1) 1/4CJl IJl (Jl- t) 1/4CJle=tct --. 1Jb _.- (Jl2 - t2)-t exp{tC1J~(l-t)} dt ,
Jl-1 1 Jl+t

H = a- 1Ab{1-- exp( - 1Jb) } .

(22a)

(22b)

(22c)

The maximization of F can proceed as before, and we find :

B = 3-5/2.27/4(ujC)1/2J2Q5/2R-2{log(Q2R-4/3U2/3)}-7/4, (23a)

a = (3Rj2JQ){log(Q2R-4/3U2/3)} , (23b)

bb = «>, (23c)

b
t

= 211/5 .3-12/5 J8/3(ujCy~-115R-ll/5Q2{log(Q2R;"'413U2/3)}-2, (23d)

F = (3Rj2Q) J - 2{log(Q2R - 4/3U2/3)} , (23e)

where

J ~ (21t)3/2{(/1- L J 3 + /1+1 _ ~)(1- J3)t(1 /CJl-3)

3C 2 2 2 C 2

(
Jl - 1)~3 ) -t(1/CJl+5) (Jl+ 1 1 ).( ) -t(1/CJl+5)

x +(3Jl+1) + -'--- 3Jl+1
2 2 C

(
/1-1 J3 /1+ 1 1) ( .. ,J3)t(1/CJl-3)+ -----+--- - 1+-

2 2 2 C 2

(
( -1) /3 ) -t(l/CJl+S)}

x - /1 2 v +(3/1+ 1) (/1-1)-7/4(/1+ 1)1/4CJl • (24)

The following conditions are found to be necessary for the validity of these solutions:

R2/3U- 1/3 ~ Q ~ R4/5u-1/5(loguR)7/fO ,

for R-1 ~ U ~ R- 2 /11 ; (25a)
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R4/5a2/5(logaR2/11) ~ Q ~ R4/5(J-1 /5(logaR)7 /10,

for R - 2III ~ a ~ (log aR) 7 I 6(log aR2III ) - 513. (25b)

(d) Strong Field

For Q larger and beyond the ranges (25), the inner layer thickness 8 no longer
satisfies the condition (16b) and we must then have the new condition

a-1 ~ <5b ~ 1. (26)

A detailed analysis for this condition indicates that the value of a which maximizes
F satisfies the relation

a "-J Q2/3a2/3R-1/3(logRQ-l)-1/6. (27)

The solutions can be obtained by matching asymptotic approximations in the
interior with two distinct regions (thermal and magnetic layers) near each boundary.
In the interior of the layer, the buoyancy and Lorentz forces balance, although the
inertial force could become significant. The governing equations (3) then yield the
results, as z -+ 0,

w = a(2Q-1ytz(logz-1yt, () = w -1 ,

H = a-1(2Q-1)t(logz-lyt.

(28a, b)

(28c)

Similar asymptotic. results near z = 1 can be obtained by replacing z with 1- z in
equations (28). Near each surface and adjacent to the interior are thermal layers in
which thermal conduction is significant and () is brought to its zero boundary value.
We define 1Jb = z/<5b to be the variable in the lower layer, <5 b being the thickness of
the lower thermal layer. After matching the solutions to the corresponding solutions
in the interior, we obtain the results

where

w=Ab1Jb' () = 1Jb/Ab(l + 1J~) , H = Aba-
2<5b"1, (29)

A b = (2Q-lyta<5b(log<5b1yt. (30)

The analogous solutions and analysis in the upper thermal layer (which has the same
structure as the lower one) are straightforward and shall not be repeated here.

The solutions for wand f) satisfy the required boundary conditions at z = 0 and 1.
A further thinner layer near each boundary is then needed to adjust the solution to
satisfy the correct boundary condition on H. This is a magnetic layer of thickness
a- 1 with Cb = za as its variable (for the lower layer). We then find from the governing
equations that

H = A ba- 2<5 b" 1{I - exp( - Cb)} . (31)

A similar analysis and solution in the upper magnetic layer is straightforward.
To determine F, we evaluate as before the expressions for <I Y'f) 12) and «1- [wf)])2)

in equation (4) and find

bb = !nQ(RlogRQ-1)-1, (32a)



258

bt = bb'

F = 2n- 2Q- 1R(logRQ-l) ,

N.·Riahi

(32b)

(32c)

bt denoting the thickness of the upper thermal layer. The conditions for the validity
of these solutions are

R4/5a-2/5(logaRl/2)7/10 ~ Q ~ R4/5a-8/5(logaRl/8)-2/5,

for R-1/8 ~ a ~ (log aR1/8)-1/3(log aR1/2)-7/12 ; (33a)

R4 / 5a- 2/5(log aR1/ 2) 7 /10 ~ Q ~ R

for R- 1/ 2 ~ a ~ R- 1/ 8 • (33b)

Discussion

The boundary layer analysis here has shown that it is appropriate to ·divide the
parameter space into four different regions: (a) For a weak field, F is independent
of Q; the stabilizing effect of the field is so small that the maximizing flow behaves
as if there were no field. The horizontal scale of convection cells is also independent
of Q. (b) For a moderate field; the convection cells are reduced in size perpendicular
to .the imposed field. The heat transport decreases with Q. A new inner layer is
developed, in which the Lorentz force is comparable in magnitude with either the
inertial or buoyancy force. (c) For a moderately strong field, the behaviour of the
flow falls in between that for a moderate field and a strong field. The dependence of
F on a is quite weak, while its dependence on Q and R is essentially the same as in
the case 'of a strong field. (d) For a sufficiently strong field, the inner layer mentioned
in (b) 'disappears. However, a new thin magnetic layer is developed which is respon
sible for bringing the fluctuating field to its correct boundary values.

It is interesting to note that in each ·of the cases discussed above, F approaches
a value 0(1) as a approaches its smallest possible value and Q attains its largest
possible value. Thus, convection in a fluid with larger a seems to be less affected
by the stabilizing effects of an imposed field than in a fluid with a smaller a. It is also
seen from the boundary layer solutions that for sufficiently large Q the flow properties
depend weakly on a.

Recently Riahi (1980) investigated the problem of magnetic convection under
the so-called mean field approximation (C = 0). It was clear that in this case the
dependence of the flow on a disappears, and the results are believed to describe
correctly the average properties of the flow at large a. Thus some similarities may
be expected between the results of the present study and those for the case C = 0
at sufficiently largeQ, and in fact, for a moderately strong or strong field, the depen
dence of F on Q and R is found to be unchanged qualitatively in both cases C = 0
and C =/:= O. But the conditions on the validity of the solutions, the size of the con
vection cells and other results are different.

Busse (1975) investigated the effect of a weak vertical field on two-dimensional
steady convection. He found, in particular, that the influence of the field decreased
with increasing amplitude of convection so that a finite amplitude onset of steady
convection became possible at values of R considerably below that predicted by the
linear theory. The present study does not predict this phenomenon. It is seen from
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equation (32c) that, as Q~ R, F approaches 0(1), in agreement with the linear
theory (Chandrasekhar 1961). The approximation r ~ 1 made in this paper which
eliminates the advection of the magnetic field and. the nonlinear interactions of the
fluctuating field and the velocity in the induction equation is primarily responsible for
ruling out the possibility of subcritical instability. The phenomenon of magnetic
flux expulsion by convection (Galloway et al. 1978) is also not predicted by the
present model, since the magnetic field amplifies weakly by the convective flows in
the range 'r ~ 1.

Numerical studies for three-dimensional nonlinear magnetic convection have not
yet been done, but the two-dimensional problem has recently been analysed numeri
cally by Weiss (1975). He finds, in particular, that for R = 105

, (J = 1, 'r = 0·2 and
cells of length O·5 steady convection exists for Q ~ 2· 16 x 104 (in agreement with
the condition 33b), and for Q ~ 1· 25 X 102 the field no longer has any dynamical
significance (in agreement with the conditions 14). The present study is based on the
maximized nonlinear asymptotic state (R ~ 00) for small (J and 'r ~ 1, whereas
Weiss's analysis was concerned with moderately large values of R and moderate
values of 'rand (J. It is not expected therefore that there will be many other similarities
between the results of these two studies.
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