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Abstract

Spatially homogeneous and anisotropic cosmological models corresponding to Bianchi type I
solutions of Brans-Dicke theory are investigated. The physical and geometrical properties of the
models are discussed and compared with the corresponding relativistic models.

1. Introduction

In recent years, the effect of neutrino viscosity in the primordial fire ball (Dorosh
kevich et ale 1967; Misner 1967) has stimulated theoretical interest in the study of
anisotropic cosmological models, and a large number of solutions of Einstein's theory
have been obtained by Ellis and MacCallum (1969), Matzner (1969), Johri (1972),
Johri and Lal (1975), Liang (1976), Bandyopadhyay (1977), Roy and Singh (1977),
and others. In this context we obtain spatially homogeneous and anisotropic cos
mological solutions of the Brans-Dicke theory. The Bianchi type I metric is con
sidered and the energy-momentum tensor is taken to be that of a perfect fluid. Using
the equation of state p = ()' - 1)p, we can find the exact solutions corresponding to
}' = 1 and }' = j-, i.e. for dust-filled and radiation-dominated stages of the universe.
These solutions generalize the isotropic solutions obtained by Brans and Dicke (1961).
Various physical and geometrical properties of the models are then discussed.

2. Brans-Dicke Field Equations

We start with the Bianchi type I metric

ds2 = dt 2 -A2dx2 ·- B2dy 2 -C2 dz2
, (1)

where we take A, Band C to be functions of the time t only. The Brans-Dicke field
equations are

Rij - tRgij = - 8n4> -l1ij - w4> - 2(4) ,i4> ,j - tgij 4> ,k4>k) - 4> -1(4>i;j - gij 4>k;k) , (2a)

«, = 8nTj(2w+3) , (2b)

where we take 4> to be a function of t.
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The energy-momentum tensor for a perfect fluid is

Tij = (p+p)uiuj -pgij'

with the equation of state
p=(y-I)p.

The contracted Bianchi identity is

T ij - 0
;j - .

The field equations (2) in terms of the metric (1) are
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(3)

(4)

(5)

B4~ + C44 + B4 C4 = _ 8np _ :::.4>i + A44>4 _ 4>k~ (6a)
B C BC ¢ 2 ¢2, A¢ ¢ ,

C44 A44 A4 C4 = _ 8np _ ~ ¢l B4¢4 _ ¢~k C'6b)
C + A + AC ¢ 2 ¢2 + B¢ ¢ ,

A44 + B44 + A4B4 = _ 8np _ :::.4>i + C4 4>4 _ 4>~k (6c)
A B AB ¢ 2 ¢2 C¢ ¢ ,

A4B4 B4C4 C4A4 = 8np ~¢l_ (ABC)4¢4 (6d)
AB + Be + CA ¢ + 2 ¢2 ~ T'O/'f' ,

4>44 (ABC)44>4 = 8n(p-3p). (6e)
¢ + ABC ¢ (2w+3)¢

Equation (5) gives
P4 (ABC)4
-+y - 0p ......... .-.. - ,

and integrating this equation, we get

ps" = PosJ,

(7)

(8)

where s = ABC, and Po and So are the density and volume element at a given time to.
Adding equations (6a)-(6c) to three times (6d), we get

844

8

12n(p- p) 3c/J44 5(ABC)4c/J4
¢ - 2¢ - 2ABC c/J . (9)

Now we use the coordinate transformation

dt ~ c/J-l/2 dr , S~¢-3/28, (10)

so that equations (9) and (6e) are transformed to

Stt 12n(p - p)
S = c/J2 (

c/J t) Stc/Jt = 8n(p-3p)
c/J t + sc/J (2w + 3)c/J2 '

(11)

where differentiation with respect to r is denoted by s; etc.
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3. Dust-filled Universe

For this case we have y = 1, that is, P = 0. Equations (8) and (11) give the relations

slso = (¢/¢O)3(w+l) , piPo = (¢/¢O)-3(w+l) . (12)

Now integrating equation (6e) with the help of (12) we get

¢/¢o = {r(t 2+2at+b)}I/(3W+4) , (13)

where r = (4nPol¢o){(3w+4)/(2w+3)} and a-and b are arbitrary constants. From
the point of view of Mach's principle, we have ¢ ~ °as t ~ 0, and therefore b = 0,
which gives

¢/¢o = {r(t 2+2at)}I!(3W+4) ,

pip0 = {r(t 2 +2at)} - 3 (w +1) / (3 W +4 ) ,

slso = {r(t 2+2at)}3(w+l)/(3w+4).

(I4a)

(14b)

(I4c)

The metric coefficients A, Band C may be evaluated with the help of equations
(6a)-(6c) and (14) to give

A = Ao{tl(t+ 2a)}Pls1/3,

B = Bo{tl(t + 2a)}P2sl /3,

C = Co{tl(t+2a)}P3sl/3.

where Ao' Bo' Co, PI' P2 and P3 are arbitrary constants satisfying

(15a)

(15b)

(I5c)

AoBo Co = 1, PI +P2 +P3 = 0. (16)

The model has the following properties:

(1) It reduces to (a) the isotropic model with A = B = C if PI = P2 = P 3 ;

(b) the locally rotational symmetric model with B = C if P2 = P 3 ; and (c) a special
class of the Heckmann-Schucking model with A 2 = BC if 2PI = P2 +P3.

(2) From the energy densities of the Brans-Dicke and corresponding relativistic
model, we find

PBDIPrel o: (t 2 +2at)1/(3w+4) ,

which indicates that the density decreases more rapidly with expansion in the relati
vistic model compared with the Brans-Dicke,

(3) The components of the expansion tensor are

e.. = 2(w+1)~ + 2aPi
n 3w+4 t2 + 2at t2 + 2at '

and therefore the expansion scalar is given by

i = 1,2,3,

2(w+1) t+a
e = !(ell +e22+(3 3) = "'w+4 t2 +2at'
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These expressions show that the singularities occurring in the anisotropic Brans-Dicke
model are similar to those occurring in the corresponding relativistic model.

(4) The shear scalar is given by

30-2 = (011 + 022 + 033)2 - 3(011022 + 022033 + 033°11),

or 0- = 0-o/(t 2 +2at), where 0-0 is an arbitrary constant. This gives the following
relation between the energy density and shear scalar:

p = k' 0-3(w+l)/(3w+4)

(5) The relative anisotropy, given by

0-2/p = k'(t 2+2at)-(3w+5)/(3w+4) ,

is the ratio of the anisotropic energy (except for collisionless radiation) to the total
energy of the universe. This' expression suggests that in a dust-filled Brans-Dicke
universe, the anisotropic energy decreases more rapidly with time in comparison with
the total energy. A similar result also holds for the relativistic model.

(6) The rate of change of the gravitational constant is given by

(~4t = - (~4)0 2(to +a) n;
(3w+4)(to +2ato) = - (w+l)'

where H o is the present value of Hubble's constant. This expression shows that the
gravitational constant decreases with time in this model.

4. Radiation-filled Universe

For this case we have y = j:-, that is, P = j-p. Proceeding exactly in the same way
as in the previous section, we get the following solution for the radiation-filled
universe:

i = Sl/3U- M (3k) - 3/210g{(3ku)1/2+ 3ks1/3} ,

</> = </>,0{(U_Ml/2)/(u+Ml/2)}3L/2Ml/2, P = k<jJ2/S1/3,

A = Ao{(u-Ml/2)/(u+Ml/2)}P1S1/3,

B = Bo{(u-Ml/2)/(u+Ml/2)}P2S1/3,

C = CO{(U-Ml/2)/(u+Ml/2)}P3S1/3,

where u = (3ks 2/3+M)1/2, and M, L, k, Ao' Bo, Co, P1,P2 and P3 are arbitrary con
stants with

PI +P2 +P3 = 0, AoBo Co = 1.

The properties of the model are similar to those discussed in the previous section.

5. Conclusions

The Brans-Dicke solutions obtained here have a close correspondence with the
relativistic solutions, and as such the singularities occurring in the solutions of the
two theories follow the same pattern in the case of Bianchi type I models. In conclu
sion, we hope at least that our investigation will lead to deeper understanding of the
Einstein and Brans-Dicke theories
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