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The detection by optical heterodyning of laser light scattered from solutions of macromolecules 
offers significant improvement in statistical accuracy over the more usual self-beating method. 
Nevertheless the heterodyne technique is not commonly used because of the supposed difficulties 
associated with stable and efficient mixing of the scattered light with a local oscillator beam. We 
have carried out an experimental comparison of several methods of mixing the two beams, using 
very dilute solutions of polystyrene latex spheres as scatterers. Experimental data are also presented 
for the apparent particle radius as a function of the local oscillator level, and are compared with 
theoretical predictions. 

1. Introduction 
Photon correlation spectroscopy of scattered laser light is now a well-established 

technique for the rapid measurement of diffusion coefficients of macromolecules and 
other particles, especially in the size range 10-1000 nm. The earliest experiments by 
Cummins et al. (1964) used a method of heterodyne detection in which the scattered 
light, spectrally broadened by the Brownian motion of the scatterers, was made to 
beat with a local oscillator derived from the original laser beam but shifted in frequency 
by 12 MHz from the frequency of the scattered beam. Later experimenters have used 
a local oscillator beam of the same frequency as the scattered light, either deliberately 
introduced or through stray scattering from optical surfaces. The homodyne or 
self-beat method of detection was first used by Ford and Benedek (1965), and since 
then most workers have preferred this method because of its greater experimental 
simplicity. 

Heterodyne detection offers a number of advantages to be weighed against the 
less simple optical arrangement. The statistical accuracy in the determination of 
diffusion coefficients (for a given duration of experiment) is improved. The field 
autocorrelation function of the scattered light is determined directly, and is indepen
dent of the nature of the statistics of the scattered light; by contrast the interpreta
tion of the intensity autocorrelation function from a self-beating experiment requires 
the assumption of gaussian statistics in the scattered field. In addition the fitting 
of more than one exponential to data from polydisperse solutions is often simpler 
in the heterodyne case if the scattering solution is contaminated by small amounts 
of dust. This is because the dominant effect of such dust is to increase the baseline 
of the autocorrelation function slightly; this can be accommodated by leaving the 
baseline as a free parameter to be fitted, but the form of the function is then consider
ably simpler in the heterodyne case. 
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For the preceding reasons we have carried out an experimental comparison of 
several practical methods of achieving optical heterodyning, both to verify the im
provement in statistical accuracy and to determine the most convenient experimental 
arrangement. We have also made systematic measurements of the apparent particle 
size at various levels of local oscillator injection, and compared these with theoretical 
predictions. 

2. Theory of Heterodyne Detection 

The theory of photon correlation spectroscopy in general, and heterodyne detection 
in particular, has been given in a number of books (Cummins and Pike 1974; Chu 
1974; Berne and Pecora 1976) and review articles (e.g. Pusey and Vaughan 1975; 
Oliver 1978). The normalized field autocorrelation function of the scattered light 
for delay time t is related to the diffusion coefficient D of the scattering particles by 

g(l)(t) = exp(-q2Dt) = exp(-rt), (1) 

where q is the scattering vector. The diffusion coefficient is in turn related to the 
radius r of a spherical scatterer by the Stokes-Einstein equation 

D = kTJ6nrJr, (2) 

where '1 is the solvent viscosity and k Boltzmann's constant. This equation may be 
used to define a hydrodynamic radius from the measured diffusion coefficient for a 
particle of any shape. 

The normalized intensity autocorrelation functiong(2)(t) measured in an experiment 
is related to g(l)(t) by 

g(2)(t) = 1 + ( 2ng no 2)g<1)(t) + (_ ng _ )21 g<l)(t) 12 , (3) 
(ng + no) ns + no 

where ng and no are the mean numbers of photon counts per sample interval due to 
the scattered light and local oscillator beam respectively. The second term is indepen
dent of the statistics of the scattered light, whereas the third term requires the assump
tion of gaussian statistics. In a full heterodyne experiment the third (self-beating) 
term is made negligibly small by l,lsing a sufficiently large local oscillator signal 
(no ~ ng). However, when clipping is used Jakeman (1972) has shown that the third 
term can only be minimized in this way for ng ~ 1, corresponding to very weak 
scattering. 

This restriction to dilute sample solutions is realistic in practice. For stronger 
scattered fields having gaussian statistics, the simpler self-beating method of detection 
gives good accuracy within quite short experiment times. Only when the statistics 
are not gaussian is it then necessary to use heterodyne detection. Further, most 
digital correlators should not be operated at count rates above about 1 MHz to 
avoid problems from pulse pile-up. With a local oscillator level some 30 times as 
intense as the scattered light (see next paragraph), this restricts practical heterodyne 
experiments to a maximum count rate from the scattered light alone of about 30 
kHz. In the case of spherical particles of radius 44 nm in water at room temperature, 
and scattering at an angle of 900 , a suitable sample time is 20 flS for self-beating, 
corresponding to ng :::::; 1 at this maximum count rate. 
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Fig. 1. Amplitudes of the heterodyne (Bhe,) and self-beating (B,elf) components of 
the intensity autocorrelation function, calculated from equation (3), as functions 
of the relative strength iio/ ii, of the local oscillator beam. 
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In a real experiment the coefficients of the two time-dependent terms in equation (3) 
are modified by constant (and slightly different) factors that depend on the finite size 
of the detector area (Jakeman 1974). For small apertures these factors are somewhat 
less than unity. The coefficients Bhet and Bself of g(1)(t) and 1 g(l)(t) 12 respectively in 
equation (3) are shown in Fig. I as functions of the relative local oscillator level no/ns. 
The coefficient of the total time-dependent part of g(2)(t), namely Blot = Bhet + B self, 

is also shown. It is apparent that Bhet goes through a maximum value at no = ns; 
this maximum is a result of normalizing the autocorrelation function, and is not 
present in the unnormalized function G (2)(t). The total time-dependent amplitude 
falls steadily with increasing local oscillator level. The ratio Bselrl B het also falls, 
reaching a value of 1/60 at no = 30 ns; this level may be taken to correspond to 
effectively pure heterodyne detection. 

Jakeman (1972) has shown that, for ns ~ 1 and no ~ ns' the standard deviation 
in r for heterodyning and for self-beating, obtained from a two-parameter fitting 
procedure and a large number of autocorrelator channels, is given by 

(jr;r = {2rT/n; N}!: 

= (21'2rT/n; N)t 

(heterodyne) , 

(self-beating) , 

(4a) 

(4b) 

where r is the decay rate and N samples are taken, each of length T. This gives a 
theoretical advantage of 3·26 in accuracy in favour of heterodyning to determine r 
and hence the radius r of a scattering particle, l-{owever, Oliver (1974) points out 
that such an improvement is unlikely to be fully realized in practice. 
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3. Data Analysis 

Equation (3) may be written in the form 

(5) 

In this expression g(2)( (0) has been normalized to unity by dividing the experimental 
autocorrelation function G (2)(t) by ii2, where ii = ii. + iio. Thus 

(6) 

where 

N 

G(2)(t) = N- 1 L n(iT)n(iT+t), (7) 
i=l 

for N consecutive sample periods, each of length T. The mean count ii is accumulated 
in the correlator memory, along with the summations from which the autocorrelation 
function is calculated. 

At very low sample concentrations, residual dust in preparations can become a 
significant problem in spite of clarification procedures using centrifugation and filtra
tion. Such dust particles act both in the scattering volume, causing sudden increases 
in scattered intensity equivalent to an increase in local oscillator level, and outside 
the scattering volume by obscuring the incident beam and effectively reducing its 
intensity. Because of the very small number of dust particles in the beam at any 
instant, these effects are non-gaussian. Experimentally the first-order effect of small 
amounts of dust is to increase the baseline of the normalized intensity autocorrelation 
function g(2)(t) to a value slightly above unity, both for self-beating and for heterodyne 
detection. The initial effect on the decay rate seems to be very small, and some workers 
have chosen to meet this problem by leaving the baseline as an adjustable free param
eter in the fit; this procedure prevents the use of cumulants analysis of the data 
(Koppel 1972). While the problem exists for self-beating, it is much more acute for 
heterodyne detection (Thomas and Fletcher 1979) because the amplitude Bhet is quite 
small (at most 0·06) compared with the expected baseline value of 1·0. 

It may be noted that dust is a problem not only with dilute solutions of small 
scatterers. Experiments with quite high concentrations of strongly scattering large 
particles, such as polystyrene latex spheres of diameter 1 j.lm, can suffer severely 
from the presence of dust in the original sample. This can be very difficult to remove 
because the dust particles and the spheres are similar in size. Both centrifugation 
and filtration are apt to remove the spheres as well, leaving a sample 'solution' of 
clean water. 

Allowing for the effects of finite detector area mentioned in Section 2 above, and 
also for a floating baseline to accommodate small departures of this from unity, we 
may rewrite equation (5) in the form 

g(2)(t) = A + Chet exp( - q2 Dt) + C.eIf exp( - 2q2 Dt). (8) 

In principle it is possible to fit experimental data with a nonlinear least squares 
program to equation (8) using four free parameters .. In practice we have enjoyed 
only limited success with this approach, finding it to give consistent results only in 
the regime when Chet and C.eIf are comparable in value. To cover a wide range of 
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local oscillator levels we have therefore resorted to a forced single exponential fit 
of the form 

(9) 

where Da is the apparent self-beating diffusion coefficient from which an apparent 
hydrodynamic radius ra may be calculated; ra is expected to range from the true 
particle radius r at no = 0 to 2r for no ~ 30 ns. To facilitate comparison between 
experimental data treated in this way and the predictions of equation (3), we have 
also force-fitted equation (9) to synthetic data calculated in accordance with equation 
(3). These data, which will be referred to as the 'computer data' are therefore based 
on the assumption of small detector area, so that the correction factors mentioned 
above are approximately equal and close to unity. The experimental data were 
collected under such conditions; the effect of finite detector area on the results is 
considered in Section 5c below. 

L c 

(a) 

PM 
(c) 

fC 
L C 

: 
EflM 

: ) ~ PM?F ) 

(d) (e) 

Fig. 2. Five different arrangements for optical heterodyning. The water bath surrounding the cell 
in each case is not shown. (a) Teflon wedge W inside a rectangular scattering cell; the whole cell 
can be translated horizontally at right angles to the beam (Le, cylindrical lens; PM, photomultiplier 
tube); (b) mirror system to recombine the beams (Mt. M3 , glass microscope slides; M2 , aluminized 
mirror; L, spherical lens; C, cylindrical cell;N, neutral density filter); (c) beam-splitting prism 
with glass compensating plate G; (d) rectangular cell with outside of one face frosted; (e) plastic 
centrifuge tube used as scattering cell to give a strong flare spot F as local oscillator. 

4. Experimental Details 

(a) Sample Solutions 

Polystyrene latex spheres from the Dow Chemical Company, having a nominal 
radius of 44 nm, were used for all the experiments. The original preparation was 
diluted with filtered distilled water. Samples were finally syringe-filtered (0·22,um 
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Millipore filters) into the cleaned scattering cell. The dilution factor was chosen to 
give a final (self-beating) count rate of about 5 kHz. The addition of a local oscillator 
signal up to 30 times this level thus gave a maximum count rate under 200 kHz. 

(b) Optics and Signal Processing (Self-beating) 

The arrangement for self-beating is fairly standard. The focused beam from a 
50 mW helium-neon laser (Spectra Physics, Model 125A) illuminates the scattering 
cell. An image of the scattering volume is formed on a pinhole (0' 3 mm) by a con
verging lens. A second pinhole in front of the photomultiplier tube (E.M.1. type 
9863Bj100) defines the number of coherence areas seen by the detector. A permanently 
connected ratemeter with analogue display facilitates fine adjustment of the optics. 
The correlator has 64 channels (Langley-Ford) and is interfaced to a Hewlett-Packard 
desk-top computer (Model 9835A) with associated printer (Model 9876A). Data can 
also be transferred to the Macquarie University's Univac 1106 computer for analysis 
by more elaborate programs. 

(c) Optical Heterodyne Arrangements 

Five different methods of achieving efficient optical heterodyning were considered, 
and four of these were investigated experimentally. The methods are illustrated in 
Fig. 2. 

The first method (Fig. 2a), proposed by Cummins et al. (1969) and subsequently 
modified by Wada et al. (1971), uses a cylindrical lens Lc to produce a horizontal 
ribbon of light at the focus in the scattering cell. A Teflon wedge is moved into this 
beam to produce a local oscillator signal of variable intensity. The photomultiplier 
sees only the vertical profile of the ribbon, and thus g'o'od coherence is achieved at 
the detector. 

A mirror arrangement (Fig. 2b) can also be used to superpose a portion of the 
incident laser beam at the detector (Uzgiris 1972). Neutral density filters are then used 
to control the level of this local oscillator signal. Careful alignment is needed to 
ensure proper superposition of the two beams in both position and direction. 

Pike (1977) has proposed a method (Fig. 2c) in which the laser beam is split into 
two by a beam7splitting prism. The emerging beams converge on the scattering cell 
directly without the use of mirrors, thus ensuring greater freedom from problems 
due to vibration. The local oscillator levelis again controlled by a neutral density 
filter N, with a compensating glass plate in the other beam. A disadvantage is the 
low scattering angle, making this system more susceptible to dust in the sample 
(already a problem in very weakly scattering solutions). A suitable prism was not 
available, so this method could not be tested experimentally. 

In the fourth method (Fig. 2d) we propose the use of a rectangular scattering cell 
of which one outside face is frosted using fine carborundum. The cell is used with 
a cylindrical lens to focus the beam as with the Teflon wedge, and is slightly rotated 
on its base so that the frosted rear face. intercepts a portion of the ribbon beam. 
Limited (but sufficient) control of local oscillator level is achieved by varying the 
angle of rotation. The method uses no mirrors and is simple to adjust. 

We have frequently used cylindrical centrifuge tubes as scattering cel\s, being 
careful to ensure that the flare spots, where the laser beam passes through each wall, 
are invisible to the detector. Our final heterodyning arrangement (Fig. 2e) makes 
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deliberate use of one of these flare spots F in a plastic tube to provide a local oscillator 
signal. It is usually convenient to work at a scattering angle different from 90°. 

5. Results and Discussion 

(a) Heterodyning Methods 

With the exception of the flare-spot method (Fig. 2e) all experiments were carried 
out at a scattering angle of 90°. For each method of mixing, 25 experimental runs 
were completed with and without local oscillator injection. All runs were of duration 
60 s. The sample interval was 20 J,ls for self-beating and 50 J,lS for heterodyne experi
ments. The count rate in self-beating experiments simulated weakly scattering samples, 
being about 5 kHz. In heterodyne experiments the local oscillator increased the total 
count rate to 150 kHz. At such a count rate full (four-bit) correlation could be carried 
out on all data without the use of clipping or scaling. Data were fitted to equation (9) 
using a simple nonlinear regression program; the reason for this (as opposed to the 
more usual cumulants method) is further discussed below. 

The Teflon-wedge method (Fig. 2a) was easy to adjust but very susceptible to 
vibration. Our normal system uses a 3 m path from the laser under the 3 t optical 
table to the scattering cell via four mirrors. The stability of this system proved 
inadequate, resulting in significant 'noise' on the local oscillator due to movement 
of the beam on the Teflon wedge. The use of a much shorter path (0·2 m) without 
mirrors cured this problem completely. A fairly large scattering cell was required 
to accommodate the Teflon wedge, and because the wedge is in the solution some 
difficulties were experienced in obtaining clean samples. 

The mirror method (Fig. 2b) was somewhat difficult to align but performed well 
after this. Perhaps because of the compact layout, no problems were experienced 
from vibration of the reflectors, and there was no evidence of poor wavefront matching 
in the amplitude of the correlation function. 

The frosted cell method (Fig. 2d) stood out for its ease of setting up and, because 
the inside of the cell is unchanged, no problems of cleaning were encountered as 
with the rather similar Teflon-wedge method. The chief limitation was in the range 
of local oscillator levels which could be achieved for a reasonable rotation of the cell; 
in practice this placed an upper limit of 5 kHz on the scattering from the sample 
alone if effectively pure heterodyning was to be achieved. Since heterodyning is only 
likely to be used with weakly scattering samples this was not a serious restriction in 
practice. 

The method of Fig. 2e using a flare spot to produce the local oscillator level was 
predictably the least successful of the four methods actually tested. The size of the 
flare spot made adjustment very critical for the detector to see light scattered from 
both the sample and the tube wall at suitable relative levels. Nevertheless, satisfactory 
measurements were achieved. 

The improvement factor of heterodyne detection over self-beating was calculated 
from the standard deviation of the particle radii taken from each set of 25 experiments. 
Heterodyne detection consistently reduced the standard deviation of the measurement 
by a factor of 1·9 ± O· 1, under otherwise identical experimental conditions. This 
value may be compared with Jakeman's (1972) factor of 3·26. Our experimental 
result falls short of the theoretical result for a number of reasons. These include the 
finite number of autocorrelator channels, and inefficiency in mixing the scattered 
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and local oscillator fields. Also, in such dilute sample solutions, residual dust, even 
after careful clarification, undoubtedly contributes to the intensity fluctuations and 
uncertainty in the measured radius. 

90 (a) 

70 i i f 
8' s .... 

50 

30~0~----~0~.3~------~------~--------lLO------~30--

90 

70 

50 

30~r-----~------~------~~------~------~--
o 0.3 10 30 

Fig.3. Plots of apparent particle radius r. as a function of relative strength ii./ii. of the local 
oscillator beam using equation (9). The data were obtained using the Teflon-wedge method 
of Fig. 2a. The curves show the theoretical values taken from 'computer data': (a) two-param
eter fit with fixed baseline (1,0); (b) three-parameter fit (with floating baseline) to the same 
data. 

(b) Partial Heterodyning 

The level of local oscillator injection was varied systematically from zero to 30 
times the intensity of the scattered light alone for each of the four heterodyning 
methods tested. A typical set of results (using the Teflon-wedge method of Fig. 2a) 
is shown in Fig. 3. The data were analysed first using a two-parameter fit to equation 
(9) with a fixed baseline (Ar = 1·0) and subsequently with three parameters and a 
floating baseline. In each case an apparent hydrodynamic radius is plotted against 
local oscillator level. The theoretical value of the apparent radius is represented by 
the curve showing the computer data force-fitted to the same equation. The agreement 
between theory and experiment is very poor with a fixed baseline (Fig. 3a) but much 
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more satisfactory when a floating baseline is used (Fig. 3b). Heterodyne detection, 
because of the much smaller amplitude of the decaying exponential in the normalized 
correlation function, is particularly sensitive to errors in the effective baseline arising 
from even quite small amounts of dust, as discussed above, and to accommodate 
this it is important to leave the baseline as a free parameter in the fitting procedure. 

(c) Effects of Finite Detector Area 

The computer. data were generated from equation (3) on the basis of a very small 
detector area so that no coherence area effects occur. The effect of a finite area A 
of a detector is to multiply each of the coefficients B het and Bself in equation (5) by 
factors fD(A) and f(A) respectively. lakeman (1974) has shown that for a finite 
detector areaf(A) is somewhat smaller thanfD(A). The effect is to bias equation (5) 
in favour of the heterodyne term at the expense of the self-beating term. The apparent 
radius should be slightly greater than calculated in the computer data at values of 
local oscillator level such that both heterodyning and self-beating terms contribute 
significantly. Thus the curves in Fig. 3 should be shifted very slightly upwards in the 
middle region but not at the ends, in order to account for the finite detector area 
used in the experiments. The effect is quite small and no correction was made for it. 
The satisfactory agreement between experiment and theory in Fig. 3b is not affected. 

6. Conclusions 

We have investigated the performance offour experimental configurations suitable 
in optical heterodyne experiments. One of these (using a cell with a single frosted 
side) stands out for its effectiveness and simplicity, though all the methods tested 
were feasible. Experiments with partial heterodyning under conditions of inadequate 
local oscillator level yield an apparent hydrodynamic radius which compares well 
with theoretical predictions. 

The use of heterodyne detection offers special advantages for scattered fields which 
do not conform to gaussian statistics, and for scatterers undergoing translation as 
well as diffusion. For systems undergoing Brownian motion and having good scat
tering, the method of self-beating is preferred for its greater simplicity, but for weakly 
scattering systems the use of heterodyne detection offers an improvement of close to 
2 times in the standard deviation of the measured radius under otherwise identical 
experimental conditions. 
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