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Abstract 

The energy gap in the intrinsic excitation spectra of even-even nuclei is calculated in the BCS 
approximation starting from separable interactions adjusted to fit 'So nucleon scattering data. 
Simplified nuclear models are used to investigate the relation between the surface properties and 
the value of the energy gap in finite nuclei and, in particular, we consider a slab model of infinite 
extent in two directions but finite in the third direction and of variable surface thickness. An 
effective length of the slab is defined and this is held constant while the density profile is varied. 
For a fixed effective mass, it is found that the energy gap is essentially determined by the effective 
length for a particular interaction. On the other hand, radically diverse variations of the energy 
gap with effective length are obtained for potentials that differ appreciably in their repulsive character 
in infinite nuclear matter. This sensitivity may be fortuitous however, as the slab model under
estimates the finite volume contribution to the pairing matrix elements and overestimates the 
importance of the infinite matter properties of the potential. 

1. Introduction 

It has long been known that the energy gap in infinite nuclear matter exists but 
is small, at the very most a few tenths of an MeV, and is even less if a reduced value 
of the effective mass is considered. Specifically, solutions of the energy gap equation 
(Emery and Sessler 1960; Ishihara et al. 1963) have shown that, for a variety of 
interactions including the hard-core Gammel-Thaler interaction and classes of 
separable interactions, the energy gap exists in infinite matter for larger values of 
the effective mass provided that the Fermi momentum lies between O· 2 and 1 . 4 fm -1. 

In those studies it was not possible to place limits on the magnitude of the energy 
gap since that magnitude is a sensitive function of parameters involved in the cal
culations than were not sufficiently well known. 

Nevertheless, it was evident that the energy gap in infinite nuclear matter was very 
much less than that observed in any heavy even-even nucleus. 

The earliest attempt (Thompson 1965; Thompson and Waghmare 1966) to explain 
this discrepancy used simplified, infinite potential well models of the nuclear field. 
Furthermore, simplified inter-nucleon interactions (attractive delta functions) were 
used and were restricted to act only within a thin (momentum) shell about the Fermi 
surface. Nevertheless, by adjusting the strength of the delta functions in different 
regions of the Periodic Table, both the magnitude and shell structure osciIlations of 
the pairing energy data (Nemirovsky and Adamchuk 1962) could be fitted. But these 
calculations failed to indicate whether the more realistic (albeit phenomenological) 
finite range interactions then employed in nuclear matter calculations of the energy 
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gap could also reproduce this pamng energy data. Subsequently, calculations 
(Kennedy et al. 1964a, 1964b; Kennedy 1966a, 1966b) using separable interactions 
chosen to fit S-wave nucleon-nucleon scattering data were made using a 'slab' model 
of the nucleus, in which the nuclear field is infinite in two directions but finite in the 
third. In these calculations, sums in the BCS integral equation for the energy gap 
were approximated by integrations with the consequence that shell structure effects 
on the energy gap could not be reproduced. However, by equating the semi-infinite 
slab to the liquid drop model (LDM) of a nucleus of the same surface area to volume 
ratio, a smooth variation of the energy gap with the atomic mass number of the 
LDM nucleus could be obtained fitting the mean variation of the empirical pairing 
energies in nuclei. 

It has been suggested (Jakeman and Moszkowski 1966; Stepien and Szymanski 
1968) that the nuclear surface region might be important in contributing to the 
enhanced energy gap in finite nuclei. This conjecture received support from the 
calculations (Emery and Sessler 1960; Ishihara et al. 1963) on low density nuclear 
matter which showed that for values of the Fermi momentum about 0·8 fm -1 the 
energy gap was of the order of several MeV. Further support for this idea was given 
by calculations (Kennedy et al. 1964a, 1964b; Kennedy 1966a, 1966b) on a high 
density edge slab model in that an energy gap resulted which was very much less 
than that of the corresponding low density edge slab. Also, at one time, experimental 
evidence (Griffin 1963; Britt et al. 1965; Moretto et al. 1969) on certain fissioning 
even-even nuclei appeared to indicate the presence of an enlarged energy gap at 
the fission saddle point where nuclear surface areas are large. Later experiments 
(Kuvatov et al. 1970; Natowity and Chulick 1971) lowered the estimate of this 
enhancement in some cases but the possibility of an energy gap strongly dependent on 
surface area still could not be refuted. 

To investigate surface variation effects on the energy gap value, it is inappropriate to 
use the original slab model approach (Kennedy et al. 1964a, 1964b; Kennedy 1966a, 
1966b) as the infinite well always yields too rapid a density variation at the surface. 
However, the simple model can be modified to permit a study of 'realistic' surface 
effects on the energy gap by using a finite value slab model potential associated with 
which is a surface density profile more diffuse than that of the infinite well model. 
But even for a finite potential model, the continuum states (in the BCS approximation) 
cannot contribute to the energy gap (Henley and Wilets 1963) and to regain their 
effect it is necessary either to replace the bare nucleon-nucleon interaction by a 
t matrix or, more generally, to resort to a higher order pairing theory. Because 
such extensions of finite nucleus calculations are very complicated, we have considered 
instead a model consisting of an infinite potential well of variable slope thereby 
permitting an arbitrarily diffuse surface region. The model which we have chosen is 
described in detail in the next section and the solutions its use yields to the energy gap 
equation are discussed thereafter. 

2. Finite Well Slab Model 
We consider a 'slab' of nuclear matter created by filling, to a Fermi sea, single 

particle states as defined by a single particle potential 

V~CIJ iflxl,lyl>-tst 

= (h2k;j2mZo)[ze(z) -(z+L){1 -e(z-L)}], (1) 
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in which st is the width of the slab in the x and Y directions, and L is the corresponding 
length of the slab in the z direction in the limit that the diffuseness parameter Zo 
vanishes. The value of the Fermi momentum kF we choose to be 1·4 fm- I , and 
in the limit of S ~ 00, the wavefunctions of the model are given by 

t/J = S -t A(kz) ¢(kz' z)exp(i kxx +ikyY)' (2) 

where A(kz ) is determined from the normalization of the wavefunction. The functions 
of z are solutions of 

82¢;rj2z +(k; -2mV/h2)¢ = o. (3) 

Continuity of these (z dependent) wavefunctions at the z = 0 and - L boundaries 
determines that 

¢ = {l-e(z)}e(z-L)sin(kzz +8) 

+ {sin8/Ai( -K)}[e(z)Ai(gz-K)+ {l- e(z-L)}( - )IAi{g( -z-L)-K}] ,(4) 

where 

K = (Zo/k;,)2/3k; , g = (kMZo)1/3, 

tan8 = (Zo/k;,)kzAi( -K)/Ai'( -K) 

(5) 

(6) 

with Airy functions Ai(t), and states of even and odd parity are classified by the 
I values 0 and 1 respectively. The symmetry about z = -tL provides the condition 

kz = (nzn + 28)L , (7) 

and normalization of the single particle wavefunctions is achieved when 

A(kz) = (tL +2Zok;/k;, -sin 28/2kz)-t . (8) 

In the thermal or non-superfluid state approximation, the nuclear density is 
defined by 

p(r) = 4 L t/J*t/J, (9) 
k<kp 

in which equal numbers of protons and neutrons have been assumed. In the limit 
of large L 

4S f p(r) ~ 2n3 dk 1 t/J 12 , (10) 

from which one obtains 

1 (kp 2 2 2 
p(z) = 2n2 Jo dkz (kF-kz)1 ¢(kz'z) I . (11) 

Thus in the inner region of the (large) slab the density approaches a constant value of 

1 JkP k 3 
p(oo) = 4~ dkz(k;,-k;) =-;.. 

n 0 6n 
(12) 
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It is convenient to define an effective length L * of the slab in the z direction by 
writing (Kennedy et al. 1964a, 1964b; Kennedy 1966a, 1966b) 

L* = L+2{)L, (13) 

where the correction to the length 2{)L is obtained by requiring a large box of nuclear 
matter of length 2X + 2{)L and constant density p( 00) to contain the same number of 
nucleons as a slab with L = 2X, the same cross sectional area and density given 
by p(z). In the limit that X approaches infinity, the relation 

p(oo)(X +()L) = f~x dz p(z) (14) 

results, and by substituting for p(z) and upon interchanging the order of integration, 
one obtains 

__ ~ 2Zo _ ~ fk F dk (ki,-k;)sin2{) 
{)L - 8kF + 5 2k~ 0 z 2kz • 

(15) 

In the large Zo limit (> 2·5) the asymptotic expansions for the Airy functions for 
large negative argument can be used to ascertain that 

() ~ - {!-1t+iZ o(kz/kF)3}, (16) 

and then 

()L ~ tZo. (17) 

Density profiles p(z)/p(oo) for various values of Zo with L* kept at the values of 
4 and 8 fm are shown in Figs la and Ib respectively, from which it should be noted 
that a skin thickness of 2· 4 fm, as is appropriate for heavy nuclei, and a realistic 
form factor shape occur when Zo has the value of 3·25 fm, with L * being 8 fm. 
As Zo increases, the particle density spreads to larger radii with the increase in the 
skin thickness being almost linear. But the chosen value of L* is much larger than 
a connection between a slab model and real nuclei (Kennedy et al. 1964a, 1964b; 
Kennedy 1966a, 1966b), namely 

L* = iroAl/3, (18) 

which was obtained by equating the surface area to volume ratio of a semi-infinite 
slab of nuclear matter of length L* to that of the corresponding LDM nucleus. 
For 208Pb and using the standard radius ro of 1·1 fm, this yields a value of 4·4 fm 
for L* and the profiles in Fig. 1 for this case are not like the measured (electron 
scattering) form factors for this nucleus. However, the skin thickness and profiles as 
shown in Fig. Ib for L* = 8 fm are appropriate in scale for the heavy nuclei and thus 
our model may serve as a test of density dependent effects upon the energy gap. 

In the BCS approximation, the energy gap is a solution of the integral equation 

A(k) = -t L G(k,a,t,k',a',t'){e2(k')+A 2(k')}-tA(k'), (19) 
k'a' 

where G is the properly antisymmetrized pairing matrix element for scattering in 
time reversed orbitals of protons (neutrons) that are interacting through a potential, 
namely 

G(k,a,t,k',a',t') = ()tt'(ka, -k-al VI(k'a', -k'-a')-(-k'-a',k'a'». (20) 
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In equation (19), e(k) is the single particle energy in the absence of pairing and 
measured from the Fermi surface. This has not been calculated within the framework 
of the slab model but instead is defined in the effective mass approximation by 

e(k) = h2(e - k~)/2m* (21) 

and, in lieu of a reliable estimate, the effective mass m* has been treated as arbitrarily 
adjustable to fit the pairing energies in nuclei. 
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Fig. 1. Density profiles as a function of z for the effective length 
(a) L* = 4 and (b) L* = 8, and for various values of the diffuseness 
parameter Zoo 

As the short range part of the nucleon-nucleon interaction is most essential to 
the pairing effect, the potential V is represented by an S-wave interaction; the most 
important contribution to V at short distances. Two different phenomenological 
forms of this interaction have been used in our calculations, the first of these being 
the 'back to back Yamaguchi' interactions that have been used previously by Kennedy 
and which have the form 

, _ nh2(A1 exp( - /31 r) exp( - /31 r') A2 exp( - /32 r) exp( - /32 r')) 
VCr, r) - - , - " 

2m r r r r 
(22) 

with parameters Ai> /3i chosen to fit the S-wave pp scattering data; to wit the effective 
range, scattering length and phase shift at 310 MeV. With three numbers to fit and 
four adjustable parameters, an infinite family of such potentials can be defined by 
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arbitrarily choosing the parameter Pl. In Table 1 three such potentials are given 
(labelled Yl, Y2 and Y3) which correspond to very different values of the parameter 
A,1. As well as the Yamaguchi interactions we have considered a separable gaussian 
interaction (Strobel 1968), denoted as potential G, and which was chosen to fit 
the pp effective range, scattering length and 1So phase shifts up to a lab energy of 
300 MeV. The form of this potential is 

VCr, r') = (h2/m){A,1 exp( -!Xl r 2) exp( -!Xl r '2) - A,2 exp( -!X2 r 2) exp( -!X2 r ,2)}, (23) 

and the appropriate values of the parameters are given in Table 1 also. 

Table 1. Parameter values of Yamaguchi (Y) and Gaussian 
(G) types of interactions 

Type At Pt(ocI) A2 P2(OC!) 

Yl 7·655 3·0 1·731 1·766 
YIT 54·85 4·5 4·458 2·119 
Y2 25·83 4·5 1·023 1·645 
Y3 123·1 6·0 0·953 1·62 
G 12260 4·56 2·987 0·844 

If the sum over the spin states in the gap equation is completed, one is left with 
the direct part of the pairing matrix element, namely 

G(k,k') = (k, -k I V I k', -k'), (24) 

and, for the slab model geometry, these matrix elements can be expressed in terms 
of the most natural variables k z and k1- = (k~+k;}t for both the Yamaguchi and 
gaussian forms of the interaction, and which are amenable for evaluation. Details 
of the derivations are given in the Appendix. While these variables are convenient 
for evaluation of the matrix elements, solution of the gap equation is most con
veniently achieved by using spherical polar coordinates, the standard conversion of 
discrete summations over momenta into integrations and the Kennedy partial 
linearization technique in which the denominator of the integrand is replaced by 
I e(k') I in all but a thin shell of width 2kc (chosen as 0·2 fm -1) about the Fermi 
momentum. Within the shell all quantities are set to their Fermi momentum values 
except 8 which is chosen to be 

e(k) = h2kF(k-kF)/m*, (25) 

whence 

-s e ' {2m*kF , -2, , (2h2kF kc ) 
LI(k) = 2n2 Jo d(cos9) ~LI(kF)A (kF)G(kF,kF)ln m* LI(kF) 

+ (fkF
-

kC + foo )dk' k,2 A -2(k') G(k, k') LI(k') I e(k') 1- 1}, (26) 
o JkF+kc 

which is conveniently solved by using gaussian quadrature schemes to recast the 
gap equation into the matrix 

A =A.F, 
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in which A is the appropriate n by n square matrix (n = 113 was chosen), 
upon the column matrix F defined by 

acting 

Fi = A;ln(2h2kFkc/m*A;) i = l, ... m, 

= Ai i=m+l, ... n. 

(27a) 

(27b) 

In most evaluations the value 10 was chosen for m although tests were made 
using values of 4 or 6 to ensure that the precise choice was of little consequence. 
Then with 

B = (l-A)- l A, (28) 

we have 

A = B.(F-A), (29) 

which is a set of m nonlinear equations that we will solve using the Newton-Raphsen 
method. 

3. Density Independent Effective Mass Results 

The gap equation has been solved for each of the S-wave separable potentials 
described previously and the gap 2A(kF cos 8) found as a function of the effective 
length L * and effective mass m* for a sequence of density distributions extending 
from the sharply surfaced slab model (Zo = 0) through to a very diffuse edge slab 
model (Zo = 7). For each potential, results have been obtained in two different 
ways; the first with L * as the independent variable and Zo being fixed; the second 
with Zo as the independent variable and fixed L *. 

When Zo was fixed (values of 0 and 3·25 were used) the variation of the gap 
equation with k z for several values of L * and m* for the Y I and G interactions are 
very similar, whence only the G interaction results are shown in Fig. 2. From this 

'"' > 
'" 6 

""1 
N 

I 20=0 

lOr- L* =4 - ---L* = 8 

L* = 4 

L* = 8 ---- --------
L*:: •• ••••••••••• 

...... L * ----> 00 

20 = 3·25 

b L* 4 --I 
L* = 4 -------
L* = 8 

L* = 8 ----------.................... L* = 4 •• • • 

L* ----> 00 

11- L* = 8 ••••• ~ * • • •• ••• • • • • • •• •••• • •••• L = 8 • • • ••• • • • • • • • -L;-::;;------ ••.•••.••••. 
L*-:::- -- ------

I I I I I I 
0·4 0·8 1·2 0·4 0·8 1·2 

k z (fm-I) 

Fig. 2. Energy gap 2,1 as a· function of kz (kFCOS ()) for the gaussian interaction G for two values 
of the parameter Zo, for three values of the effective length and for three values of the effective mass: 
m*/m = 1 (solid curve); 0·8 (dashed curve); 0·6 (dotted curve). 



24 K. Amos and F. Robbins 

figure it is clear that the energy gap increases as slab thickness is reduced for particular 
values of Zo and m*, and hence, at least qualitatively, the nature of these solutions 
is similar to that of the simple slab model. The main features of these solutions then 
are the enhancement of the energy gap over the infinite matter value for finite L *, 
the extreme sensitivity of the energy gap to the parameters m* and L * when the gap 
is small and the reduction of this sensitivity when the gap is large. It is to be noted that 
for both values of Zo used, the solutions of the gap show only minor variations for 
fixed m* and L *. 

Now, while in the case of the potential Yl and Zo = 0 our results agree entirely 
with those of Kennedy et al. (1964a, 1964b) and Kennedy (1966a, 1966b), there is a 
striking disagreement between our calculations for the potential Y3. Our solutions 
displayed in Fig. 3 show for the simple slab model a decrease of the energy gap below 
the infinite matter limit. Indeed as m* is reduced the numerical solutions become 
negative at smaller values of cos () and hence these can no longer be considered as 
meaningful solutions for the energy gap which must be taken to vanish for all angles. 
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Fig. 3. Energy gap 2A as a function of kz (k = k F ) for the Y3 
interaction and for four values of the effective length. Here 
Zo = 0 and two values of the effective mass are used: m*/m = 1 
(solid curves); O· 8 (dashed curves). 

The energy gap 2L1 which has been angle averaged (over cos ()) for the interactions 
Yl and Y3 is plotted as a function of L * for selected values of m* and Zo in Fig. 4. 
The results for interactions G and Y2 are very similar to those for Yl. In Fig. 4b 
the portions of these curves marked with asterisks indicate extrapolations since for 
these regions of L * and m* acceptable solutions of the gap equation cannot be 
found other than the trivial zero value. 

It is noted that although realistic solutions may cease to exist, the angle averaged 
curves show a continuous behaviour and in some cases actually increase. Hence 
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it is reasonable to suppose that the vanishing of the energy gap in such cases is 
connected with the behaviour of the pairing matrix elements at small values of cos e. 
Support for this conjecture comes from consideration of the 'partially' angle averaged 
finite-L contributions to the pairing matrix elements, namely 

G(k, k', cos e) = f: d(cos e') {A -2(k cos e) GLo(k, k') - (2/L) G roCk, k')}, (30) 

which are repulsive for the potential Y3 but essentially attractive for the potential 
Yl at small values of cos e. Both are attractive for large values of cos e. This 
anisotropy occurs because at low values of cos e the finite effective length contributions 
to the pairing matrix element have the same behaviour as the infinite matter pairing 
matrix element between the states k and k', while at larger values of cos e these 
corrections are influenced strongly by the changes in the k z wavefunctions. 
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Fig. 4. Angle averaged energy gaps 2Lf for the interactions (a) Yl and (b) Y3 as functions of the 
effective length L * for various values of the effective mass and parameter Zoo In (a) the solid curves 
are for Zo = 0; dashed curves, Zo = 3'25; dot-dash curves, Zo = 7·0. 

If we then average these results over cos e, we get the Fourier components 
for potentials Yl and Y3 displayed in Fig. 5. A clear correlation emerges between 
the repUlsive character of these Fourier components and the behaviour of the angle 
averaged energy gap, namely that the larger the amount of attraction in these finite 
L* contributions the greater the increase in the angle averaged gap. Our results 
differ markedly from those of Kennedy et al. (1964a, 1964b) and Kennedy (1966a, 
1966b) in the extent to which this effect is observed. For example, in our calculations 
for the potential Y3, the angle averaged gap actually decreases as L * is reduced 
and eventually vanishes; a result one expects for an interaction with strong repulsion 
and in the limit L -+ O. Kennedy's results are nebulous on this point. 
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The mean variation with mass of empirical pairing energies (Nemirovsky and 
Adamchuk 1962) for A > 40 is given (in MeV) by 

<bE) = 16·97A-0.56395, (31) 

and is chosen to be the energy gap value at the Fermi momentum. It is possible to 
fit this variation with the slab model by varying the effective mass for each interaction 
and using the LDM nuclear mass to effective length relationship specified previously. 
For potentials G and Yl, using a slope parameter (Zo) value of zero, a good fit to 
this mass variation requires effective masses of 0·535 and 0·804 respectively. With a 
slope parameter value of 3·25 fm, effective masses of 0·59 and 0·764 were required 
and a value of 0·863 was needed for a calculation made using the Y2 potential. These 
variations are shown in Fig. 6. No results are given for the potential Y3 as its use 
led to the wrong type of mass variation. 
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Fig. S. Complete angle averaged Fourier components of the YI and Y3 potentials for Zo = 0 
and 3·25 fm and for four values of k. The effective length is 4 fm in both cases. 

One purpose of this study was to gauge the effect of surface diffusivity upon the 
energy gap in nuclei, and to this end, the variation of the angle averaged energy 
gap as a function of Zo for selected values of m* and L* for the potentials Yl and 
Y2 are shown in Fig. 7. It is clear that, for moderately large values of the energy 
gap such as those that occur in nuclei, the dependence of the energy gap on the shape 
of the density profile (Zo, L) is much less than its dependence on the effective length 
L * and that for still larger values of the energy gap it is almost independent of the 
shape of the density profile. However, specific effects of the surface region upon 
the effective mass have not been considered. 
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Fig. 7. Angle averaged energy gap 2,1 for potentials YI and Y2 as a function of Zo for selected 
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4. Density Dependence of Effective Mass 

In the foregoing it was shown that the energy gap was determined essentially 
by the 'effective length' of the slab model if the effective mass m* was assumed 
independent of density. However, the ratio m*/m which is about 0·6 in the nuclear 
interior is known to approach unity in the surface region (Bethe 1971). Hence, 
it is of interest to evaluate the single particle energies and effective mass from the 
definitions 

e(k) = (v I p2j2m I v) + L (vv' I V I vv'-v'v) , (32) 
v' 

8e(k)/8k Ik=kp = h2kF/m*(kF) ' (33) 
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where the wavefunctions (r I v) are those of the slab model with a linear single particle 
potential, namely 

(rlv) = ljJ(k,r)x!m"X!m" (34) 

and the interaction Vis taken to be of the separable Yamaguchi type. For the purpose 
of evaluating the single particle energies only, the interaction is assumed to act in 
relative S states for both spin singlet and triplet configurations and the interaction 
chosen is that classified Yl previously but extended to include a triplet state component, 
the parameter values of which are given in Table 1 under the entry YIT. This 
combination was selected because of infinite nuclear matter results (Day 1967) 
and since the Yl interaction best reproduced the average pairing energy data. The 
properties of the Airy functions then allow us to deduce that 

s(k) = IFk2j2m --(h213m)k; A-2(kz)(2Zok;jk~ -sin2oj2kz) 

+ 4!2 f dk' A -2(k;)(kki l V I kk') , (35) 

from which, by numerical differentiation, we ascertain the effective mass whose 
variation as a function of kz for selected values of the parameters Zo and L * is given 
in Fig. 8. The effective mass is strongly anisotropic and for moderate values of the 
parameter Zo varies approximately from the infinite matter value at k z = 0, to 
m* = m or greater at kz == k F • 
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Fig. 8. Effective mass as a function of 
k. for selected values of Zo and 
effective length L *. 

The angle averaged effective mass is shown as a function of Zo for selected values 
of L* in Fig. 9, and in the case L* = 4 fm, although this quantity increases rapidly 
as a function of Zo, its value at Zo = 3·25 fm is about o· 69m. This is somewhat 
smaller than the value m* = O· 804m required to reproduce pairing energy data. 
However, the reduction of the effective mass below its infinite matter value for small 
Zo results from the geometry of the slab model and hence would not occur in a 
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spherical nucleus. Therefore, it is expected that a more enhanced effective mass 
with surface thickness would be obtained in the latter case. Associated with the reduced 
effective mass for small Zo is the collapse of the 'slab' nucleus, as is shown in Fig. 10 
which displays the energy per particle as a function of L * for selected values of ZOo 
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Zo(fm) 

,
~ 

~ 

///L* = 8 

Fig. 9. Angle averaged effective mass 
as a function of Zo for selected values 
of the effective length L *. 

Indeed, in order to make the nucleus stable in size (L *), it is necessary to restrict 
values of the surface thickness to 2 fm or greater. That the instability of the 'slab' 
nucleus is a result of its small surface contribution to the total energy can be seen 
from the following argument. Consider a slab and a sphere with equivalent density 
profiles such that the skin thickness (90 %-10 % density) and width of central region 
(90 %-90 % density) are AR and 2R respectively. Then the ratio of volume of surface 
region to that of the inner region is given by 3AR/R and AR/R for the sphere and 
slab respectively. 
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Fig. 10. Energy per particle as a 
function of effective length L * of the 
slab of nuclear matter for various 
values of the slope parameter Zoo 
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As the effective mass approximation causes the energy denominators in the gap 
equation to be in error outside the thin momentum shell about the Fermi surface, 
the energy gap has been recalculated using the single particle energies one obtains 
with the value Zo = 0 and selected values of L *. The results are given in Fig. 11, 
along with the estimate one finds by using h2(k2 -k/)J2m*, where m* is the angle 
averaged effective mass at the Fermi surface. The latter results are displayed by 
the dashed curves in the figure and are noticeably but not dramatically larger than 
the evaluated (solid curves) results. 
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5. Conclusions 

Fig. 11. Comparison of the density 
variation of the energy gap in the slab 
model for various effective lengths with 
single particle energies obtained in the 
effective mass approximation (dashed 
curves) and evaluated as described in 
the text (solid curves). Here Zo = O. 

In the context of a slab model, the density dependence of the energy gap in nuclei 
has been studied for a number of separable interactions and a correlation has emerged 
between the strength of the repulsive core of the interaction and the behaviour of 
the energy gap in the model. For interactions with softer cores the energy gap 
increases strongly as the effective length L * of the slab is reduced, while for the inter
action studied with the largest repulsive core the energy gap decreased as L * was 
reduced. From our considerations, it is clear that the unrealistic geometry of the 
slab model causes an underestimate of the attraction of the pairing matrix element 
for a hard core potential. Hence it remains to be seen whether such large differences 
in behaviour of the energy gap for such a potential would persist in more realistic 
models. The main feature to emerge from our calculations was the small dependence 
of the energy gap on the shape of the density profile compared with its dependence 
on L *. Thus the energy gap is not essentially a surface phenomenon although 
the rate of vanishing of the nuclear wavefunctions at large distances may still affect 
the magnitude of the gap substantially. 

Hence, in summary, the presence of the nuclear surface by enhancing the low 
momentum components of the pairing matrix elements leads to an enlarged energy 
gap in finite nuclei. However, this enhancement of the energy gap does not depend 
so much on the density profile as on the effective volume in which the nuclei are 
contained. 
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Finally, neither the use of the effective mass approximation nor direct evaluation 
(within the slab model) of the single particle energies were sufficient to account for 
the value of the effective mass required to fit pairing energy data. However, the 
results of the slab model for the soft core separable potential considered are in doubt 
since there is not proper saturation. A by-product of this behaviour is that for small 
values of the skin thickness the effective mass lies below its infinite matter limit and 
hence we are led to expect an enlarged value of the effective mass from realistic 
models. Such models would need to possess the correct geometry relevant to nuclear 
shapes and also a variable skin thickness. 
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Appendix. Pairing Matrix Elements 

The pairing matrix elements G(k, k') defined in equation (24) for the model 
described in the text for both the Yamaguchi and gaussian forms of the potential 
have the form 

G(k, k') = f f f dR dr dr' VCr, r') 

x t/I*(k, R+tr) t/I*( -k, R-tr) t/I(k', R +tr') t/I( -k', R -tr'), (AI) 

where the wavefunction t/I(k, r) is specified in equations (2) and (4). For convenience, 
consider the potential in the form 

VCr, r') = Aw(r) w(r'), (A2) 

where the form factor w(r) is to be chosen appropriately for the Yamaguchi and 
gaussian interactions, and on substitution into equation (AI) one obtains 

, 32A 2 2, fOC! 2 
G(k,k) = -A (kz)A (kz) dz II(k.L,kz,z) I , 

S -tL 
(A3) 
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where 

Defining 

one has 
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l(k1.,kz,z) = fooo 
du 4>(kz, z+u)4>(kz,z-u) hk.Ju), 

k1. = (k; + k;)t . 

13k = (132 + ki)t , 

hk.Ju) = (2n/f3k)exp(-2f3ku) 

= (n/rx)exp( -ki/4rx -4rxu2) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

for the Yamaguchi and gaussian interactions respectively. 
In the case of the Yamaguchi interaction, we obtain for l(k 1., kz , z) the explicit 

expression 

where 

with 

and 

2 

l(k1.' kz, z) = L llk1., kz, z), (A9) 
i=O 

10 = (n/2f3f){1- B( - z)}{f3l/(f3f + k;) -cos(2kz z + 215)}, (A lOa) 

11 = {nexp(2f3kZ)/2(f3"f + k;)}{ 1-B( - z)}(akcos 2kz z - bk sin2kz z), (A10b) 

ak = (1 +k;/f3f)cos215 -J, bk = (1 + k;/f3f)sin 215 +kz/f3k' (All) 

12 = {sin 15/Ai( -K)} roo du hk.L(u) J Izl 

x sin{kz(z-u)+15} Ai{(kMZo)I/3(Z+u)-K} 

+{B(z)sin215/Ai2(-K)} f: du hdu) 

x Ai{(kMZo)1/3(Z+U) -K} Ai{(k~/Zo)1/3(Z-U) -K}, (A12) 

in which terms of order hkJ..(L) have been neglected. 
For the case of the gaussian the expression for 12 is the same but with the appropriate 

choice of hkJU) the relevant expressions for 10(k 1., kz , z) and II (k 1., k z , z) are 

10 = {1-B(-z)}(nj4rx?/2 exp(-ki!4rx){exp(k;/4rx) -cos(2kzz + 215)}, (A13) 

11 = {1- B( - z) }(n/4rx)3/2 exp( - ki!4rx - 4rxz2) g( - 2rxtz) { {cos(2kz z) -1 }/4rxt z 

+2 n~1 (exP( - n2/4)/(n2 +4rxz2) )fnC -2rxtz, kz/2rxt)}, (A14) 
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where 

J..(X,y) = 2x -2xcoshnycos2xy +nsinhnysin2xy, (A15) 

g(x) ::;: O' 25483 ( -0' 2845 (2 + 1·4214 (3 -1·4532 (4 + 1·0614 (5, (A16) 

in which 

( = (1 +0·3276x)-1. (A17) 

In the case of the Yamaguchi interaction, evaluation of the pairing matrix elements 
is facilitated by using the expansion (ignoring terms involving exp( - PL» 

where 

G(k,k') = (4n2AfS)A2(kz)A2(k;) 

x (L/{(Pf + k;)/(Pk' + k~2)} + n(Pk Pk,)-2~Ckz - k;) 

+(Pk Pk') -2{sin 2(~ + ~')/2Ckz+ k;) + sin 2(~ -~')/2(kz - k;)} 

- 2 sin 2~/ {2kz pf(pf, + k~2)} - 2 sin 2~' / {2k; pf.(pf + k;)} 

+F1(kz, Pk; k;, Pk,)+Fl(k~, Pk'; kz, Pk)+F 2(kz, Pk; k;, Pk') 

+ F ik;, Pk'; kz, Pk) + F ikz, Pk; - k;, Pk') 

+Fik;,P~; -kz,Pk)+F3Ckz,Pk;k;,Pk') 

+F3(kz,Pk; -k;,Pk,)+2 f~oo dz 12CkJ.,kz,z)Iik~,k;,z) 

+2 f~oo dz Iik~, k;, z){IoCkJ., kz, z)+I1(kJ., kz, z)} 

+2 f~oo dz 12(kJ., kz, z){Io(k~, k;, Z)+Il(k~, k;, z)}), (A18) 

F1Ckz,Pk;k;,Pk') = Cak,Pk' +bk,k;)(Pf+k;rlcp;,+k~2)-2, 

F2(kz, Pk; k;,Pk') = [2Pf(P;,+k~2){Pf,+(kz+ k;)2}]-1 

x Pk.[sin2~{bk' -adkz+k;)/Pk'} 

-cos2~ {ak' + bk.(kz+ k;)/PdJ , 

F3(kz,Pk;k;,Pk') = {(P" + Pk,)(a" a", +bkbk,)+(kz-k;)(a",bk -bk,ak)} 

(A19) 

x [2(Pf+k;)(P;,+k~2){CPk+Pk,)2+(kz-k;)2}]-1. (A20) 

The remaining integrals must be found by numerical means. 
Likewise evaluation of the pairing matrix elements associated with the gaussian 

interaction is facilitated by using the expanded expression 
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G(k,k') = (n3/4Soc 3)A2(kz) A2(k;) exp{ -(ki+k~2)/4oc} 

X (Lexp{ -(k; +k~2)/4oc}+nc5(kz-k;) 

- exp( - k; /4oc) sin 215' - exp( - k~2 /4oc) sin 215 

+ sin 2(15 + c5')/2(kz + k;) + sin 2(15 - c5')/2(kz - k;) 

+2 J~oo dz Io(kJ., kz, z){I l(k~, k;, z)+Iik~, k;, z)} 

+2 J~oo dz Io(k~,k;,z){Il(kJ.,kz,z)+I2(kJ.,kz'z)} 

+2 J~oo dz {Il(kJ.' kz, z)+I ikJ.' kz, z)}{I l(k~, k;, z)+Iik~, k;, z)}). 

(A2l) 
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