
'Plasma Emission' without Langmuir Waves 

D. B. Melrose 

Department of Theoretical Physics, School of Physics, 
University of Sydney, N.S.W. 2006. 

Abstract 

Aust. J. Phys., 1982, 35, 67-86 

Recent observations have confirmed that the level of Langmuir waves associated with type III 
streams of electrons in the interplanetary medium is usually too low to account for the observed 
radio emission by the accepted 'plasma emission' processes, and it has been suggested that emission 
mechanisms which do not require Langmuir waves should be explored. Four such mechanisms 
are discussed. One is a parametric instability leading directly to second-harmonic emission; it is 
found inapplicable under conditions of interest here. The other three processes all involve ion-sound 
turbulence. One which is known in a different context is turbulent bremsstrahlung. Turbulent 
bremsstrahlung of transverse waves is found to compare unfavourably with the other two processes, 
which are scattering of an ion-sound (s) wave into a transverse (t) wave and double emission of 
both waves simultaneously. These latter two processes are related by a crossing symmetry and are 
treated together with the following results: (i) The processes become greatly enhanced when the 
beat (w±w', k±k') between the t wave and the s wave nearly satisfies the dispersion relation for 
Langmuir (I) waves. (ii) A bump-in-the-tail instability (due to electrons with dF(v)/dv > 0) can 
cause the transverse waves to grow due to double emission; this growth has been likened to a free
electron maser. (iii) The familiar bump-in-the-tail instability for resonant I waves can be suppressed 
by the ion-sound waves, and the double-emission instability then takes over with about the same 
growth rate as the original I-wave instability. (iv) The conditions for the double-emission instability 
to occur are probably satisfied at least some of the time for type III streams. It is concluded that 
although 'plasma emission' without Langmuir waves may be possible in principle, it is unlikely to 
play any role in type III bursts. 

1. Introduction 

Since the first attempt at a quantitative theory of solar radio bursts by Ginzburg 
and Zheleznyakov (1958), it has been widely accepted that the observed emission is 
due to conversion of energy in Langmuir waves into escaping radiation near the 
plasma frequency wp and/or its second harmonic. In the case of type III bursts the 
generation of the Langmuir waves is attributed to the so-called bump-in-the-tail 
instability due to 10-100 keY electrons. Type III electrons and their associated radio 
emission were first observed in situ in the interplanetary medium in the late 1960's and 
have since been studied extensively (see e.g. Lin 1974). However, two difficulties 
have emerged from studies of the Langmuir waves expected to accompany the electrons. 
The first concerns the intensity of the Langmuir waves. Early searches near the orbit 
of the Earth were largely negative (Gurnett and Frank 1975). Later searches closer 
to the Sun confirmed the presence of Langmuir waves in some type III events, but 
mostly the Langmuir waves were at too Iowa level to account for the observed radio 
emission (Gurnett and Anderson 1977). These observations indicate that either the 
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conversion processes (of Langmuir into transverse waves) are much more efficient 
than has previously been thought, or the emission process does not involve the 
observed Langmuir waves. The second difficulty concerns the causal relation between 
the Langmuir waves and the radio emission. A preliminary point is that the radio 
emission is interpreted as being at the second harmonic (see e.g. Fainberg et al. 1972; 
Haddock and Alvarez 1973; Kaiser 1975), with possibly a few exceptions (Kellogg 
1980). With this interpretation, the Langmuir waves, when above the threshold 
for observation, occur consistently tens of minutes later than the radio emission they 
supposedly generate. Thus the relationship between the radio emission and the 
Langmuir waves is seemingly acausal. Elsewhere I suggest that the acausality can 
be avoided by ignoring the large body of circumstantial evidence for the second 
harmonic and assuming that the radio emission is at the fundamental (Melrose 
1982). The foregoing observations also indicate that the observed radio emission 
may not be directly related to the observed Langmuir waves. This radical suggestion 
was made by Lin et al. (1981), who suggested that alternative 'plasma emission' 
processes which do not involve Langmuir waves should be explored. 

In this paper I discuss four possible mechanisms whereby a stream of fast electrons 
might emit at the plasma frequency or its second harmonic without involving Lang
muir waves. Emission of transverse waves by a charge in constant rectilinear motion 
is not possible because the resonance (Cerenkov) condition OJ -k.v = 0 cannot be 
satisfied. Thus we are led to consider higher order processes. Of the four processes 
discussed here, one is a parametric instability which involves ion waves, and the 
other three explicitly require the presence of ion-sound or other low-frequency 
turbulence. The role of this turbulence varies from one mechanism to another. 
There is observational evidence for ion-sound turbulence in the interplanetary 
medium (Gurnett and Frank 1978; Gurnett et al. 1979), and it is thought to be 
present most of the time (Gurnett et al. 1981). Here it is simply assumed that the 
required low-frequency waves are present. 

Only one of the four mechanisms leads to emission at the second harmonic. Lin 
et al. (1973) considered a situation in which all the electrons drift relative to the ions 
at a speed Do much greater than the thermal speeds of either species. Using a one
dimensional model they found a parametric instability which involves ion oscillations 
at k i driving a coupled system of a negative-energy wave at ko+ki and a positive
energy wave at ko (in the ion frame); for ko Do ~ OJp the instability occurs at 
k i Do ~ 20Jp with both the driven waves having frequency ~ OJp in the electron frame. 
The net effect is to drive oscillations at ~ 20Jp in the electron frame, and hence to 
produce second-harmonic emission. The requirement that all the electrons drift 
relative to the ions at much greater than the thermal speed seems to bean essential 
requirement. This requirement is not satisfied for type III streams, which involve 
only a small fraction of the electrons drifting relative to the background ions and 
electrons. Thus this mechanism seems inapplicable to type III bursts. It is mentioned 
here simply because it is the only knownnon-Langmuir-wave mechanism which can 
produce second-harmonic emission. 

A second mechanism is turbulent bremsstrahlung (Tsytovich et al. 1975). In 
this case an electron resonating with an ion-sound wave is accelerated due to the 
electric field of the wave, and as a result of this accelerated motion, the electron 
radiates (Kuijpers 1980a). In existing discussions the emitted waves are assumed 
to be small I k I Langmuir waves, Indeed turbulent bremsstrahlung was invoked as a 
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means of converting energy in ion-sound turbulence into energy in Langmuir tur
bulence (Tsytovich et al. 1975), and has become a topic of some controversy (Vlahos 
and Papadopoulos 1979; Kuijpers 1980b; Tsytovich et al. 1981; Nambu 1981). 
It is obvious that the mechanism should produce transverse waves at given 1 k 1 at 
about the same rate as it produces Langmuir waves at that 1 k I. This is confirmed 
by detailed calculations outlined in Appendix 1 (cf. also Nambu and Shukla 1979; 
Nambu 1980). The mechanism favours small 1 k 1 and hence is a fundamental 'plasma 
emission' process. From a qualitative discussion of the mechanism based on the 
analogy with turbulent bremsstrahlung of small 1 k 1 Langmuir waves, it is concluded 
from known results that the mechanism is not particularly favourable for highly 
suprathermal electrons and hence not particularly favourable for type III bursts. 

The remaining two processes will be discussed in detail in this paper. They are 
scattering of ion-sound waves into transverse waves, and double emission of an ion
sound wave and a transverse wave, by suprathermal electrons. The two processes 
are related by a crossing symmetry and will be discussed together. These and similar 
processes have been discussed only incidentally in the literature. Lin et al. (1973) 
considered a 'nonresonant case' in addition to their parametric instability, discussed 
above. Their 'nonresonant case', which they likened to a free-electron maser, is 
essentially double emission of transverse waves and ion-sound waves. Kaplan and 
Tsytovich (1973; p. 85) also discussed amplification of transverse waves due to 
scattering and double emission. These authors were concerned with transverse 
waves at w ~ wp' Here it is pointed out that the processes under consideration 
become greatly -enhanced for w ~ wp ' and hence constitute a fundamental 'plasma 
emission' process. 

The role of the ion-sound turbulence in the scattering and double-emission 
processes may be regarded as providing a momentum transfer which allows the 
emission of the transverse waves to occur. The resonance condition is 

(w -k.v)=+=(w' -k' .v) = 0, (1) 

where w,k refers to the transverse waves and w',k' to the ion-sound waves, and 
where the upper and lower signs refer to scattering and double emission respectively. 
We have w > wp ~ w', and we assume 1 k 1 ~ 1 k' I. Then equation (1) becomes 

w ±k'.v = O. (2) 

In a semi-classical description, the emission involves a quantum h(w=+=w') ~ hw of 
energy carried off by the transverse wave, and a quantum h(k=+=k') ~ =+=hk' of 
momentum provided by the ion-sound wave. 

A semi-classical treatment of the scattering and double-emission process is presented 
in a general form in Section 2, and applied to ion-sound and transverse waves in 
Section 3. (A collective-medium treatment is outlined in Appendix 2.) The condition 
(2) allows an alternative bump-in-the-tail instability which results directly in the 
growth of transverse waves, as suggested by Lin et al. (1973) and by Kaplan and 
Tsytovich (1973; p. 85). This instability for w ~ wp is discussed in Section 4. The 
effect of the three-wave processes s+ I +-+ t and s +t +-+ 1 (s = ion-sound,l = Langmuir, 
t = transverse) cannot be ignored because the enhancement in the scattering and 
double-emission processes maximizes when w =+= w', k =+= k' nearly satisfies the dis
persion relation for Langmuir waves; the conditions w =+= w' = w" and k =+= k' = k" 
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with w", kIf describing a Langmuir wave, are just the conditions for the three-wave 
processes to occur. These three-wave processes are discussed in Section 5, where it is' 
pointed out that as a result of the so-called nonlinear Landau damping of the 
Langmuir waves, the ion-sound waves can suppress the familiar bump-in-the-tail 
instability for the Langmuir waves. Thus the ion-sound waves can play two comple
mentary roles: (a) they can suppress the generation of resonant Langmuir waves, 
i.e. Langmuir waves satisfying w" - kIf • v = 0, and (b) they can allow the alternative 
bump-in-the-tail instability to produce transverse waves directly. The possibility 
that type III emission may be produced directly through this alternative bump-in-the
tail instability is discussed in Section 6. 

2. Single-particle Semi-classical Description 

In describing the processes under discussion as 'scattering' and 'double emission', 
we implicitly assume a single-particle description. An electron (denoted e and e' 
in the initial and final states respectively) can scatter a wave in one mode ((J' say) 
into a wave in another mode ((J say), or it can emit the two waves simultaneously. 
These processes may be described symbolically by e + (J' -> e' + (J and e -> e' + (J + (J' 

respectively and they are related by a crossing symmetry. In this section a general 
theory for such scattering and double-emission processes is written down. An alterna
tive collective-medium approach is outlined in Appendix 2. 

Waves in a given mode (J are described in terms of their wavevector k. They 
have frequency w determined by the dispersion relation w = wG(k). Their electric 
vector is along the unimodular polarization vector eG(k) and the ratio of the electric 
to total energy is denoted R~(k) (Melrose 1980a; p.47). For the crossing symmetry 
to have a simple form, it is appropriate to make the choices relating negative- and 
positive-frequency solutions 

wG(-k) = -wG(k), e"(-k) = e*"(k) , R~(-k) = R~(k), (3) 

where the asterisk denotes complex conjugation. Let w"t (p, k, k') be the probability 
per unit time that a wave quantum in the mode (J' in the range d3k'/(2n)3 be scattered 
into a wave quantum in the mode (J in the range d3k/(2n)3 by a particle with charge q, 
mass m and momentum p = ymv, where y = (1 _V2/C2)-t. The corresponding 
probability for double emission, i.e. with both wave quanta in the final state, is 
denoted w~'" (p, k, k'). Crossing symmetry implies 

w~'" (p, k, k') = w~'" (p, k, - k') , (4) 

where equations (3) are used. A general expression for the probability is (Melrose 
1980b; p, 168) 

",,' , 4(2n)3q4 R~(k)R~'(k') 
w± (p,k,k) = (4nBo)2m21 w"(k)wG'(k') I 

x lat1t1 '(k,±k',v)12<5(w"(k)=t=w"'(k')-(k=Fk').v), (5) 

with 

a""'(k, k', v) = e'i"(k) ej'(k') ai/k, w"(k); k', w"'(k'); v). (6) 
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Let us denote k, OJ and k', OJ' collectively by k and k' respectively. One may make 
, the separation 

aij(k, k', v) = ail(k, k', v)+ans(k, k', v), (7) 

into a part due to Thomson scattering (TS) 

TS , 1( k;vj kjv j (k.k' -OJOJ'je2)vi vj ) 
aij (k, k ,v) = - ()ij + , k' + k + ( k)(' k' ) , y OJ - .v OJ -.v OJ - .v OJ - .v 

(8) 

and a part due to nonlinear scattering (NS) by the shielding field of the particle 

NS, /10 me2 " A/m(k- k') 
aij (k, k ,v) = q(OJ- OJ')2 2(Xij/(k, k ,k-k) A(k- k') Vm· (9) 

In (9), (Xijl describes the quadratic response of the plasma in an expansion of the 
induced current in powers of the vector potential A(k) in the temporal gauge (</J(k) = 0): 

Jlnd(k) = (Xij(k) Aik) + f dA(2) (Xijl(k,k1,k2) Aikl) Alk2) 

+ f dA(3) (Xijlm(k, kl' k2' k3) A i k l) Alk2) Am(k3) + ... , (10) 

where (using: = to define quantities on the left-hand side) 

(n) • _ d4kl d4kn 4 4 
<.U .- (2n)4 ... (2n)4(2n) () (k-k 1 - ••• -kn) (11) 

denotes an n-fold convolution integral. The 'photon propagator' Aiik)/A(k) in (9) 
is the inverse of the operator Aij(k) in the inhomogeneous wave equation 

Aij(k) A j(k) = - (/10 C2/OJ2) Jixt(k), 

where rxt(k) is an extraneous current and with 

Aij(k) : = (I k 12c2/OJ2)(Ki Kj -()ij) + Bij(k) , 

Bij(k) : = ()ij +(/10 C2/OJ2)(Xij(k) , K:= k/lkl. 

(12) 

(13) 

(14) 

An application of detailed balancing leads to kinetic equations for the occupation 
numbers NU(k) and NU'(k') of the wave quanta and for the distribution function 
f(p) of electrons (Melrose 1980a; pp. 171 & 175): 

dN;(k) = f d3 p f (~:~~ ~ w±,,'(p,k,k')[{NU'(k')=t=NU(k)}!(p) 

+ NU(k) NU'(k')h(k =t= k'). 8f(p)/8p] , 

dNU'(k') _ fd3 f d3k "wuu'(p k k')[{NU(k) =t= NU'(k')}!(P) 
- - p (2n)3 'l' ± " 

=t=NU(k)NU'(k')h(k=t=k'). 8!(p)/8p] , 

(15) 

(16) 
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df(P) = f d3k f d3k' "h(k- k') ~(WUU'( k k') 
dt (2n) 3 (2n)3 f + ·op ± p, , 

x [{NU'(k'H NU(k)}f(P)+NU(k) NU'(k')h(k±k'). of(P)iop]). (17) 

In the following discussion we require explicit expressions for the tensors defined 
by the weak-turbulence expansion (10). A standard calculation using kinetic theory, 
and retaining only the contribution of one species of particle, leads to 

with 

lXij(k) = q2 fd3p vjgrik , v) of(p) 
OJ -k.v oPr ' 

aijl(k, k 1, k2) = q3 fd3p Vjgrikl, v) ~( gslk2, v) Of(P») 
OJ-k.v oPr0J2-k2.V oPs ' 

ajjlm(k, k 1, k2, k3) = q4 fd3p Vjgrikl, v) ~ 
OJ -k. v oPr 

{ g.zCk2, v) 0 (gtm(k3, v) Of(P»)} 
x OJ2+OJ3-(k2+k3).vop. OJ3 -k3.v OPt ' 

(18) 

(19) 

(20) 

gjj(k,v) := (OJ -k.v)bij +kjvj , (21) 

and with lXijl and lXijlm obtained from ajjl and ajjlm by symmetrizing, i.e. 

lXijzCk, k1, k 2) = Haijz(k, k1 , k 2) + ajjz(k, k 2, k1)}, etc. (22) 

3. Processes e+s -+ e' +t and e -+ e' +s+t 

Let us now assume that the background plasma is isotropic with a thermal dis
tribution of electrons and one species of ion, and find approximate expressions for 
w~(P, k, k') for nonrelativistic electrons. 

Relevant plasma parameters are OJp, the electron Debye length AD. and thermal 
speed V. = OJp AD., and the ion plasma frequency OJpi and ion-sound speed Vs : = OJpi AD.' 
The properties of the wave modes are: 
ion-sound waves (0' = s) 

s k _ Ikl Vs 
OJ( ) - (1 +lkI2A5.)t' 

e'(k) = K, R~(k) = t(OJS(~»)2 ; 
OJP1 

(23) 

Langmuir waves (0' = I) 

OJI(k) = OJp(1 + I k 12 A5.)t, el(k) = K, Rk(k) = 1-(OJ~:)r ; (24) 

transverse waves (0' = t) 

OJt(k) = (OJ; + I k 12c2)t, e.K = 0, R~(k) = t. (25) 

The dielectric tensor 8ij(k) may be separated into longitudinal (1) and transverse 
(0 parts, and then the photon propagator becomes 

Aij(k)· K;Kj bij -KjKj 
A(k) = 81(k) + l(k) -I k 12c2/OJ 2 ' 

(26) 
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In equation (5), with (6), (7) and (9), the propagator appears with argument 
k=Fk',w=Fw' which for Ik'i ~ Ikl and w ~ w' corresponds to approximately 
=Fk', w. Then we have 

B1(k=Fk') ~ 1 _ :~( 1 + 3 i k~~2Ve2), (27) 

with Bt(k=Fk') ~ 1 -w;lw2. For w ~ wp the term involving BI(k) in (26) dominates. 
The quadratic response tensor IXiil is dominated by the electronic contribution. 

If we assume wll k I, wl/l kl I ~ Ve ~ w2/1 k21, an appropriate approximation is 

e W2 bijk21 
2IXijz(k, kl' k2) ~ flo me c2 1 k21 2A5e . (28) 

The factor 2 in (9) and (28) arises from the symmetry property (22), which is now 
broken. For v ~ c, equation (7) with (9)-(11) reduces to 

k'v W' K;K} 1: I i+ __ , 
aij(k,k',v) ~ Uij- k'.v wlk'1 2A5e B1(k-k') (29) 

where only the leading term in (26) has been retained. For I k' I ~ wplv and 
w' ~ I k' Ivs, the final term in (29) dominates for B1(k-k') ~ 43Ve/v, which is well 
satisfied for w ~ wp' 

Thus the probability (5) reduces to 

ts , (2n)3e4 w; (WS(k'») 3 

w±(p,k,k) = (4nBo)2m: W;i Ve41 k' 14 wt(k) 

le.K'1 2 

x I B1(k+k')12b(Wt(k) +w"(k') -(k+k').v). (30) 

For (J) ~ wp and wS(k') ~ I k' I Vs further approximation to (30) leads to 

(2n)3e4 wS(k')w le.K'1 2 

w~(P,k,k') ~ /A ,?? .•.. ?/ " .. ?? _ ••• • ??,?b(wp +k' .v). (31) 

In the following the sum over the two states of transverse polarization (I e; K' 12 -+ 

I K X K' 12) is performed in treating emission, and the average is performed in treating 
absorption. 

Nearly Singular Behaviour 

A notable feature of (31) is that it is singular at I k 12 c2 = 31 k' 12 V:, and this 
singularity is not integrable. We now argue that this singularity is to be removed 
by including the imaginary part (1m) of BI(k), and by excluding the region where the 
real part (Re) satisfies I ReBI(k) I ;$ I ImBI(k) I. The essence of the argument is that 
for I ReBI(k) I ;$ I 1m Bl(k) I the processes in question should be regarded as three-wave 
processes rather than as scattering and double emission. This point is treated in a 
more formal way in Appendices 2 and 3; the discussion here is partly heuristic. 
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From (30), it is evident that the singularity occurs at el(k =F k') = 0, which corre
sponds to w =F w' being equal to wl(k =F k'). If we write k" = k =F k', then the singularity 
occurs at 

k=Fk' = k", wt(k) =FwS(k') = wl(k"). (32) 

The conditions (32) are just those required for the three-wave interactions s + 1 +--t t 
and s + t +--t 1. 

The collective-medium approach developed in Appendix 2 leads to a factor 
el(k =F k') squared in the denominator, as in (30), when one makes the longitudinal 
approximation. On including the imaginary part of el(k=Fk'), and it is essential to 
do so in this alternative approach, the relevant factor appears in the form 

1m = ..,-----;---,-------:-~----:,--___;_--.,-;;: ( 1) -Imel(k =+= k') 
el(k + k') {Reel(k + k,)}2 + {Ime1(k + k,)}2' 

(33) 

Thus the singularity is avoided for 1m el(k =F k') f= O. If we write 

I (Imel(k») Yecc(k) = 2 I 
(%w) Ree (k) w=wl(k) 

(34) 

as the effective absorption coefficient for Langmuir waves in the neighbourhood of 
the zero in Reel(k=Fk'), equation (33) may be approximated by 

Im( 1 ) = -Y~cf(k =+= k') . 
el(k + k') {w + w' -wl(k+k')Y + {y~cc(k=F k,)}2 

(35) 

When the frequency mismatch 1 w=Fw'-wl(k=Fk') 1 is well in excess of the absorption 
coefficient Y!cc(k =F k'), the term involving Y!Cf in the denominator may be neglected, 
and then the results derived using the theory of Appendix 2 reproduce the result 
derived using (30). On the other hand, when the frequency mismatch is less than the 
effective absorption coefficient, the beat at w =F w', k =F k' damps out on a timescale 
shorter than that over which the frequency mismatch would become evident, and 
the beat is indistinguishable from a weakly damped Langmuir wave. In this case the 
processes should be regarded as three-wave interactions. Thus the inclusion of 
Imel(k) f= 0 removes the singularity and implies that the scattering and double
emission processes pass over into three-wave processes when the frequency mismatch 
becomes less than about the effective absorption coefficient. 

The maximum in the probability occurs where the frequency mismatch is equal to 
Y!cc(k=Fk') ~ Y!cc(k'). The maximum growth rate may be estimated by assuming a 
Lorentzian profile, as implied by (33), and integrating over it excluding the region 
where the mismatch is less than Y!rr. For present purposes this is equivalent to making 
the following approximation in (31): 

1 1 
for Ikl 2c2 ~ 31k'1 2V/ (36a) 

(I k 12c2 - 31 k' 12 Ve2)2 ~ 1 k 14 c4 ' 

'" nbC! k 12c2 -31 k' 12 Ve2) 
for 1 k 12c2 ~ 31 k' 12 Ve2 • (36b) '" I wp Yeff(k') 

The part (36a) applies far from the singularity in (31); using it one may re-derive the 
result of Kaplan and Tsytovich (1973; p. 85). The part (36b) takes account of the 
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nearly singular behaviour with the singularity cut out as implied by (35). Only the 
nearly singular part is retained in the discussion below. 

4. An Alternative Bump-in-the-tail Instability 

The familiar bump-in-the-tail instability causes Langmuir waves to grow due to 
a stream of suprathermal electrons. The simplest case corresponds to Langmuir 
waves propagating along the streaming direction and to nonrelativistic electrons 
with one-dimensional distribution function F(v), defined here such that f dv F(v) 
equals nl = f d3p f(P). The growth rate for such Langmuir waves at 1 kIf 1 = wp/v 
is given by minus the absorption coefficient 

y~(k") = -(n/ne)wpv2dF(v)/dv. (37) 

In Section 5 it is argued that in the presence of a sufficiently high level of ion-sound 
waves with 1 k' 1 ~ wp/v, directed along the streaming direction, this instability can 
be suppressed. Once suppressed it may be replaced by an alternative one in which 
the transverse waves grow. A semi-quantitative theory for this alternative instability 
is developed in the present section. 

The alternative instability is due to double emission of ion-sound and transverse 
waves. (There is a closely analogous instability in which the transverse wave is 
replaced by a Langmuir wave with small 1 k I.) A simple approximation for the absorp
tion coefficient in this case may be obtained as follows. First insert (31) in (15), 
assuming a = t, a' = sand NS(k') ~ Nt(k). Next re-express the N in terms of 
effective temperatures TS(k') and Tt(k). Now assume that the electron distribution 
is one-dimensional and strongly concentrated around a particular v. Then carry 
out the integrals retaining only the nearly singular part (36b) of the probability. 
Finally, take the average over the states of polarization and the direction of emission 
of the transverse waves and choose the value of 1 k 1 which maximizes the emission, 
denoting the relevant value of rt(k) by 'fl. The resulting transfer equation is then 
of the form 

d Tt/dt = Ttl - yst Tt , (38) 

with T~t describing the effects of 'spontaneous emission' and with y"t the effective 
absorption coefficient for the two processes e+s -+ e' +t and e -+ e' +s+t. These 
two processes complement each other in the spontaneous emission but contributed 
with opposite signs to the absorption coefficient (due to the =+= sign in the final term 
of equation 15). Writing 

TS = T'(k') + T'( -k'), 

AS = {T'(k') - T S( - k')} / TS 

for k' along the streaming direction and 1 k' 1 ~ wp/v, one finds 

y,st '" n ro C2W 3 T-s 
0"'- p 9 ne y~ff(k') V2 -Tmev2F(v) 

e e ' 

n r C2W 3 TS dF(v) st 0 p AS I' ~ ---- v--
18 ne y~ff(k') Ve2 Te dv' 

where ro is the classical radius of the electron. 

(39) 

(40) 

(41) 

(42) 
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Thus a bump-in-the-tail instability develops under similar conditions to that for 
Langmuir waves, provided that the ion-sound waves are anisotropic favouring the 
forward streaming direction (As> 0). The double emission tends to cause the waves 
to grow and the scattering tends to cause them to damp. As a consequence forward
propagating ion-sound waves grow and backward-propagating ion-sound waves 
damp, causing AS itself to grow; this growth may be described quantitatively using 
(16). The growth of AS implies that the instability is faster than exponential; it is 
of the form d Tt/dt oc (Tt)2. 

Quasilinear Relaxation 

Suppose that the double-emission instability develops. What effect will this have 
on the evolution of the stream? In this case when the familiar bump-in-the-tail 
instability for Langmuir waves develops, the stream evolves through quasilinear 
relaxation (see e.g. Grognard 1975, 1980; Takakura and Shibahashi 1976; Magelssen 
and Smith 1977). 

The evolution of the stream of electrons due to the alternative double-emission 
instability may be described using (17). Comparison of (17) and the corresponding 
equation for the Langmuir-wave case suggests that the evolution should be closely 
analogous in the two cases. The fact that the alternative instability is faster than 
exponential is unlikely to be important because quasilinear relaxation occurs almost 
instantaneously when compared with timescales over which the stream itself evolves 
(Grognard 1980). Thus the dynamics of the stream should be similar whichever of 
the two instabilities develops. 

5. Three-wave Processes 

The three-wave processes s + I +--* t and s + t +--* I occur when the conditions (32), 
namely k' ± k" = ± k and w' ± w" = ± w, are satisfied. Analogous processes with 
the t wave replaced by an I wave with small 1 k 1 are also possible. In the following 
discussion, to avoid confusion Langmuir waves generated directly by the stream are 
referred to as 'resonant' I waves and other I waves are referred to as 'nonresonant' 
or specifically as 'small 1 k I' I waves; 'small 1 k 1 wave' implies either a t wave or a 
small 1 k I I wave. 

The three-wave process can lead to suppression of the bump-in-the-tail instability 
for resonant I waves. The nonlinear (NL) absorption coefficient for the resonant 
I waves is estimated in Appendix 3: 

ykL(k") ::::; 2ro e2w; T S 

9Ve2 v To' 
(43) 

with 1 kIf 1 ::::; wp/v. The result (43) is in qualitative agreement with one quoted by 
Smith et al. (1979) based on the work of Dawson and Oberman (1963), and also 
Dawson (1968). They expressed ykL in terms of the density fluctuations em associated 
with the ion-sound waves. One has P(k')/Te = 1 bn(k') 12 /n, and with 

l: 12 f d3k' . ( ') 2 
1 un : = (2n)3 1 bn k 1 , 

one finds y~L/Wp ::::; l1Jn/n 12(k"ADe)-2 provided that the fluctuations bn are dominated 
by waves of the relevant k' ::::; wp/v. 
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The bump-in-the-tail instability for resonant 1 waves is suppressed for Y~L ~ 1 y~ I. 
Inspection of (37), (42) and (43) shows that we have 

st ~ 1 I AS/ I Y ~ YNL Yo Yeff' (44) 

With Y!ff ~ 1 y~ I, it follows that when the generation of the resonant 1 waves is 
suppressed the alternative bump-in-the-tail instability takes over with a growth 
rate yst ~ y~. 

Threshold Level of Ion-Sound Waves 

Let us determine the threshold level of ion-sound waves (with 1 k' 1 ~ wp/v) 
required to suppress the resonant 1 waves and produce fundamental 'plasma emission' 
directly. If we write {v2 dF(v)/dv}max = nl(v/Av)2 in (37), the condition Y~L > 1 y~ 1 

leads to the threshold condition 

Ts 9n n V 2 V (V) 2 
1~ ~ "2 n: ro ;2Wp Av 

(45) 

An alternative way of expressing the condition (45) is in terms of the ratio of the energy 
density WS in the ion-sound waves to the thermal energy density ne Te in the electrons: 

W' nl(Ve)2( V)2 
ne To ~ ne -; Av 

(46) 

It should be emphasized that (45) and (46) include only the ion-sound waves in a 
range Ak' ~ k' at k' ~ wp/v. 

6. Discussion and Conclusions 

The main result of the current investigation is that when ion-sound waves are 
present above a threshold level, the bump-in-the-tail instability (due to a stream of 
fast electrons) changes its character. Below the threshold the instability produces 
resonant Langmuir waves (with 1 kIf 1 ~ wp/v). Above the threshold it may proceed 
through double emission of an ion-sound wave (with 1 k' 1 ~ wpfv) and a small 1 k 1 

transverse wave or Langmuir wave. Thus, in principle it is possible for a stream 
of electrons, with dF(v)/dv > 0 over some range, to propagate without copious 
production of resonant Langmuir waves and to generate fundamental 'plasma 
emission' directly. 

For type III streams in the interplanetary medium the threshold condition on the 
ion-sound waves, in the form (46) say, requires WS/ne Te ~ 10-9, where we set 
nt/ne ~ 10- 7 , (Ve/V)2 ~ 10- 3 , (V/AV)2 ~ 10. This energy density refers to ion-sound 
waves with 1 k' 1 ~ wp/v, i.e. 1 k' 1 ADe ~ 0·03. Observations of ion-sound waves in 
the interplanetary medium (Gurnett et al. 1979) show a peak value corresponding 
to WS/ne Te ~ 10- 8. There is little direct information on the 1 k' 1 spectrum of the 
ion-sound turbulence. However, values 1 k' 1 ADe ~ 0·03 are likely to be present. It 
is reasonable to conclude that the threshold level is exceeded some of the time for 
type III bursts in the interplanetary medium. 

Note that emphasis is placed here on ion-sound waves with 1 k' 1 ~ wp/v. These 
waves combine with the resonant Langmuir waves (below the threshold for suppression 
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of the Langmuir instability) to produce small I k I transverse waves or Langmuir 
waves. Suppression of the Langmuir instability can also occur due to ion-sound 
waves with I k' I ~ wp/v. These combine with the resonant Langmuir waves to produce 
large I k I Langmuir waves (I k I ::::0 I k' I). The effects of the ion-sound waves with 
I k' I ::::0 wp/v dominate provided that the energy density WS in the ion-sound waves 
satisfies d(ws/I k' 12)/dl k' I < 0 for I k' I :<; wp/v, which is assumed to be the case here. 

Generation of small I k I transverse waves or Langmuir waves can also occur 
through turbulent bremsstrahlung. For a stream of fast electrons the growth rate 
for this process is much smaller than that for the double-emission process (Appendix 
1). Thus turbulent bremsstrahlung may be neglected here. 

The possible application of the double-emission process to Type III bursts appears 
favourable in several ways, but. also encounters a number of difficulties. Favourable 
aspects of the process are that it does indeed allow 'plasma emission' to occur without 
Langmuir waves necessarily being involved. It is particularly interesting that the 
conditions for it to occur seem likely to be satisfied at least some of the time. A further 
favourable aspect is that the threshold condition (46) on the ion-sound waves is 
most easily satisfied at the front of the stream where n1 is small and v is large. This 
allows the possibility that initially the radio emission is produced by the double
emission process without any Langmuir waves being generated. Later, as n1 increases 
and v decreases, the instability could revert to the generation of resonant Langmuir 
waves. In this way, one could account for the appearance of Langmuir waves only 
after the appearance of radio emission. 

Now let us turn to the difficulties encountered with the application of double 
emission to type III bursts. First, one cannot account for second-harmonic emission 
without invoking Langmuir waves. Second-harmonic emission certainly occurs 
for some bursts in the solar corona, and it is much simpler to attribute fundamental 
plus harmonic emission in the corona to the conventional forms of plasma emission, 
with the generation of the fundamental enhanced by low-frequency turbulence (see 
e.g. Melrose 1980c). There is no need to invoke double emission in the corona. 
Second, the hypothesis that double emission occurs in the interplanetary medium 
requires that the emission be at the fundamental, rather than the second harmonic 
as is now widely accepted. There are strong arguments for favouring fundamental 
emission (Melrose 1982) but these do not require that the fundamental be due to 
double emission. Third, the basic reason for invoking double emission is to account 
for plasma emission without Langmuir waves, but double emission itself should 
produce Langmuir waves. This occurs due to the process e ~ e' + s + 1, with the small 
I k I (~wp/v) Langmuir waves growing at the same rate as do transverse waves. Thus 
although the production of resonant Langmuir waves can be suppressed by the 
ion-sound waves, it is difficult to see how one can argue that double emission will 
produce transverse waves without also producing observable nonresonant Langmuir 
waves. 

In view of these difficulties it seems unlikely that 'plasma emission' can. occur in 
the absence of detectable Langmuir waves. However, it seems possible that in the 
presence of ion-sound turbulence a type III stream may generate transverse waves 
and nonresonant (small I k D Langmuir waves, but no resonant Langmuir waves. 
If this alternative bump-in-the-tail instability is important then 

(1) the fundamental 'plasma emission' is generated directly by the stream; 
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(2) the nonresonant Langmuir waves also generated by the stream should be 
distributed roughly isotropically, and should appear at the same time as the funda
mental; 

(3) the small I k I Langmuir waves generated directly by the stream can more 
easily undergo Langmuir collapse than would an equivalent energy density in resonant 
Langmuir waves. 
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Postscript 

After this paper was written, an alternative treatment of the plasma processes 
by Goldman and DuBois (1981) has cast further doubt on the viability of the postu
lated growth of transverse waves due to the processes e --+ e' + s + t and e + s --+ e' + tin 
type III bursts in the interplanetary medium. Goldman and DuBois included the 
damping of the ion-sound waves, which is neglected in the present paper, and found 
that the net absorption coefficient for the transverse waves is the sum of the (negative) 
value (42) and the (positive) Landau damping rate of the ion-sound waves. The 
latter is the much larger in magnitude, implying that the net effect is one of damping. 
Thus the growth of transverse waves due to the instability discussed in Section 4 
above evidently occurs only if the low-frequency waves have an intrinsic damping 
rate much less than that of ion-sound waves, and less than the value (42) in magnitude. 
Goldman (personal communication) also argued that for a spectrum of ion-sound 
waves the k values (k ~ wp/v) which contribute to growth can be more than offset 
by k values leading to damping, i.e. to yst > o. 
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Appendix 1. Turbulent Bremsstrahlung 

Turbulent bremsstrahlung, and also the scattering and double-emission processes, 
may be treated as nonlinear damping processes. The absorption coefficient is given 
in general by (cf. Melrose 1980a; p.47) 

yUCk) = -{2il1oc2jwU(k)}RE(k)e7"(k)ej(k)r:J.1f)(k,w"(k)), (AI) 

where r:J.~f) is the anti-hermitian part of the linear response tensor (cf. equation 10). 
Nonlinear damping is treated by including the nonlinear response tensor r:J.~L in (AI). 
One contribution, r:J.~L, arises from the cubic response in (10) with k3 = -k1, k2 = k. 
If we write 

A"'(k') = e"'(k') exp{i lfr"'(k,)}(h V :EI'~~\~,;'t')r 2n [)(w' -wU'(k)) , 

where V is the normalization volume, an average over phases t/J'" (k') gives 

<A((k')Aj'{k"» = {l1ohc2jw"'(k')} R'E"(k') N"'(k') e((k') eJ"'(k') 

x 2n [)(w' - w"'(k'))(2n)4[)4(k' + k"), 

and we have 

(A2) 

(A3) 

NL1(k) h f d3k' 3 (k k' k k') "'(k) *u'(k) RE'(k') N"'(k' (A4) r:J.ij =-·2 )3 r:J.irjs , ,,- er es I "'"" , ). 
80 (n w 
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A second contribution, IX~LZ(k), arises from the quadratic response of A"'(k') to 
the beat between A"(k) and A"'(k). After averaging over phases using (A2) and (A3) 
one finds 

NL2 h f d 3k' , , ( -/loC2 )Aab(k-k') 
IXij (k)= eo (2n?2rxiraCk,k ,k-k) (CO-CO,)2 A(k-k') 

R"'(k') 
x 2IXbj.(k-k', k, - k') e~'(k) e:"'(k') , ~'/'" ,N"'(k'). (A5) 

The factors 3 in (A4) and 2 in (A5) arise from the symmetrization indicated in (22), 
and are to be omitted when appropriate un symmetrized forms of (20) and (19) 
respectively are used. 

To evaluate the anti-hermitian part of IX~Ll(k) we start from (20) and partially 
integrate, using the identity (cf. equations Sand 21) 

to find 

!~(kk )=co-k.v ~(Vigr/k1'V») all ' 1, V m ~ , 
col-k1'V apr co-k.v 

q4 f (COl -k1.v)amk ,kl ,v) 
~ijlm(k,k1>k2,k3) = - m2 d3p (CO -k.V){C02 +co3 -(k2+k3)'V} 

( COZ -k2'V TS(k k )k of(p) 
x aim 2, 3, V 3' op 

co3 -k3 ·v 

02f (p») 
+ m gstCkz, V) gtm(k3, V) oPs OPt . 

(A6) 

(A7) 

The denominators are to be evaluated in the usual way by giving co an infinitesimal 
imaginary part and using 

1 1 ----p . ~( co -k.v +iO -- co -k.v -lnu co -k.v), (AS) 

where P denotes the Cauchy principal value. The anti-hermitian part arises from the 
semi-residue term in (AS). In treating turbulent bremsstrahlung the relevant con
tribution is from the denominator C03 -k3 .v in (A7) and thence in (A4); there is no 
relevant contribution from IX~L1. On retaining only the relevant resonant part and 
setting k3 = -k1' one finds the contribution to turbulent bremsstrahlung (TB) from 
(A7): 

-TB i nq4 fd3p of(p) 
IXijlm(k,kl,k, -kl) = -2- --2 Vm b(COl -kl • v)kl • -;:1-

me y ~ 

x [co _lk. v( -bijk ll +klibj/) + __ 1 

x {(COC~l -k .kl )(bij VI -bil Vj - V1 bjl) + kli Vikl + 
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+2kliVjkl-Vikjkll} + (w -~. v? 

x {-2(:: -lkI2)kliVjVI-(WC~1-k.kl)(kiVjVI-3ViVjkl)} 

+, 1 A {3(:: _lkI2)(Wc~1 -k.k1)vi vj vl}l. (A9) 

Only terms even in kl are retained in (A9) (cf. Tsytovich et al. 1975). Now inserting 
(A4) in (AI) and identifying the relevant part of 3rxirjs as a;~~s one finds the absorption 
coefficient for turbulent bremsstrahlung: 

TBO"(k) = -2i~ f d3 k' R'E(k)R'E'(k') NO"'(k') 
l' e~ (2n? I wO"(k) wO"'(k') I 

x eiO"(k)e'J(k)e~'(k')e:O"'(k')a;~~.(k,k',k, -k'). (AIO) 

with k and k' now denoting k, wO"(k) and k',wO"'(k') respectively. 
Let us first use (AlO) with (A9) to reproduce the existing results (Tsytovich et al. 

1975; Kuijpers 1980a) for the turbulent bremsstrahlung of Langmuir waves off 
ion-sound waves. In this case the waves are longitudinal (eO"(k) = K, eO"'(k') = K') 
and in (AIO) we have 

, , -TB (k k' k k') Ki Kj KrKsrxirjs , , ,- = 
. q4 W2W'2 

-In----
m2 I k 121 k' 12 

fd3p ~( , -k' )k' ol(p) 1 {3 1 k 12k k' x 2 u W .v.:"l ( k)4 • l' up w - • v 

ww' 2 2k. v , 2 (k. V)2(3WW' )} --Ikl --(wk.k +w'lkl)+ - --k.k' . (All) 
c2 c2 c c2 

The existing results are reproduced in the nonrelativistic limit, which corresponds 
to l' = 1 and c = Cf) in the integrand in (All). The nonrelativistic and longitudinal 
approximations were made at the outset by Tsytovich et al. (1975) and Kuijpers 
(1980a). The relativistic corrections, derived here for the first time, turn out not to 
be important under the conditions envisaged in proposed applications of turbulent 
bremsstrahlung. 

For transverse waves we average over the two states of polarization. Then in 
place of (All) we have 

!(c5ij -KiK)K;K~a;~~.(k, k',k, -k') 

i nq 4 W2W'2 fd 3p , , , of(P) 1 
= m 2 Ik1 21k'1 2 7 c5(w -k .v)k.-riP (w -k.vt 

x (I k 12k. k' + relativistic corrections) , (A12) 
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where the 'relativistic corrections' are terms proportional to c- 2 • As for Langmuir 
waves, the relativistic corrections are not important. If we neglect them, the absorp
tion coefficient from transverse waves due to turbulent bremsstrahlung is just one 
third that for Langmuir waves. The absorption coefficient is 

t k - (2n)3 e4 f d3k' f 3 k .k' 
YTB() - (4m;O)2m;W;i{Wt(k)}3 (2n)3 d Plk'12 

x roCk') {w2(k') Y b( wS(k') - k' • v) k' .8 f(p )/8p, (Al3) 

where the nonrelativistic approximation has been made. 
An order of magnitude comparison between the growth rates for turbulent 

bremsstrahlung and for double emission leads to 

yh ::::0 (I k 1 C) (Y~ff) Ve6 (/ k' 1
4 T sAshB 

yst wp wp cvs (wp /v)4YSA s ' 
(A14) 

where (k,4T SAshB denotes the maximum value of this quantity. (All ion-sound 
waves, and not just those with 1 k' 1 ::::0 wp/v, contribute to turbulent bremsstrahlung.) 
Although the last factor in (AI4) may be large, all the other factors are small, and 
one has 1 yiB 1 ~ 1 yst 1 for a bump-in-the-tail distribution of electrons. 

Appendix 2. Collective-medium Treatment of Scattering and Double Emission 

The method used in Appendix I may be used to derive the effective absorption 
coefficient due to the scattering and double-emission processes. The relevant effective 
absorption coefficient from the single-particle approach follows directly from (15): 

f J d3k' 
y"(k) = d3p (2n? ~ w"{(p,k,k')N"'(k')h(k+k').of(p)/op. (A15) 

We now re-derive (AI5) starting from (AI) with (A4) and (A5). 
The relevant anti-hermitian part of ()(~L1 will be called the Thomson scattering 

(TS) part, for reasons which will become evident. This part arises from the resonance 
in the denominator W2 +W3 -(k2+k3).V in (A7). We have 

. 4f a"0~m(k,k',k, -k') = 1:; d3pa"0S(k,k',v) 

x ai!(k,k',v)b(w -w' -(k-k').v)(k-k').8f(p)/op. (AI6) 

If we insert (AI6) in (A4) and then in (AI), there is a contribution from (AI6) as 
written with w' > 0 and another contribution with w' < O. The negative-frequency 
part may be rewritten by replacing k' by -k' with the new w' > O. Then the former 
contribution describes scattering and the latter describes double emission. Direct 
comparison then shows that the result (AI5) is reproduced, but with only the Thomson 
scattering term in (5) with (6) and (7). 

Now consider the contribution from ()(~L2, given by (A5). There are three resonant 
denominators which contribute in this case. One arises from the photon propagator 
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Aab/A. Including the anti-hermitian part of the linear response tensor (18), i.e. the 
part 

IXlt)(k) = -inq2 J d3p ViVj b(W -k.v)k.of(p)/op, 

one finds, to first order in dissipative terms, 

2 

ASA)(k) = Jlo~ eirmejsnlX~~)(k)Anm(k), 
W 

Im(_l_) = _ Jlo c2 Arik) 1X~~)(k) 
A(k) w2 {A(k)}2 ' 

where '1m' denotes the imaginary part. Together (A18) and (A19) imply 

( Au(k))(A) = _ Jlo c2 AisCk) /erik) (A)(k) 
A(k) w2 A 2(k) IX" . 

(A17) 

(Al8) 

(Al9) 

(A20) 

In deriving (A18)-(A20), the facts that A is the determinant of Aij and that AU is 
the cofactor of Aji have been used, together with a matrix identity 

AijArs = AisArj +AeirmejsnAnm' (A21) 

On retaining this contribution from IXnL1 in (AI), one finds that (A15) is reproduced, 
but now with only the nonlinear-scattering term in (5) with (6) and (7). To complete 
the re-derivation of (A15), we need the cross terms between Thomson scattering and 
nonlinear scattering. These arise from resonant denominators in lXira and IXbjs in 
(A5). On partially integrating, we find (19) gives 

- q2 J 3 Wi - kl • V 
lXuz(k,k1,k2) = - m d p (W -k.V)(W2 -k2.v) 

x at/(k,k1,v)gsz(k2,v)of(p)/ops' (A22) 

where (A6) has been used. The relevant resonances arise from the zeros of W2 - k2 • v 
and W - k. v in the cases of lXira and IXbjs respectively in (A5). 

In summary, (AI) reproduces (AI5) with (i) the Thomson-scattering term in (5), 
with (6)-(9), reproduced by the resonance in the denominator W2 +W3 -(k2 +k3). v 
in (A4) with (A 7); (ii) the nonlinear-scattering term reproduced by the resonance 
in the photon propagator in (A5); (iii) the cross terms between Thomson and non
linear scattering reproduced by resonances in the quadratic response tensor (A22) 
in (A5) (cf. Tsytovich 1977; pp. 79-81). The terms with w' > 0 in (A4) and (A5) are 
interpreted as describing the scattering process, and those with w' < 0 as describing 
the double-emission process, in accord with the crossing symmetry (4). 

Two remarks on (A20) are appropriate. First, an expansion in the ratio of the 
anti-hermitian part to the hermitian part is performed, and in this context A(k) in 
the denominator in (A20) is real. Alternatively, one could include IXlt)(k) in Aij(k) 
and then A(k) itself is complex. When we make the longitudinal approximation in 
the latter case, the factor A 2(k) is replaced by {e l(k)}2, with el(k) including both the 
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real and imaginary parts, as in (33). Second, the prescription used in deriving (A20) 
is consistent with and a generalization of the prescriptions used by Tsytovich (1977; 
pp. 79-81) and Davidson (1972; Appendix E). However, it appears to be different 
from a prescription used by Akhiezer et al. (1975; p. 88) and also by Ronnmark 
(1977). The apparent inconsistency in the literature requires further investigation. 

Appendix 3. Three-wave Processes 

The evolution of resonant Langmuir waves (kfl) due to three-wave processes 
involving an ion-sound wave s and another wave, which is either a transverse wave 
or a small 1 k 1 Langmuir wave, may be described by the kinetic equation (see e.g. 
Melrose 1980a; p. 173) 

dNI(k") J d3k J d3k' . Ius ". , 
-. - = - (2n)3 (2n)3 ~ u± (k ,k,k) 

x {NI(kfl) NS(k') +NI(kfl)N"(k) -NS(k')N"(k)} , (A23) 

with (cf. Melrose 1980c) 

ul±S(k",k,k') = (2n)5 he2 OJ; {OJS(k')P 
2(4neo) m; OJ;; k,2Ve4 R~(k) 1 e*"(k). 1("1 2 

X l?(k-kfl+k') [)(OJ"(k)_WI(kfl)+wS(k'». (A24) 

We retain only the leading term NI(kfl)NS(k') in (A23) in evaluating the non
linear absorption coefficient for the Langmuir waves. In addition we assume 
1 wl(kfl) - w"(k) 1 ~ wS(k'). On adding the effects of the processes 1+ s ~ t, 1 ~ t + s, 
l+s ~ l' and 1 ~ I' +s, one finds 

J d3k J d3k' 
ykL(k") = (2n)3 (2n)3 ~ ,,6:1' ul±S(kfl, k, k') NS(k') 

2 roc2 lk"lwp TS 
~ 9' V 2 T' 

e e 

(A25) 

with TS given by (35). For resonant Langmuir waves, 1 kfl 1 ~ wp/v in (A25) leads to 
(40). 

The kinetic equation for waves in mode (J due to the three-wave processes is 

dN"(k) f d 3k' f d 3k" -- = -- -- '\' I"S(k" k k') 
dt (2n)3 (2n)3 f U± " 

x {NI(kfl) NS(k') +NI(kfl)N"(k) -NS(k')N"(k)}. (A26) 

For NS(k') ~ NI(kfl), equation (A26) implies a nonlinear damping with effective 
absorption coefficient 

J d3k' J d3k" 
YNdk) = (2n)3 (2n)3 ~ u;'S(k", k, k') NS(k'). (A27) 
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Formula (A27) may be re-derived from (AI) by retaining only the anti-hermitian 
part which arises from the resonance in (A5) at the dispersion relation for Langmuir 
waves. Quite generally, for k-k' = kIf and OJ" ;:;:: OJ<T"(k") for any mode a", we have 

A(k") ;:;:: (OJ" -OJ""(k") +iO){8A(k")/8OJ"}w"=wG "(k"). (A28) 

The relevant anti-hermitian part of (A5) then arises from 

( 1 Aaik-k'»)A . f d3k 
(OJ-OJ,)2 A(k-k') = -In (2n)3 (2n)3(j\k-k'-k") 

x Rf(k") e<T"(k")· e*""(k") (j(OJ - OJ' - OJ<T"(k"» (A29) I OJ""(k") I a b , 

which includes the negative-frequency solution OJ" = OJ""( _kIf) implicitly. With 
a" = 1, equation (A29) in (A5) and thence in (AI) reproduces (A27). 

Note that the resonant part (A27) is derived by ignoring the anti-hermitian part 
of Cli/k) and by giving OJ an infinitesimal imaginary part in accord with the causal 
condition. This prescription is essentially that used by Akhiezer et al. (1975; p.88). 
However, they used the prescription in place of (A20) in treating scattering and double 
emission (referred to as nonlinear Landau damping). As remarked at the end of 
Appendix 2, an apparent inconsistency exists in the literature on this point. What 
has been shown here is that the prescriptions (A20) and (A27) used as they are here, 
reproduce the results of an independent method of calculation. 
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