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Abstract 

The relativistic string equation is solved for motion corresponding to rigid body rotation about the 
z-axis. One class of these solutions, namely the planar solutions, allows for the construction of two 
types of exotic meson and one type of glueball, all of which have asymptotically straight Chew
Frautschi plots. The first type of meson only exists when the number of quarks or antiquarks is 
4, 5, 6 or 7, whereas no such restriction applies to the second type. For each of these cases the first 
type of meson is energetically more favourable than the second type for a given angular momentum. 

1. Introduction 

The relativistic string model was developed by Nambu (1970) and others (Hara 
1971; Goto 1971; Mansouri and Nambu 1972) from dual resonance models as a 
phenomenological model of hadron structure. The string itself is a one dimensional 
continuum tracing out a minimal area in space-time. It has been interpreted further 
as a line of quantized colour flux (Nielsen and Olesen 1973; Tassie 1973, 1974) 
terminated by quarks acting as colour point charges. 

Various authors (Chodos and Thorn 1974; Bars and Hanson 1976; Kikkawa 
and Sato 1977; Kikkawa et al. 1978) have extended the original Nambu string model 
by including point quarks at the ends of the string. Kikkawa et al. (1979) have devel
oped this theme to include baryons and exotic hadrons and have determined Chew
Frautschi plots for hadrons composed of straight string segments bounded by ferm
ionic point quarks. 

In this paper we find a certain family of possible motions of the relativistic string, 
namely the rigidly rotating configurations. We then examine some possible hadrons 
which can be constructed from those solutions within the framework of the model. 
In p.,articular, we consider two classes of exotic;.mesons and also some glueball 
configurations. Finally we determine the asymptotic slopes of the Chew-Frautschi 
plots of these hadrons in the limit of large energy and angular momentum. 

A preliminary note on exotic mesons and glue balls has been given elsewhere 
(Burden and Tassie 1982). 

2. Rigidly Rotating Strings 

The motion of the relativistic string is determined by the condition that it traces 
out a minimal area in space-time. The action for the string is (see e.g. Kikkawa 
et al. 1978) 
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(1) 

leading to the Euler-Lagrange equations 

(2) 

where XI' = XI'(T, a) is the world sheet traced out by the string as it moves through 
space-time. The sUbscripts T and a stand for a/aT and %a respectively and f1 is a 
Lorentz index running from 0 to 3. We use the metric gl'v = diag(l, -1, -1, -1). 

We shall confine ourselves to solutions of equation (2) which have constant angular 
velocity w about the z-axis. Although it is well known in classical non-relativistic 
mechanics that a rotating rigid body with constant angular momentum does not 
necessarily have constant angular velocity, it is debatable whether analogous 
motions should be called 'rigid' in relativistic mechanics. Furthermore, such motions 
would correspond to excited states and would not be easily observable compared 
with states on the leading trajectory. We therefore omit motions which do not have 
constant angular velocity from the calculations. 

Working in the time-like gauge XI'(T,a) = (T, X(T,a)), we use for the space-like 
parameter a the radial distance r from the z-axis. With cylindrical coordinates, the 
coordinates of the string at time Tare 

X(T,r) = (r,8(r)+wT,z(r)), (3) 

where 8(r) and z(r) are the initial azimuthal and axial coordinates of the string. 
We have 

X t = rwO, (4a, b) 

where 

¢(r) = d8/dr, ((r) = dz/dr. (5a, b) 

The four components of the string equation (2) can then be written 

(6a) 

d ( l-w2r2 ) -w2r(I+(2)+r¢2 
dr {(I+e)(I-r2w2)+r2¢2}t = {(1+(2)(I_r2w2)+r2¢2}t' 

(6b) 

(6c) 

(6d) 

Alternatively, equations (6) can be obtained by noting that the invariant area element 
of world sheet is given by 
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(7) 

and hence the area of the world sheet traced out by the string is 

(8) 

Minimizing (8) with respect to z and (} gives equations (6a) and (6d). The remaining 
equations, (6b) and (6c), can be derived from these. 

There exists a two-parameter family of solutions to equations (6) given by 

AA.r 
, = {A.2r2(I_A2_co2r2)_A2(I_co2r2)}t' (9) 

A(1-co2r2) 
cp = r{A.2r2(I-A2_co2r2)_A2(I_co2r2)}t' 

(10) 

where A and A. are arbitrary real constants restricted in their allowable values by 
the constraint that , and cp should be real. It is sufficient to consider only the cases 
A > 0, A. > 0 since changing the sign of one or both of these merely changes the 
sign of , or cp, which physically corresponds to a mirror image of the string. The 
term in braces in the denominators of (9) and (10) will be positive provided 

I Aco-A.I ~ A.A, (11) 

that is, provided A. and A lie in the shaded area in Fig. 1. 
It turns out that co, ~ 1 according as to whether Aco ~ A., that is, solutions lying 

below the line Aco = A. are tachyonic and those above the line Aco = A. are 'physical' 
tardyonic solutions. From here on we ignore the tachyonic solutions. 

Equation (9) integrates to give 

where 

are the roots of the quadratic in ,2 in the denominator of the integrand. Rearranging 
(12) we have 

so the string lies between two concentric cylinders of radii '1 and '2. 
The (} dependence is, from equation (10), 
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(i) A = 0 

Straight string 

Curves for """""===t-::::tt6 
B = const 

(see eg. 18) 

(iv) A = A = 0 

Planar 
solutions 

C. J. Burden and L. J. Tassie 

(ii) A ~ 00 

Rotating sine wave 

(iii) A - Au> = AA 

Rotating helix 

A 

(15) 

Fig. I. Parameterspace of the rigid rotator string solutions and some specific solutions. 

There are certain limiting cases of the above solutions which are easy to interpret. 
We list them below: 

(i) If A tends to zero we have ¢ = , = 0, giving the usual rotating straight 
radial string. 

(ii) If A ~ 00, then r1 ~ ° and r2 ~ (l_A2}!W-1 giving the solution 

() = const, (l6a, b) 
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so the string is in the shape of a sine wave and lies in a rotating plane. 
(iii) If A-Am = AA then r1 = r2 = (I-A2}!-m-1 and the string is the shape of 

a helix making an angle of 

arctan(r- 1 dz/d8) = arctan((/rcp) = arctan(I-A 2)±, (17) 

with a plane arranged perpendicular to the z-axis. 
(iv) The point A = 0, A = ° in Fig. I conceals a one-parameter family of solutions 

obtainable by approaching the point along the curves shown: 

BA-Am = AA, (18) 

The region of physical solutions in the AA plane is mapped into the region ° < B < 1, 
A > ° in the BA plane with the point (A, A) = (0,0) now represented by the section ° < B < I of the B-axis, 

Writing the solutions (9) and (10) in terms of the parameters B and A and taking 
the limit A --> ° gives the new solutions 

dz/dr = ( = 0, (19a, b) 

Equation (19a) says that the curve lies in the plane z = const, while (19b) integrates 
to give 

, _ 1 . ((1 + B2)m2r2 - 2B2) 1 . (1 + B2 - 2m2r2) 
8-const - zarcsm - 2) 2 2 +zBarcsm 2' 

(I-B m r I-B 

rw = 1 

rw=B 

/} = 'Y-4(B-l)1T 

Fig. 2. Planar string solution 
equation (20) extended by 
reflection in the line () = J(B-l)n. 

(20) 

From (19b) we see that d8jdr is zero at mr = I and infinite at mr = B, and also that 
B ~ mr ~ 1. The corresponding limits on 8 are teB-I)n ~ 8 ~ t(1-B)n. The 
shape of the string is shown in Fig. 2. Since replacing cp by - cp gives a legitimate 
solution to the equations (6) the curve in Fig. 2 has been analytically continued in 
the line 8 = teB -1)n. In the limit B --> ° the string becomes the familiar straight 
string. In the limit B --> 1 the string shrinks to a point moving in a circular orbit at 
the speed of light. 
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We note that the curves (20) are not the same as the geodesics on a rotating disc 
(Arzelies 1966). The difference lies in the factor (1-oh 2}tdt in (7) which takes care 
of time dilation in the invariant area element at a radius r from the centre. 

The solutions (i) to (iv) are shown schematically in Fig. 1. 

3. String Hadrons 

For the classical action for the quark string model of a hadron consisting of N 
strings and I quarks we take (Kikkawa et al. 1979) 

(21) 

where fEst,,, = fEst ,,,(Xw X"'') is the string Lagrangian density in equation (1) and 
Lq,;(Xi<, tfJi' tfJi') is the Lagrangian for the ith quark. Strings terminate at a quark 
or at a string node in configurations consistent with the colour flux conservation law 
of SU(3), namely that colour flux is conserved modulo 3. 

The action (21) leads to the string equation (2) for each string segment and a wave 
equation for each quark, together with the conditions 

(22) 

where the Kth string meets the ith quark and 

" y(") = 0 
L.., I' ' 

(23) 

where strings meet at a node. In (22) and (23) we have defined the tension in the 
Kth string by 

(24) 

where the minus sign is to be taken if (J increases away from the node and the plus 
sign if (J decreases. We have also defined 

(25) 

as the momentum of the ith quark conjugate to its coordinate Xi. 
We now try to construct rigidly rotating classical hadrons from this model using 

the rigid rotator solutions to the string equation found in Section 2. Any such hadrons 
will contain quarks or anti quarks executing uniform circular motion about the z-axis. 
For the fermionic quarks modelled by Bars and Hanson (1976) and Kikkawa and 
Sato (1977) in uniform circular motion the rate of change of momentum given by 
the right-hand side of (22) is directed along a radial line through the z-axis and has 
no time component. The tension in the string or strings emanating from such a 
quark must match this direction. 

Substituting the general rigid rotator solution (equations 9 and 10) into the defini
tion (24) of the tension in the string gives, with the help of equations (4), 

Yo = =t=Aw/2n:(J('1 A I, 

(26a) 

(26b) 
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where the upper sign applies if r increases moving away from the quark and the lower 
sign if r decreases, and fill = (fl o,fT). With the help of (9) and (10) we see that the 
string never supports a compressive force and that the z component of tension is 
constant along the string. 

For the cases when A = A = 0 a similar calculation using the planar solution (19) 
gives the tension as 

(27a) 

fI ° = +- BJ2nrx'; -l-CB-l)n < f) < -l-(l-B)n. C27b) 

For the other half of the string segment, namely i(B-l)n < f) < -l-(B-l)n in Fig. 2, 
the f) and time components change sign. 

From equations (26) and (27) we see that if a single string emanates from a quark 
the string tension only acts in the required direction when B = 0, that is, when the 
string is radial. Suppose then that this radial string bifurcates into strings with 
tensions fI(1) and fI(2) respectively. The k, I} and time components of fI(l) and 
fI(2) must be equal and opposite, which can only happen if the two strings correspond 
to the same value of A but opposite values of A. Unless A is zero each of these strings 
will extend along the z-axis until another node is reached. But at any such node 
there will be at least one more string extending further along the z-axis to balance 
the k component of tension. Thus the hadron will extend indefinitely along the 
z-axis, or possibly approach some limiting point after an infinite number of nodes. 
We reject this last possibility as a serious model of hadron structure, such a state 
being too massive to be easily observable. 

Table 1. Asymptotic Chew-Frautschi slopes for exotic mesons of two types 

Number of 
quarks n 

4 
5 
6 
7 

A In units of !X'. 

Position of 
junction x 

0·727 
0·878 
0·949 
0·988 

Asymptotic slopes dJ/dE 2A 

Fig. 3a mesons Fig. 3b mesons 

0·292 
0·279 
0·273 
0·269 

0·285 
0·278 
0·273 
0·269 

On the other hand, if A is zero the string can bifurcate into two strings of the type 
described by equation (20). Each of the two strings must have the same value for 
the parameter B. Balancing the radial components of tension at the junction gives 

(28) 

where the string junction is at a radius given by mr = x. 
Using junctions such as these one can construct exotic mesons of the type shown 

in Fig. 3a. If the meson is constructed from n quarks and n antiquarks, the angle 
between adjacent quarks is nln. This places a junction at f) = -l-CB-I)n+-!-nln, so 
from (20) we have 
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(29) 

From (28) and (29) we have the position of the junction determined by the trans
cendental equation 

2 {(3X2 -2) }/ (4-5X2
) x = J3 arcsin 4-3x2 +!n .-n/n arccos 4-3x2 · (30) 

This equation only has solutions in the range 0 < x < 1 for n = 4, 5, 6 or 7. These 
solutions are listed in Table 1. For n = 3 we have the solution x = 0 and the meson 
assumes a configuration in which six straight radial arms meet at a point. It is easy 
to see that this should be the case: the infinitesimal hexagon at the centre implicit 
in this solution will have three strings meeting at equal angles at each of its vertices. 
In practice however there seems to be nothing to prevent this configuration from 
becoming three single straight string mesons. 

A further set of exotic mesons can be constructed if one allows two strings to 
emanate from a quark or antiquark, the simplest non-trivial example of which is 
shown in Fig. 3b. In order that there be no net lJ or time component of string tension 
acting on each quark, each string shares the same value for the parameter B. The 
exact configuration is determined by balancing the centrifugal force of each quark 
with twice the radial component of tension in (27a). 

q q 

Ci __ __ 

q q 

q q 

(a) (b) (c) 

Fig. 3. Exotic mesons (a) and (b) (q and q are quarks and antiquarks) and glueballs (c) constructed 
from rigidly rotating string segments. The arrows indicate the direction of colour flux. 

We also note the existence of glueball solutions such as that shown in Fig. 3c. 
The cusps move at the speed of light, and to balance tensions at the cusps we see 
from (27) that each curved segment of string must share the same value of the param
eter B. 

There is a well known result arising from the action (1) that free ends of the string 
must move at the velocity of light. However, we have just seen from our glueball 
solutions that there exist points in these strings which move at the speed of light, but 
these are not free ends and furthermore they cannot be free ends because the string 
tension: is non-zero at these points. 
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4. Asymptotic Slopes of Chew-Frautschi Plots 

At large values of energy and angular momentum the contributions due to 
massive quarks in quark-string hadrons become negligible compared with the string 
contributions. For the string hadrons discussed in Section 3 we can determine the 
asymptotic slope of the Chew-Frautschi plots at large energies by taking the quark 
masses to be zero. In this limit the string ends which terminate at quarks move at 
the speed of light. 

We first calculate the energy and angular momentum of a segment of planar 
string described by (20). The energy density is given by 

1 1 +4>2r2 

= 2rca' {w2r44>2+(1-ah2)(1+4>2r2)}t 

1 wr(1-B2) 
= 2rca' (w2r2 - B2}!(1- w2r2)! ' 

(31) 

using (1) and (19). This integrates to give, for a segment of string r 1 < r < r 2 , 

(32) 

The only non-zero component of angular momentum density is 

1 wr2 

= 2rca' -{ W2r4 4>2 + (1- w2r2)(1 + 4>2r2)} t 

1 r(w2r2 _ B2)t 

= 2rca' (1- w2r2)t . 
(33) 

For a segment of string r1 < r < r2, equation (33) integrates to 

1 { (1 +B2 - 2w2r2) 
Jir 1 -,>r2) = 4rca'w2 iCB2-1)arcsin 1-B2 

_(w2r2 _ B2)t(1_w2r2)t} I:: . (34) 

In (32) and (34), if r passes through its minimum value r min = Blw, the expressions 
must be evaluated in two pieces, namely, E(r1 -,>r2) = E(rmin-,>rl)+E(rmin-,>r2), and 
similarly for Jz. 

For the purposes of determining Chew-Frautschi plots, the mesons of the type 
shown in Fig. 3b in their asymptotic limit and the glueballs of Fig. 3c can be dealt 
with together. Consider a string configuration with N cusps separated by equal 
angles of 2rcl N. For each string segment we have 
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B = 1 -2IN. (35) 

Using (32), (34) and (35) we obtain the total energy and angular momentum for the 
configuration as 

Eliminating OJ gives the straight Chew-Frautschi plot 

J = {a'/4(1-N- 1)}E 2 • 

(36a, b) 

(37) 

The energetically most favourable configuration is that with the greatest slope of 
the Chew-Frautschi plot. For the glueballs this will be the N = 2 case consisting 
of two straight strings lying along the same diameter. This configuration has been 
suggested previously (see e.g. Marinov 1977) and has a Regge slope ta'. Since the 
directions of colour flux in the two strings are anti parallel, it is possible that the 
two strings will annihilate each other making the glue ball extremely unstable. This 
is not the case for the N = 3 glueball shown in Fig. 3c. For this glueball the Regge 
slope is ia'. 

For the exotic mesons of the type in Fig. 3b, N must be even. For N = 2 the 
meson consists of a quark and an antiquark joined by two straight strings with parallel 
colour flux, and could be unstable against decay into the usual string meson in which 
the quarks are joined by a single string. The next least energetic meson of this type 
is the N = 4 configuration shown in Fig. 3b. For this meson the Chew-Frautschi 
plot has an asymptotic slope of ta'. 

A second type of exotic meson, that shown in Fig. 3a was considered in Section 3 
and it was pointed out that the number of quarks or antiquarks is restricted to be 
n = 4, 5, 6 or 7. In Table 1 we list the values of parameter x determining the position 
of the junction for each of these values. We also list the asymptotic slope of the 
Chew-Frautschi plot for each configuration calculated from (32) and (34), taking 
the quark masses to be zero. For the larger values of n the straight string segments 
are negligible and the asymptotic slopes approximate those for mesons of the type 
discussed in the previous paragraph. We note also that the asymptotic slopes are 
larger for the Fig. 3a mesons indicating that their energy is lower for a given angular 
momentum. 

5. Conclusions 

We have studied some possible rigidly rotating hadrons arising from the action 
(21), separate from those considered previously by Kikkawa et al. (1979). For these 
hadrons we have determined classical straight line Chew-Frautschi plots for the 
limit of high energy and angular momentum. 

This is by no means an exhaustive list of hadrons which can be constructed from 
the planar solutions (20), though other configurations are generally too complex to 
be likely candidates for genuine particles. 

We have yet to address the question of classical stability for these hadrons, that 
is, whether changes in the solutions remain small at all times given small changes in 
the initial conditions. Whether the exotics we have discussed above are observable 
or not will depend on their quantum mechanical stability and how they decay. 
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One might try a quantum mechanical treatment of these exotics using WKB approx
imations to the Feynman path integral about the classical solutions. By investigating 
the classical stability of these hadrons we can determine whether such an attempt 
could be fruitful. 

Note added in proof 

Equation (20) describing the shape of the planar string solution in polar coordinates 
can also be written as 

() - const' = --arccos - --arccos . I-B (r2-B) I+B (r2+B) 
2 r(1-B) 2 r(1 +B) 

This is the equation of a hypocycloid, that is, the locus of a point on the circumference 
of a circular cylinder as it rolls without slipping on the interior of a larger circular' 
cylinder. 
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