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Abstract 

For a free Dirac electron, the Heisenberg equations define an internal dynamical system in the rest 
frame, isomorphic to a finite three-dimensional oscillator with a compact SO(5) phase space, such 
that the spin of the electron is the orbital angular momentum of the internal dynamics (Barut and 
Bracken 1980, 1981a). In the present work, the change in this internal dynamics due to an external 
magnetic field is studied. In order that the internal motion can be distinguished from the centre of 
mass motion, the solutions of the corresponding Hamilton and Heisenberg equations for the relativis
tic classical motion and the relativistic quantum mechanical spinless motion are also presented. 
The solutions for the electron exhibit the effect of the spin terms both in the internal motion and 
external motion, and we are able to identify the properties of the Zitterbewegung in the external field. 

1. Introduction: External and Internal Dynamical Variables 

In earlier work, we have presented an interpretation of Dirac's equation for the 
free electron (Barut and Bracken 1980, 1981a). It is the relativistic wave equation 
describing a quantum system with the internal dynamics of a compact three-dimen
sional quantum oscillator-the Zitterbewegung (Schrodinger 1930; for other work 
and references on the Zitterbewegung see Barut and Bracken 1981a and Guth (962). 
The energy and the orbital angular momentum of this oscillator define the rest mass 
energy and spin of the electron, that is, of the system as a whole, in the rest frame 
of its centre of mass (c.m.). 

There are two coordinate variables x, Q and two momentum variables p, P 
involved in the description. All four are Hermitian operators on a Hilbert space. 
The operator x is interpreted as the coordinate of the charge, and p as the momentum 
of the c.m. While the existence of the second set of variables (Q, P) reflects the fact 
that there are internal dynamics as well as c.m. dynamics, the interpretation of 
Q and P has been made clear only for the c.m. frame (Barut and Bracken 198Ia), 
defined by p = O. There Q and P represent the position and momentum of the charge 
relative to the c.m. 

One of our objectives here is to identify the appropriate c.m. (or external) and 
relative (or internal) dynamical variables in an arbitrary frame, that is, with no 
constraint on p. But our main aim is to learn something of the behaviour of the 
system-in particular of the change in the Zitterbewegung, or internal dynamics
when placed in an external electromagnetic field. Because it is the coordinate x of 
the charge that performs the Zitterbewegung, radiation by the electron is intimately 
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associated with this motion in general, and we would like to understand its radiative 
and non-radiative modes. We consider what is perhaps the simplest case mathe
matically, that of a constant and uniform magnetic field. 

The dynamical behaviour is most clearly exhibited in the Heisenberg picture, as 
Schrodinger's (1930) analysis showed in the case of the free electron. Therefore we 
need to integrate the Heisenberg equations of motion in the presence of the magnetic 
field. While it is well known that Dirac's equation is exactly soluble in this case 
(Rabi1928; Pies set 1930; Huff 1931; Johnson and Lippmann 1949, 1950; Sokolov 
and Ternov 1953; Jannussis 1966), it appears that the integration of the Heisenberg 
equations has not been given explicitly before, although Schwinger (1951) solved 
related equations, expressed in terms of a proper-time variable, and derived from a 
second-order 'Hamiltonian' (see also Tsai 1978). 

Johnson and Lippmann (1949, 1950) discussed the Heisenberg equations of motion 
for this problem, and obtained a set of constants of the motion. But they did not 
complete the integration of the equations for the basic non-constant variables. Even 
when the energy eigenvectors and eigenvalues and a complete set of constants of 
the motion are known for a system, it is not trivial to obtain in closed form, as func
tions of the time, the expressions for non-constant variables (supposing such closed 
forms exist). This is already clear in the case of the free electron (Schrodinger 1930). 

Apart from determining the behaviour of the internal dynamics of the electron 
in the presence of the magnetic field, the integration of the Heisenberg equations in 
this case is also of interest if one is concerned only with the behaviour of the external 
(or c.m.) dynamics. The differences between this behaviour and that of a classical 
(relativistic) point charge in the same field are better illuminated if one works in the 
Heisenberg rather than the Schrodinger picture in the case of the quantum system 
(although some care must be exercised not to interpret too literally, in classical terms, 
formal expressions in the Heisenberg picture involving non-commuting operators). 
It is also of interest to compare the quantum mechanical behaviour of the electron 
with that of a spinless particle in the same field, to identify any spin effects on the 
motion of the c.m. We could not find in the literature the solution of the Heisenberg 
equations for a spinless charged particle in a constant and homogeneous magnetic 
field, and so we also present such a solution below. 

Many authors have discussed the Heisenberg equations for the electron in the 
case of a general external electromagnetic field, without presenting solutions. Bunge 
(1955) and Corben (1961) in particular have attempted to interpret the equations in 
terms of external and internal dynamics, as we wish to do. Both these authors 
took x- Q (in our notation) to represent the mean position (or c.m.) of the electron, 
but according to our ideas, this is only tenable for the free electron, and then only 
with p = 0, since x - Q is otherwise not free from the highly oscillatory time depen
dence associated with the Zitterbewegung. 

Feynman (1962) has remarked of some of the Heisenberg equations for motion 
in a general field that 'their meaning is not yet completely understood, if at all'. It 
seems to us that this statement remains true today. But if all variables in the descrip
tion of the electron, including the rather mysterious 'matrices' of Dirac, can be given 
a dynamical interpretation in terms of a c.m. motion and an internal motion, then 
the possibility arises of understanding the meaning of the Heisenberg equations, and 
perhaps the structure of the electron. 
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The operator algebras associated with the pairs (x,p) and (Q, P) are best compared 
if one considers side by side the Lie algebras spanned by the sets 

(x,p,L,I) and (Q,P,S, -13). (la, b) 

Here I is the unit operator, and - 13 is its analogue for the compact SO(5) algebra 
generated by Q and P, while Land S are the respective angular momentum operators. 
In the Heisenberg picture, at anyone time t, any variable from the first set (la) 
commutes with anyone from the second set (lb), and 

[/,x;] = 0, [/,p;] = 0, [/,L;] = 0, 

while 

In addition, certain constitutive and representation relations hold, in particular 

S = tf3Q 1\ P, 

Qf3 = -f3Q = ti()..2/h)P, 

{Q;, Qj} = t)..2bijl, 

Pf3 = -f3P = -2i(h/)..2)Q, 

{Pi,Pj } = (2h2 /),,2)bijl. 

(2) 

(3) 

(4) 

In equations (3) and (4), ).. is a constant with dimensions of length, being the 
Compton wavelength of the free electron, whose rest mass is accordingly 

m = h/)..c. (5) 

But the primary significance of ).. from our point of view is that it is the constant 
which characterizes the curvature of the phase space associated with the variables 
(P, Q), through equations (3) in partiCular. Its value subsequently determines, in 
the rest frame of the c.m. of the free electron, the frequency Wz (=2C/A) and energy 
eigenvalues ±thwz of the internal compact oscillator, and those energy values are 
then the rest energies of the electron, in accordance with equation (5) (Barut and 
Bracken 1981a). 
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Dirac's Hamiltonian for the electron in a time-independent magnetic field 
B(x) ( = curl A (x) ) is, in these terms, 

H = (Ac/h)P.n + (hC/A)P , (6) 

where 

n = p-eA. (7) 

Noting the relations (4), we can also write 

(8) 

which shows suggestively the internal harmonic oscillator dynamics in a factorized 
form. 

Using this Hamiltonian to determine the time derivatives of variables, we find 
in particular 

x = (Ac/h)P, 

Q = (Ac/h)(p-pn) , 

/J = (4C/Ah)Q.n, 

* = (dc/h)P /\ B, 

P = (4c/hA3)(A2n /\ S _h2 Q), 

S = (Ac/h)n /\ P, 

(9) 

indicating a complicated dynamical coupling of the two set~ of variables (1). We 
can also see with the ~elp of the anticommutation relations in (4) that 

. ihQ = -2HQ+(Ac/h)pn /\ S, 

i hP = - 2HP + (2hc/ A)n , 

ih/J = -2HP+(2hc/A)I. 

(lOa) 

(lOb) 

(lOc) 

The last of these (lOc) can be integrated at once, since H is a constant here, to give 

P(t) = (hC/A)H- 1 +exp(2iHt/h){P(O)-(hc/A)H-l} , (11) 

whatever the spatial variation of the stationary magnetic field. 
It is of course possible to introduce the dimensionless variables 

ex = (A/h)P = (2i/A)PQ, (12) 

so that H of equation (6) assumes the familiar form in terms of the well-known 
variables (ex, P) first introduced by Dirac. Using equations (4), we can write all of 
Q, P and S in terms of ex and p, which have representations in terms of 4 x 4 matrices. 
From our point of view, the introduction of ex in this way obscures the dynamical 
significance of the set of variables (lb). However, for manipulative purposes, the 
variables (ex, P) are more farpiliar and convenient, and in Section 5 we shall work 
with them and also the other familiar derived quantities 

(J = (2/h)S, (13a, b) 

translating results into terms of the variables (1) only in Section 6. 
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2. Centre of Mass and Relative Variables for Free Moving Electron 

When A = 0, we can follow SchrOdinger (1930) to obtain 

where 

;(t) = exp(2iHt/Ii);(0) = ;(0)exp(-2iHt/li) 

= (IiC/A)Q(t)P(t)H- 1 -tilic2pH- 2 ; 

p = p(O) , 

x A(O) = x(O) - ;(0) , 

;(0) = (IiC/A)Q(0)P(0)H- 1 -'J:ilic2pH-2. 
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(14) 

(15a) 

(15b) 

(l6a) 

(16b) 

(16c) 

We interpret x as the position of the charge andxA as the position of the c.m.,which 
has momentump (Barut and Bracken 1981a). Then the position of the charge relative 
to the c.m. is given by 

(17) 

It describes the Zitterbewegung, and has the associated highly oscillatory time 
dependence. From equations (4) and (6) one can see that when p = 0, Qrel does 
indeed reduce to Q. 

Turning to the momentum prel of the charge relative to the c.m., we recall that 
we have identified it as P when p = ° (Barut and Bracken 1981a), and then 

pre I = (Ii/AC)Qrel = (Ii/AC)±. (18) 

The simplest possibility consistent with that choice and proportional to the relative 
velocity of the charge is 

prel = (Ii!AC)Qrel = (-2i/AC)QreIH = P(t)-(IiC/A)H- 1p, (19) 

taking into account equations (15) and (4). 
Then we have from equation (lOb) 

and we see that 

prel = -(2i/li)preIH, 

Qrel+ {4(c2p2+m2c4 )/1i2}Qrel = 0, 

prel+{4(c2p2+m2c4 )/1i2}prel = 0, 

(20) 

(2la) 

(2lb) 

so that the relative motion is harmonic with angular frequency w determined by 

w2 = 4(C2p2 + m2c4 )/1i2 . (22) 

(We can treat p as a c-number here as it commutes with Qrel, prel and H.) 
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The commutation relations satisfied by the variables (xA,p) and (Qret,prel) are 
not simple, apart from 

(23a, b, c) 

For example, we have 

[ ] .1'. 2H - 2 S [Qrel Qrel] XAi,XAj = -InC Bijk Ak = - i, j , (24) 

where SA is the constant part of the spin operator S (Schrodinger 1930; Barut and 
Bracken 1981a): 

(25) 

Furthermore, we have 

(26) 

In particular, it is only in the rest frame of the c.m. that we see explicitly the compact 
SO(5) structure underlying the internal dynamics. Before treating the electron in a 
constant and uniform magnetic field, we consider the corresponding problems for 
a classical particle and a scalar quantum particle, in order that we can properly 
identify the relative motion in the case of the electron. 

3. Classical Relativistic Motion in a Constant Uniform Magnetic Field 

We take the field and vector potential at x to be 

B = (0, 0, B) , B const. , (27a) 

(27b) 

The classical relativistic Hamiltonian for a particle of rest mass m and charge e is 

H = c{(p_eA)2+m2c2}t 

= C{(Pl +OX2)2+(P2-0Xl)2+p~+m2c2}t, 

(28a) 

(28b) 

where 0 = -teB and p is the canonical momentum conjugate to x. The first set of 
Hamilton's equations gives 

(29a, b) 

where X± = Xl ±iX2 andp± = Pl ±ip2' while the second set gives 

(30a,b) 

Since H is constant, equations (29) and (30) are readily solved to give 

X±(t) = -t{x±(O) +iO-1p±(0)} 

+texp(+ 2i Oc 2 H -It){X±(O) ±i O-lp±(O)} , (31a) 
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P±(t) = t{p±(O) ±iOx±(O)} 

+t exp(±2i Oe2 H -tt){P±(O) =ti Ox±(O)} , 
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(31 b) 

(31c, d) 

For the components of the gauge-independent kinetic momentum operator 1t of 
equation (7), we then have 

1l:±(t) = P±(t) =tiOx±(t) = exp(=t2i Oe2H- It) 1l:±(0) , 

1l:3(t) = P3(t) = 1l:3(0). 

We note that 

(32a) 

(32b) 

(33) 

so that P± ± i Ox ±, like P3 and H, are also constants of the motion. Another constant 
is the third component of the canonical angular momentum vector in this gauge: 

(34) 

(In other gauges L3 as defined would not be constant; see Tassie and Buchdahl 1964 
for a general discussion.) However, only four of these five constants are fundionally 
independent, because 

H 2_e2(p+ +iOx+)(p_ -iOx_)-e2p~-m2e4+40e2L3 = O. (35) 

It is convenient (cf. Landau 1930) to introduce, in place of (X1;PI) and (X2,P2)' 
the canonically conjugate pairs (XL,PL) and (XL' PL), where 

Then we get 

XL = !(X2 _-O-lpl)' 

XL = t(X2 + O-lpl) ' PL = P2- 0Xl' 

(36a) 

(36b) 

(37) 

The variables XL and PL can at once be seen to be constants and, with P3 and H, 
form a convenient set of functionally independent constants. The constants of equa
tions (33) can be expressed in terms of (xvPL) as 

(38a, b) 

and then L3 can be expressed in terms of Xv Pv P3 and H via (35). 
The motion described by equations (31) is helical about the fixed field line which 

has Xl and X2 coordinates equal to PL/20 and -XL respectively. The radius r of the 
helix is constant and given by 

(39) 

The pitch of the helix (i.e. the distance between successive windings) is constant and 
equal to 1l: Ip3/0 I. The particle moves with constant speed v given by 

(40) 
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and the speed parallel to the field v II and the speed perpendicular to the field v J. 

are also constant, given by 

VII = e2p3 H -1 sign(B) , 

The angular frequency w is constant: 

(4la,b) 

(42) 

which is smaller in general than the nonrelativistic angular frequency I eB 11m 
(=21 o 11m), since equations (28) imply H ~ me2. The motion is clockwise (anti
clockwise) about the direction of the field if e is negative (positive). 

4. Motion of Scalar Quantum Particle in Same Field 

The Hamiltonian operator H is taken to be given by equations (28), where x 
and p are now Hermitian· operators satisfying the canonical commutation relations 
at anyone time. (We work in the Heisenberg picture.) Then H is Hermitian and 
H ~ me2 • 

For a general vector potential A(x), it is not clear how one could evaluate the 
commutators of x and p with H as in equation (28a), in order to determine the 
Heisenberg equations of motion. In the case at hand, one can proceed by making 
the change of canonical variables as in equations (36), leading to H as in (37). 

Then it is clear that Xv PL' P3 and H are constants, just as in the classical case. 
Equations (38) and hence (33) remain valid, and L3 in (34) is also constant, but (35) 
is now replaced by 

H2-e2(pt+402xt+p~+m2e2)+40e2L3 == o. (43) 

Now H in equation (37) can be written in the form 

H = e{41 0 I h(ata+t)+p~+m2e2}!-, (44) 

where at and a are the usual (boson) raising and lowering operators for the 'number 
operator' N (=ata): 

a = tlhOI-t(PL -2iIOIXL), at = tI/WI-t(PL +2iIOIXL), (45a) 

Na = a(N -1), Nat = at(N + 1). (45b) 

Then it follows that 

aH= c{410Ih(N+1-)+p~+m2e2}ta = Ka; 

K = (H2 +410 I he2)t. 

From the definition (45a) of a we have then 

so that 

ih(FL -2iIOIXL) = [(PL -2iIOIXL ),H] 

= (K-H)(PL -2iIOIXL)· 

(46a) 

(46b) 

(47) 

(48) 
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Since K is a function of H and hence, like H itself, is a constant, we have at once 

Similarly (or by Hermitian conjugation) we have 

PL(t) +2i 1 0 1 XL(t) = {PL(O) +2i 1 0 1 XL(O)} exp{ -ih-1(H-K)t}. (50) 

If 0 is positive, equations (33), (36), (49) and (50) imply 

x+(t) = Hx+(O) -iO- 1p+(0)} 

+!-exp{ih-1(H-K)t}{x+(0) +iO-1p+(0)} , (5Ia) 

p+(t) = Hp+(O) +iOx+(O)} 

+!exp{ih-1(H-K)t}{p+(0) -iex+(O)} , (5Ib) 

x-(t) = Hx-(O) +iO-1p_(0)} 

+ Hx-(O) -i 0-lp_(0)} exp{ -ih-l(H -K)t}, (5Ic) 

p-(t) = !{p_(O) -iOx_(O)} 

+Hp-(O) +iOx_(O)}exp{ -ih- 1(H-K)t}" (51d) 

We also have 

(52) 

where P3 is constant, so that 

pit) = piO). (53a, b) 

Equations (51) and (53) are to be compared with the classical results (31). Note 
that the operator appearing in the exponent in (51) is 

h-l(K-H) = h-l{(Hz+410IhcZ}~-H} 

= h- 1H {(l +4101 hcZH-Z)!--I} 

= 210IczH-l_2hOzC4H-3+ .... , (54) 

which is to be compared with the classical angular frequency 2101 CZ H -1 in (31a) 
and (3Ib). The expansion in (54) is only valid if 

(55) 

and, since H ~ mcz, a sufficient condition is 

(56) 

For the spin 0 pion, this condition is satisfied for 1 B 1 < I· 6 X 1018 G, which 
is certainly true for fields produced in the laboratory where 1 B 1 ;5 106 G (Garstang 
1977). Then the second term in the series (54) is extremely small compared with 
the leading term, while higher order terms are completely negligible. 
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It would appear from a comparison of equations (31) and (51) that the principal 
quantum effect is to change the angular frequency of the helical motion at a given 
energy from 2181 c2H- 1 to h-1(K-H) (::::::218 I c2H-l_2h82c4H-3 for weak 
fields). However, such reasoning is misleading. In the first place, when the energy 
is definite the system is in a stationary state and the expectation values of all the 
variables x+, x_ etc. are constant. We need to consider a superposition of states 
corresponding to different energy values if we are to see any non-stationary effects 
at all, and in such a superposition the interpretation of equations (51) is not so clear. 
In the second place, we can easily obtain, in addition to (47), the result 

H(PL-2iI8IXL) = (PL -2iI8IX1JG; 

G = (H2_418Ihc2)t, 

and thence for 0 > 0 that, in place of equation (51a) for example, 

x+(t) = t{x+(O) -i8- 1p+(0)} 

+t{x+(O) +i 8-1p+(0)} exp{ih-l(G- H)t} . 

Now for weak fields in particular we have 

h-l(H-G) = 218Ic2H-l+2h82C4H-3+ ... 

=f. h- 1(K-H). 

(57a) 

(57b) 

(58) 

(59) 

Thus a naive interpretation of the results (51) is that the frequency of the motion is 
decreased, while the same reasoning applied to the results in a form like (58) would 
suggest that the frequency is increased. This highlights the dangers of trying to 
interpret results like (51) too literally in classical terms. 

We prefer to write the solutions of the Heisenberg equations in the form (51) 
rather than (58), because K is always a well-defined Hermitian operator, whereas G 
is not when the condition (56) is violated (that is, for very strong fields). However, 
for reasons of notational and manipulative convenience, it is advantageous to work 
formally with (in place of G and K) 

(60) 

whatever the sign of 8. Then equations (51) can be replaced by (for either sign of 8) 

x±(t) = t{x±(O) =Fi8- 1p±(0)} 

+1 exp{ih-l(H - H ±)t }{x±(O) ±i 8-1p±(0)} , 

P±(t) = t{p±(O) ±i8x±(0)} 

+1exp{ih-1(H-H±)t}{P±(0) =Fi8x±(0)}. 

For the kinetic momentum we then have from equations (61) and (53) 

n±(t) = exp{ih- 1(H-H±)t}n±(0), 

to be compared with (32). 

(61a) 

(61b) 

(62a, b) 
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The basic dynamical variables in this problem are most conveniently taken to be 
XL> PL' X3' P3' a and at. Eigenvectors of N (=ata) can be constructed by introducing 
a normalized vacuum vector 10), which is annihilated by a(O): 

In) = (n!)-~{at(OWIO), n = 0,1,2, .... (63) 

These vectors I n) must be labelled also by eigenvalues of some other operators (such 
as PL and P3) which together with N form a complete set of commuting operators. 
Thus we can define vectors In, kL> k3), where n = 0,1,2, ... , - 00 < kL> k3 < 00, 

with 

PLln,kL,k3) = kLln,kL,k3)' 

P3In,kL,k3) = k3In,kL,k3)' 

and hence from equation (44) 

5. Motion of Dirac Electron in Same Field 

The Dirac Hamiltonian H of equation (6) satisfies 

(64a) 

(64b) 

(64c) 

(65) 

(66) 

so that H2 ~ m2c4 • In this case however, H is not positive definite: positive and 
negative energies appear symmetrically on either side of the gap of width 2mc2 • 

If we again make the change of variables as in (36), having chosen the potential 
as in (27), we find 

(67) 

and it is at once evident that XL and PL (and so by equations 38, P± ±i (:Ix±) are again 
constants of the motion, together with Hand P3' 

Also constant is J 3 , the third component of the total (canonical) angular momentum 
vector in this gauge: 

(68) 

where O(± = 0(1 ±i0(2' There are further constants associated with the spin degrees 
of freedom (Johnson and Lippmann 1949, 1950), in particular (i) the zeroth and 
third components of the polarization four-vector 

~ = 15ft +mcf3cr, (69a, b) 

which satisfy 

(70a, b) 

(ii) the third component of the vector T, 

T = 13ft /\ cr , (71) 
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which satisfies 

(72) 

and (iii) the third component of the vector G, 

G = mea +i 1'5 P1t 1\ a, (73) 

which satisfies 

(74) 

(In the notation of Johnson and Lippmann (1949, 1950) (0 = lie, (3 = Lie and 
T 3 = Tic; they did not discuss the constant G 3. Note that in the free particle case, 
when 1t = p, then (0 and all components of J, ~, T and G are constants.) 

These constants are not all functionally independent, and in particular (cf. 
equation 43) 

(75a) 

(75b) 

We turn now to the solution of the Heisenberg equations of motion for the non
constant operators. Using H as in (67) we get 

[XvH] = ihccx2 , [PL,H] = -2iOhccx1, (76a) 

[cx1,H] = -2Hcx1 +40eXL, [cx2 ,H] = -2Hcx2+2ePLo (76b) 

We now introduce (cf. equations 60) 

(77) 

Just as in the scalar case, one or the other of these operators-depending on the sign 
of O-is not a well-defined Hermitian operator if the field is so strong that the 
inequality (56) is violated. (For an electron, the critical field strength is 2 0 2 x 1013 G.) 
However, the introduction of these operators is very convenient for formal manip
ulation. Any of the results we obtain which involve H ± can be re-expressed, if 
necessary, in terms of the operator 

H(1 +41 01 hc 2 H -2)t, 

which is always well-defined. Next we define 

Noting that 

U± = {-c(PL +2iOXL) +ti(H-H±)cx±}H-1 

= {Ocx± ±icP± +ti(H-H±)cx±}H-1, 

V± = {-c(PL +2iOXL) +ti(H+H±)cx±}H-1 

= {Ocx± ±icP± +ti(H+H±)cx±}H-1. 

(78) 

(79a) 

(79b) 

(80) 
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we get from equations (76) 

(81) 

or, equivalently, 

(82) 

and 

(83) 

or 

(84) 

It follows from (82) and the definition (77) of H ± that U ± is an operator which 
shifts one eigenvector of H into another without changing the sign of the energy. 
On the other hand, equation (84) shows that V ± not only shifts the energy, but also 
changes its sign. In the language used by Schr6dinger (1930) and others since, U ± 
is an even operator and V ± an odd operator. 

Now equation (82) says U± H = H(1 ±4()hc2 H- 2 }tU±, and hence 

U ± H(1 +4()hc2 H -2}!-

= H(1 ±4()hc2H- 2}!-{1 +4()hc2 H- 2(1 ±4()hc2H- 2)-1 }tu ± = HU ±, 

that is 

Similarly, we get 

HV± = -V±H"+. 

From the definitions (79), and using (82) and (84)-(86), we see that 

±ict± = (H±)-l(U±_V±)H= U±+V±, 

2«()cx± ±icP±) = (H±)-l{(H+H±)U±-(H-H±)V±}H 

= (H+H±)U± +(H-H±)V± 

= U±(H+H"+)+ V±(H-H.f ). 

It then follows that we can also write 

U± = H- 1 {()cx± ±icP± +!ict±(H-H"+)}, 

V± = H- 1 {()cx± ±icP± +tict±(H+H"+)}, 

(85) 

(86) 

(87) 

(88) 

(89a) 

(89b) 

so that U ± and V ± are the Hermitian conjugates of U"+ and V"+ respectively. 
Now from (81) and (83) we have 

and so 

(90a, b) 

U±(t) = exp{ih- 1(H-H±)t} U±(O) = U±(O)exp{ -ih-1(H-H"+)t} , (91a) 

V±(t) = exp{ih-l(H+H±)t} V±(O) = V±(O)exp{ -ih-1(H+H+)t}. (91b) 
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Noting equations (87), (88) and (33) we can then deduce the time dependence of 
x±, P± and IJ(±: 

x±(t) = Hx±(O) +iO-1p±(O)} +(lj4cO)(H+H±) U±(t) +(lj4cO)(H-H±) V±(t) 

= t{x±(O) +iO-1p±(O)} 

+t{l +H(H ±)-l} exp{ili-l(H -H±)t} 

x {x±(O) ±iO-1p±(O) + (ij2cO)(H-H±)IJ(±(O)} 

+t{l-H(H±)-l} exp{ili-l(H + H ±)t} 

x {x±(O) ±iO-1p±(O) + (ij2cO)(H+H±)IJ(±(O)} , 

P±(t) = Hp±(O) ±iOx±(O)}+(ij4c)(H+H±) U±(t)+(ij4c)(H-H±) V±(t) 

= Hp±(O) ±iOx±(O)} 

+t{l +H(H±)-I} exp{ili-l(H -H±)t} 

x {p±(O) +iOx±(O) -(lj2c)(H-H±)IJ(±(O)} 

+t{l-H(H ±)-l} exp{ili-l(H + H ±)t} 

x {P±(O) +iOx±(O) -(lj2c)(H+H±)IJ(±(O)}, 

1J(±(t) = +i{U±(t)+ V±(t)} 

= (H±)-lexp{ili-1(H-H±)t}{t(H± -H)IJ(±(O) +iOcx±(O) +cP±(O)} 

(92) 

(93) 

+(H ±)-lexp{ili-1(H + H ±)t}U(H ± + H)IJ(±(O)±i Ocx±(O) - cp±(O)}. (94) 

We also have, using equation (67), 

from which we get by successive integrations 

xit) = X3(O) +tilic{H-11J(3(O)-cpiO)H- Z }+CP3(O)H- l t 

(95a, b) 

(95c) 

-tilicH-1 exp(2ili-1Ht){1J(3(O)-CP3(O)H -I}, (96a) 

pit) = P3(O) , (96b) 

1J(3(t) = cP3(O)H- 1 +exp(2ili-1Ht){1J(3(O)-CP3(O)H- 1 }. (96c) 

In comparing solutions (92), (93), (96a) and (96b) with those for the scalar particle 
(equations 31), we see in particular that the last of the three contributions to x ± (t), 
and to P±(t), and the last of the four contributions to x 3(t) have no counterpart in 
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the earlier cases. These are 'Zitterbewegung' terms, and are characterized by angular 
frequencies of the order of magnitude 2me 2 Iii. The other contributions are either 
non-periodic, or are characterized by angular frequencies of the order of magnitude 
I eB 11m. For very strong fields, these frequencies become comparable (cf. the in
equality 56), but the Zitterbewegung terms are further distinguished by the fact that, 
just as for the free particle, they are all odd operators, anticommuting with the sign 
of the energy H(H2)-t. Thus the operator cx3(O)-epiO)H-1 anticommutes with 
H, while the Zitterbewegung terms in x ± and P ± are those involving the odd operators 
V ±. These terms would therefore make no contribution to the expectation values 
of x±, P±, X3 and P3 in positive energy states. However, they do have observable 
effects, and will contribute to the expectation value of, for example, x + P _ in such 
states. 

The even parts of x± and X3 show a time dependence similar to the variables 
X± and X3 for the scalar particle, so the appearance of the exponent ili- 1(H-H±)t 
in place of the classical exponent =+= 2i Be2 H -1 t can be called a quantum effect, which 
is not influenced by the presence or absence of spin. 

Since all dynamical variables for the electron can be constructed from x, p, r:t 
and f3 (see equation 11), we can now determine the time dependence of any variable 
we choose. In particular, we could consider the motion of the spin and magnetic 
moment operators in the field, but that is an interesting story in its own right which 
we have considered in part elsewhere (Barut and Bracken 198Ib). 

From a dynamical point of view, the variables XL> PL' X3, P3' U+, U_, V+, V_, 
CX 3 and f3 are more fundamental than x, p, r:t and f3 in this problem. In particular, 
U +, U _, V + and V_replace the a and at appearing in the corresponding problem for 
a scalar particle. One could define energy eigenvectors by applying these shift operators 
to suitably defined 'vacuum' states with energy ± me2 , but we shall not pursue this 
matter here. 

6. Centre of Mass and Relative Variables for an Electron in the Magnetic Field 

From the form of the solutions (92) and (96a) for x(t), it is clear how to distinguish 
a c.m. or mean position xA(t) and a relative position Qrel(t) for the electron in the 
field. We take 

XA±(t) = !{x±(O) =+=i B-1p±(O)}+ (1/4eB)(H+H±)U±(t), (97a) 

XA3(t) = X3(O) +tilie{H-lcx3(0)-epiO)H-2} +ep3(O)H- 1t, (97b) 

Q,±l(t) = (l/4eB)(H-H±)V±(t), (98a) 

Q;el(t) = -ti lieH- 1 { cx3(t)-ep3(0)H- 1 }. (98b) 

Then, as for the free particle, the position of the charge is given by 

(99) 

and X A behaves similarly to the position operator of a scalar particle (cf. equations 
53a and 6Ia), while Qrel is highly oscillatory, even for vanishingly weak fields. It 
can be shown that as I B I -t 0, these operators reduce to those of (15) and (17). 
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Since the canonical momentum p is not defined in a gauge-invariant way, we do 
not attempt to identify a corresponding c.m. canonical momentum. Instead, we look 
at the kinetic momentum, which according to (92), (93) and (96b) has the form 

n±(t) = P±(t) =Fi8x±(t) 

= =F(i/2e)(H+H±)U±(t)=F(i/2e)(H-H±)V±, 

n3(t) = pit) = n3(0). 

(lOOa) 

(lOOb) 

We see that, in contrast to the case of the free electron where net) = pet) = nCO), 
the components n ± contain Zitterbewegung terms involving V ±, as well as terms 
involving the even operators U ±. These Zitterbewegung terms vanish as I B I --+ O. 
For the kinetic momentum nA of the c.m., we take the even part of n, giving 

Turning to the relative momentum, we see that the simplest identification consistent 
with our choice for the free particle is, as in (18), 

Then from (90b) and (98) we get 

pr;/ = =F(ih/,l.)V±(t), 

(102) 

(l03a, b) 

Summarizing these identifications, in terms of x, p, Q, P and 13, we have the c.m. 
variables 

xA±(t) = U:+H(4H±)-1}X±(t) ±i8-1{t-H(4H±)-1}P±(t) 

- (he/ ,l.)(H ±) -1 f3(t)Q±(t) 

= xA±(O)-Hl +H(H ±)-1 }[1-exp{ih-1(H -H±)t}1 

x {x±(O) ±W-1p±(0) ±(1/e8,l.)(H - H ±)f3(O)Q±(O)}, 

x A3(t) = x 3(t) - {(he/,l.)Q3(t)f3(t)H -1 -ti he2p3(0)H - 2} 

= XA3(0) + ep3(0)H-1t , 

nA±(t) = t(H + H ±){P±(t) =Fi 8x±(t) -(Aj2eh)(H - H ±)P ±(t)}H-1 

= exp{ih-1(H-H±)t} nA±(O) , 

nA3(t) = P3(0) , 

and the relative variables 

(104a) 

(l04b) 

(105a) 

(l05b) 

(106a) 
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Q;e'(t) = (hC/A)Q3(t)P(t)H- 1 -tihc2p3(0)H- 2 

= exp(2i h -1 Ht) Q;el(o) , 

r:tl(t) = HI + H(H ±)-l}p ±(t) -(hC/A)(H ±)-1 {P±(t) =t=iOx±(t)} 

= exp{ih- 1(H+H±)t} P,±'(O) , 

p;el(t) = P3(t) -(hc/A)H -lp3(0) 

= exp(2ih -1 Ht) p;el(o). 
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(l06b) 

(l07a) 

(l07b) 

The c.m. variables describe a motion of the same general form as that for a scalar 

particle in the same field. In comparing the relative motion with that for a free 

electron, we see that the major effect is to replace the exponent 2i h -1 Ht in the time 

dependence of the components Q';' and P ,±' for the free particle by the exponent 

(108) 

for weak fields (cf. equation 54). At low energies where H2 ~ m 2c4 , the effect is, 

roughly speaking, to modify the Zitterbewegung frequency Wz (=2mc2/h) by plus 

or minus the cyclotron frequency 2fJ/m (=eB/m). However, the precise interpretation 

of operator expressions like (106) and (107) can properly be determined only by 

consideration of the time dependence of expectation values. 

7. Further Remarks and Applications 

The method we used here can in principle be applied to other types of external 

fields. The Heisenberg equations define the quantum or operator analogue of a 

classical dynamical system. For most external fields, for example an external Coulomb 

or constant electric field, the system will be nonlinear. It would be very interesting 

to see if the remarkable properties of nonlinear dynamical systems, such as limit 

cycles, the onset of stochasticity, strange attractors etc. also occur in the quantum 

case for the electron. From the point of view of quantum electrodynamics, it would 

be important to study the Zitterbewegung in the presence of the self-field of the electron 

in order to calculate the radiative effects. 

As for applications, our solutions for x(t) can be used together with a radiation 

formula to calculate transition probabilities in external magnetic fields, in analogy 

with the calculation of the Einstein A coefficients by this method (Barut 1979). 
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