
Aust. J. Phys., 1982, 35, 377-83 

GDR Contribution to Coulomb Excitation. lilt 
180 

F. C. Barker 

Department of Theoretical Physics, Research School of Physical Sciences, 
Australian National University, P.O. Box 4, Canberra, A.C.T. 2600. 

Abstract 

The discrepancy between the values of B(E2) for the transition between the ground and first excited 
states in 180 as obtained from Coulomb excitation measurements and from other measurements 
is here attributed to the giant dipole resonance (GDR) contribution to Coulomb excitation; an 
estimate based on shell model calculations predicts this contribution to be much larger than previously 
assumed. 

1. Introduction 
Ball et al. (1982) have recently made an accurate measurement of the lifetime of 

the 2+ first excited state of 180 using Doppler broadened lineshape analysis (DBLA). 
They point out that values of B(E2; 0+ --+2+) obtained in Coulomb excitation measure
ments on 180 are about 15 % lower than the value corresponding to their lifetime. 
As a possible explanation for part of this discrepancy, they suggest that the GDR 
contribution to Coulomb excitation may be larger than the value assumed (k = I). 
Here k is the ratio of the GDR contribution to the value calculated from the hydro
dynamic model, as empirically renormalized by Levinger (1957). A complete expla
nation of the discrepancy would require k .~ 3, but Ball et al. do not envisage k ~ I· 5. 

Large values of k have been measured in other light nuclei: k = 2· 6-3 . 9 in 6Li 

(Disdieretal.1971; Hausseretal.l973; Gemmekeetal.I978),k = 2'3-3'6in 7Li 

(Hausser et al. 1973) and k = 5·7±0·4 in 170 (Kuehner et al. 1982). Shell model 
calculations (Barker 1982a, 1982b, here referred to as Parts I, II) have also given 
values of k appreciably larger than unity for these nuclei, although smaller than the 
experimental values, namely k ~ 1'9, 2· 3 and 2·6 for 6Li, 7Li and 170 respectively. 

We here present an estimate of k for 180, based on shell model wavefunctions for 
the 0+ ground state and 2+ first excited state. Suitable wavefunctions, which use 
as basis states both two-particle states (relative to a closed 160 core) and four-particle 
two-hole (collective) states, have been given by Lawson et al. (1976, here referred to as 
LSF). LSF obtained the expansion coefficients by fitting data which included E2 
transition rates and static moments. In the fit, values of E2 matrix elements were 
needed for both single-particle and collective states, and these were constrained by 
using experimental data from 160, 170 and 2°Ne. The calculation of k involves 
matrix elements of an operatortrP, analogous to the E2 operator but derived from 
the E 1 operator in second order; we proceed as far as possible in the spirit of LSF 
by using experimental values of the matrix elements of (92 where available. 

t Part II, Aust. J. Phys., 1982, 35, 301-6. 
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2. Formulae and Procedures 

Notation and formulae are taken from Hausser et al. (1973) and from Parts I and 
II, with the initial state 1 i) == 10) and the final state 1 f) == 12). The parameter k 
is defined by 

k=X/Xo , 

where the unit Xo for 180 is 

Xo = 0·001305 eMeV- 1 • 

The quantity X can be written 

(1) 

(2) 

(3) 

as in Part I. This can be taken as a definition of the energy Eg, irrespective of the 
distribution of EI strength from the ground state, but the assumption that this energy 
is given by 

(4) 

where an is the nth moment of the photonuclear cross section, is biised on the argument 
that the EI strength is concentrated in the GDR region, and then equation (4) is 
exact only if there is a perfect giant dipole state. Also, we have 

R(E2; 0+ -+2+) = 1(0 1I..It(E2) 112)1 2 • (5) 

The wavefunctions of the ground and first excited states are written as in LSF: 

10) = al(d~/2)o+az(si/2)O +a3 Po, (6a) 

12) = bl(d~/2h +b2(d s/2 Sl/2h +b3 P 2 +bid S/2 d3/ 2)2 +bs(d3 / 2 Sl/2h, (6b) 

where Po and P 2 are collective states. LSF give values of the coefficients ap and bp 

for various fits to the experimental data. 
We write 

3 S 

(0 1I..It(E2) 112) = L L apbqMpq, (7a) 
p=l q=l 

3 S 

(0 II £V2 112) = L L apbq Ow (7b) 
p= 1 q= 1 

Three types of matrix element Mpq (and Opq) are required: matrix e)ements like 
Mu connecting two-particle states, those like M 13 connecting a two-particle state 
with a: collective state, and M33 connecting collective states. We consider separately 
these three types of matrix element. 

Matrix Elements Mpq and Opq connecting Two-particle States 

Since the centre of mass of the nucleus has been taken as the origin of coordinates 
in defining the operators ..It(EA., p) (see Part I, equation 3), both ..It(E2, p) and £V2(p) 
contain one- and two-body parts when written in terms of coordinates relative to 
the centre of the potential well, being of the form 

..It = L ..It(i) + L ..ItO, j) . (8) 
i i<j 
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Contributions to Mpq and Opq from A(i) occur only when i refers to a (d, s) nucleon, 
and those from A(i,}) when i refers to a (d, s) nucleon andj to a p nucleon, or vice 
versa. Thus, one can write 

A = L A(i), (9) 
i 

where i refers to a (d, s) nucleon only. Then the matrix elements Mpq and Opq can 
be written simply in terms of matrix elements <XF IIA(E2) II Xj) and <XF II m2 II Xj) 
taken between (d, s) single-particle states. LSF obtained values of <XF IIA(E2) II X) 
for j and j' equal to t or ! by fitting the experimental values of QS/2+ and 
B(E2; ! + ----+t +) for 170, and we do likewise. Assuming the same radial wavefunction 
and effective charge for the d3 / 2 orbit as for the d S/ 2 orbit, LSF expressed the matrix 
elements for j or j' equal to t in terms of those already obtained. We assume the 
same relations, although these can be derived only for those parts of the 170 wave
functions given in Part II that do not involve core excitation. This should be suffi
ciently accurate, since the coefficients b4 and bs of the states containing d 3 /2 nucleons 
are small. The same approach is used for <XF II m2 II Xj)' The calculated value of 
<XS/2 11m2 IIXl/2) in Part II led to k ~ 2·6 for 170, whereas Kuehner et al. (1982) 
measured k ~ 5·7. We therefore take <XS/2 II m2 II Xl/2) to be 2·2 times the calculated 
value. Also, we calculate <XS/2 II m2 II XS/2) by the method given in Part II, using 
values of the radial integrals and expansion coefficients given there, and assume 
that we should likewise enhance this value by a factor of 2·2. 

Matrix Elements Mpq and Opq connecting a Two-particle and a Collective State 

Since the collective states are four-particle two-hole states, only the two-body 
parts of the operators A(E2) and m2 contribute to these matrix elements. LSF 
neglected recoil in their E2 operator, which was therefore one-body only, and so did 
not have matrix elements of this type. There is no obvious way of deriving them 
from experiment. We therefore calculate them, and for this purpose take the descrip
tion of the collective states as given by equations (14) and (15) of LSF, which we 
write as 

Then we obtain for these matrix elementst 

where 

C = -74l9(35rr)-te<lp: r: Id){<Ip : r: Id)-(lO)t<Ip: r: 2s)}, (12) 

and 

(13) 

Values of the radial integrals <I p : r : I d) and < I P : r : 2s) are taken from Part II. 

t The reduced matrix element used here is as defined in Part I, and is (2J' + 1)'/2 times that used 
in LSF. 
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Matrix Elements M33 and 0 33 connecting Collective States 

LSF assumed that the value of M 33 == (IP ° 11.1(£2) II IP 2) should be similar to 
those of the £2 matrix elements between the ground and first excited states of 2°Ne, 
and between the 6·05 and 6·92 MeV states of 160; in some fits M33 was constrained 
to lie within the limits imposed by these values, in other fits it was unconstrained. 
For each fit, LSF gave the value of M33 used. Similarly, 0 33 may be taken as the 
matrix element (IPoeONe) 11(1;211 IPi2°Ne» between the ground and first excited 
states of 2°Ne. Since this is not known experimentally, we estimate it using for 
simplicity crude wavefunctions for the 2°Ne states. If the radial integrals are renormal
ized to fit the known B(£2;0+ ~2+) value in 2oNe, the resultant value of 0 33 should 
be insensitive to the choice of 2°Ne wavefunctions (as in Part I). We use T = 0 
states of the lowest configuration and lowest seniority: 

(14) 

Then we find 

(IPoeONe) 11.1(£2) II IP2eONe» = - ~ ~(21t)-te{(ld: r2 : Id)+ 97s(lp: r: 1d)2} , 

(15a) 

(IPoeONe) II (!,I 2 II IPi2°Ne» = -~1t-1(15)-te2{(ld: r2: 1d)-i-(lp: r: 1d)2}. 

(15b) 

Following the procedure in Part I, and using a value of (lp : r: 1d) taken from Part 
II, we choose the value of (ld: r2 : 1d) in equation (15a) to fit the experimental 
value of B(£2; 0+ ~2+) for 2oNe, and then use these values of the radial integrals in 
(15b), so obtaining 0 33 , The value of 0 33 does not depend sensitively on the choice 
of (lp : r : Id). 

3. Numerical Values 

Numerical values of the matrix elements Mpq and Opq are given in Tables 1a and 
1b respectively. In Table la, use has been made of the experimental values QS/2+ = 
- 2·578 e fm2 and 't'mG + ~t +) = 258·6 ps for 170 (Ajzenberg-Selove 1982), of the 
calculated values (lp: r: Id) = 2·715 fm and (lp: r: 2s) = -1, 586 fm from 
Part II, and of the value Q02 = -19·64 efm2 from the constrained II fit of LSF. 
In Table 1b, we have taken (XS/2 II (!,I2 II X1/2) = -0' 557 e2 fm2 for 170 from Part II 
and renormalized this by a factor of 2·2 to fit the experimental value k = 5·7 for 
170 (Kuehner et al. 1982). Similarly, we take (XS/2 II (!,I2 II XS/2) = - 0·425 x 2·2 e2 fm2. 
Also, we use 't'm(2+ -+0+) = 1·05 ps for 2°Ne (Ajzenberg-Selove 1978), giving 

B(£2;0+ ~2+) = 334 e2 fm4 , 

(ld: r2 : 1d) = 41,7 fm2, 

(IPoeONe) 11.1(£2) II IPi20Ne» = -18·3 efm2, 

(IPoeONe) II (!,I 2 II IPz{2°Ne» = -2·211 e2 fm2 • 

With values of ap and bp taken from the constrained II fit of LSF, we then obtain 
from equations (7) 

(011.1(£2) 112) = 3·688-0·064+2·024 = 5·648 efm2, (16a) 

(0 II (!,I 2 112) = 1·154+0·071+0·228 = 1·453e2 fm2 , (16b) 
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where in each case the contributions from the three types of matrix element are 
shown separately. 

From equation (4), with values of 0"-1 and 0"-2 for 180 taken from Woodworth 
et al. (1979), we obtain Eg-Eo = 20 MeV. Then equation (3) gives X =0·00575 
eMeV- 1 and (1) gives k = 4·4. 

Table 1. Values of matrix elements 
Units for Mpq and Opq are efm2 and e2 fm2 respectively 

q 
p 2 3 4 5 

(a) Mpq 
-2,721 -2,050 -0,083 -0,962 0 

2 0 -3·550 -0·119 0 2·899 
3 -0'034 -0,070 -19,64 -0,024 0·058 

(b) Opq 
1 -0'763 -0,707 0·091 -0·270 0 
2 0 -1,225 0'132 0 1·000 
3 0·037 0·078 -2,211 0·026 -0·063 

4. Discussion 

Woodworth et al. (1979) measured the 180 photonuclear cross sections for 
Ey ;5 42 MeV only, so that 0" -dO" -2 would be increased if appreciable cross sections 
existed at higher energies; it seems unlikely, however, that this increase would be 
more than say 20%, suggesting k ~ 3·7. 

Use of values of ap and bp given by the other fits ofLSF does not change significantly 
the values of Section 3. It is seen from equations (16) that the contributions from 
matrix elements connecting two-particle and collective states are small, so that the 
use of purely calculated values for them is unlikely to cause appreciable error in 
the value of k. Since the dominant contribution to (0 II @2 112) comes from the matrix 
elements connecting two-particle states, which were renormalized to fit the measured 
value of kin 170, it is clear that the deduced value of k for 180 is very sensitive to 
the assumed value of k for 170. In fact if k(170) is treated as a parameter and other 
values are unchanged, then we obtain 

(17) 

A defect of the values in Section 3 is that the value (16a) implies from equation (5) 
that B(E2; 0 + -+ 2+) = 31· 9 e2 fm4. Although this is reasonably close to the LSF 
constrained II value of 35 . 3 e2 fm\ which was obtained from a fit to data that inclu
ded the experimental vahle B(E2; 0+ -+ 2 +) = 37· 1 e2 fm4 obtained by Berant et al. 
(1974), it is seen from Table 2 of Ball et al. (1982) that the Berant et al. value of 
B(E2;0+ -+2+) is lower than all other experimental values, and much lower than the 
value of 47 . 6 e2 fm4 that Ball et al. took to be correct. If we merely replace the value 
(16a) for (0 1I.It(E2) 112) by 6· 90 efm2 in order to fit B(E2; 0+ -+2+) = 47· 6 e2 fm4, 
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then k would be reduced to 3· 6. It seems likely, however, that any change in the 
wavefunctions that would increase the value of <0 II v1t(E2) 112) would also increase 
the value of <0 II (!;2 112), thus leading to a value of k intermediate between 3·6 and4' 4. 

These calculations suggest that k for 1S0 should be large compared with unity, 
and probably about 4. The reason why Ball et al. (1982) regarded 1· 5 as an approxi
mate upper limit for k seems to be due to confusion regarding the meaning or definition 
of k. Many authors, including Ball et al., have taken k to be equal to 

(18) 

The denominator in (18) is the hydrodynamic model value of (J _ 2, as empirically 
renormalized by Levinger (1957) in order to fit experimental values of (J-2 for nuclei 
with A ~ 20, so that it is not surprising that k' ~ 1 for ISO; the results of Woodworth 
et al. (1979) give k' = 1· 26. But k = k' implies that the parameter tJo has its hydro
dynamic value, namely -1-11:-1-<0 II v1t(E2) 112)/ZeR~, with Ro = 1·2A 1 / 3 fm (Hausser et 
al. 1973), and it is not at all obvious that this should be a good approximation for 1S0. 

Use of k = 4 in the analysis of the Coulomb excitation measurements on 1S0 

would increase the derived value of B(E2;0+ --+2+). For example, the published 
value of 39· 0 e2 fm4 of Fewell et al. (1979) (for k = 1 and destructive interference, 
as implied by the LSF wavefunctions) would increase to 47·1 e2 fm4 for k = 4 
(Kuehner et al. 1982), in good agreement with the adopted value 47' 6 e2 fm4 of Ball 

. et al. The k = 1 value of 45·3 e2 fm4 of Flaum et al. (1977) is already consistent 
within experimental errors with the value of Ball et al., but Flaum et al. found that 
their derived value of B(E2;0+ --+2+) was very insensitive to the value of k, being 
only 0·7 e2 fm4 less for k = O. Thus, the use of k = 4 in the Coulomb excitation 
analyses would seem to make the derived values of B(E2; 0+ --+ 2 +) more consistent 
among themselves, and also with the DBLA value obtained by Ball et al. 

Changing k in the analysis of Fewell et al. (1979) also changes the derived value 
of Q2+ from -2'3efm2 for k = 1 to l'Oefm2 for k = 4 (Kuehner et al. 1982). 
The Q2+ value of Flaum et al. (1977) is more sensitive to k, and would probably 
also be near zero for k = 4. Most model calculations have given Q2+ ~ - 5 e fm2 

(see Table 1 of Fewell et al.). VoId et al. (1977) have pointed out that values of Q2+ 
near zero can be obtained with the LSF model provided the collective states belong 
to a triaxially deformed band rather than one with axial symmetry. Positive values 
of Q2+ have been predicted in calculations based on energy-weighted sum rules (Koo 
1979; Koo and Tassie 1979). 

We note that the crude wavefunctions (14) used here for 2°Ne give kCZONe) ~ 2·3 
(assuming Eg-Eo ~ 20 MeV). Such a moderately large value of k could contribute 
to the discrepancy between calculated and experimental values of Q2+eoNe), which 
was pointed out for example by Spear (1981), since the experimental values were 
based on the assumption that k = 1. 

In summary, these calculations and estimates suggest that keSO) ~ 4, which is 
sufficiently large to remove the discrepancy. between values of B(E2;0+ --+2+) for 1S0 

derived from Coulomb excitation and from other measurements. 
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