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Electron-hydrogen elastic scattering at intermediate and high energies (in the range 30-400 eV) is 
considered. The calculational method of Das is applied with improved input functions. Improvement 
is noticed in the results and, except around an energy of 100 eV, reasonable agreement is obtained 
with experiment. 

1. Introduction 

In a series of works Das and his associates reported a method of dealing with 
problems of elastic scattering of electrons by atoms at intermediate mid high energies 
(see e.g. Das 1979; Das and Biswas 1980, 1981; Das et al. 1981). Previously, a set 
of results on electron-hydrogen scattering, calculated following the method of Das, 
was published (Das and Biswas 1980) for lower energies only, namely for 20, 30 and 
50 eV, and the results were found to be very good. For very high energies the results 
are also very good. However, in the intermediate energy range, particularly at small 
angles, the results are not as good and are very similar in accuracy to the pseudo
state calculation of Fon et al. (1978). Now, with a view to improve upon the earlier 
calculation of Das and Biswas (1980), we undertake in the present work to take 
recourse in more flexible trial input functions containing more variational parameters. 
As we will see, this throws light also on some aspects of the calculational method of 
Das and suggests ways of further improving the results. 

We may recall in this context that all other well known calculational methods have 
limited applicability. Thus the EBS calculation of Byron and Joachain (1977) is 
valid only for higher energies, say above 50 eV. In this region also the agreement with 
experiment is not uniformly good at all scattering angles. The same is also true for 
the DWSBA calculation of Kingston and Walters (1980). The most recent R-matrix 
calculation of Fon et al. (1981) appears to be more successful for lower energies, 
although it seems to have only a limited validity as well. 

2. Theory 

The direct scattering amplitude in electron-atom elastic collisions may be obtained 
from the on-shell values of the T-matrix element Tis,is, the off-shell values of which 
are related to other off-shell T-matrix elements by the set of integral equations (see 
Das et al. 1981) 

(1) 
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We solve these equations approximately by a least squares method (see e.g. Das et 
al. 1981; Das and Biswas 1981). More specifically we begin by choosing an input 
set of functions (for all n), which are designated by T~:n). On substituting these in 
the RHS of equation (1), one obtains the output values for the T-matrix elements. 
The input set contains some variational parameters, which are estimated from the 
minimization of 

(2a) 

In this integral the on-shell values appear and a considerable simplification results if 
only one term in (2a) is retained (see Das and Biswas 1981); 

J 1 T\Os~?s - T~i~is 12 dQ. (2b) 

The outputs with the estimated parameters give the desired results. 
It was observed in the work of Das and Biswas (1980) that a good choice for the 

T-matrix elements is 

T~jn) = {aCE) +ib(E)}T~ (for all n), (3) 

where aCE) and beE) are two variational parameters. This calculation in which two 
variational parameters enter is termed a two-parameter calculation. 

Now we turn to the exchange amplitude, which is exactly given by (see Das and 
Biswas 1980 for notation) 

fex = -4n2 <cPex 1 Vex IljJt>· 

We note that the corresponding direct amplitude is given by 

fd = -4n2<cPr I VlljJt>· 

(4) 

(5) 

In equations (4) and (5) the same scattering state IljJt> appears. We seek an approxi
mation to this state to use in computing both the direct and exchange amplitudes. In 
the two-parameter calculation we employ the approximation 

fd;:::; -4n2 <cPf I VI(amin +ibmin)<1);), (6) 

where (amin +ibmin)cP i gives a good representation of IjJt, except at large distances 
where, of course, both V and Vex are very small. So in an approximate calculation 
offex one may replace IjJt in (4) by the above expression to obtain 

(7) 

where f:C: is the Born-Oppenheimer (BO) approximation. The result (7) is termed 
the modified Born-Oppenheimer (MBO) exchange. Further, on replacing f:C: by 
the usual high energy Ochkur (1964) approximation, one gets the Ochkur-Das (OD) 
approximation 

(8) 

In previous calculations Ochkur and OD exchange have been used and, in the present 
paper, in addition to these we have also used MBO exchange. 

The results obtained with the two-parameter calculation of the direct amplitude 
and with the Ochkur or improved OD approximation for the exchange are found to 
be good. Obviously with such a simple choice for the trial input set one cannot 
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expect the results to agree with experiment at all energies and all angles. Earlier 
calculations showed that the two-parameter results are good at both the lower and 
upper ends of the intermediate energy range, say for 20 or 30 eV and for 200 eV 
and above. Between 30 and 200 eV, however, considerable discrepancies remain. 

In the present calculation the second Born term needed is evaluated approximately 
following the procedure of Byron and 10achain (1973), with a mean excitation energy 
L1 = 0·5 a. u. This approximation, no doubt, produces some errors which are not 
insignificant at lower energies. This is evident from the comparison made in Table 1 
(see Section 3) of the results of Das and Biswas (1980) with those obtained using the 
exact second Born amplitude of Ermolaev and Walters (1979) and with the experi
mental work of Williams (1975). However, one is unlikely to get a significant im
provement by merely using an improved or even an exact second Born amplitude 
for energies such as 50 or 100 eV. At these energies the calculation itself needs 
improvement. One way of doing this is to use a more flexible trial input set, and this 
is the motivation of the present work. 

An obvious choice for a more flexible trial input set is 

Ti~~ls = {aj(E) +ibj(E)}T~s.j., (9a) 

T~:~~ = {a2(E) +ibz{E)}Tn~js (n"# Is). (9b) 

The corresponding calculation we refer to as the four-parameter calculation. This 
calculation improves the results only marginally. There is a significant improvement 
only at higher energies and at large angles, but for intermediate energies such as 50 
or 100 eV the small angle results and even more seriously the imaginary parts of the 
amplitudes significantly deteriorate. Now, it is not difficult to find reasons for such 
a deterioration (see Section 3). Thus, with a view to improving the results at 50 or 
100 eV, we undertake a six-parameter calculation, choosing an input set as follows: 

Ti~~ls(p - k j ; eo, "0) = (a j + i bj ) Tr.,1s(P - k j; eo, eo) 

/14 . v4 

+a3 {(p-kY+/12}2 +Ja4 {(p-kJ2+V2y' (lOa) 

T~:~~(p-ki;eH'eO) = (a2 +ib2)T~,dp-kj;en,eo) (n"# Is). (lOb) 

The reasons for such a choice will be discussed in the following section. 

3. Results and Discussion 

In a calculation with two parameters the output amplitude may be considered to 
have two parts, i.e. the first Born amplitude and the second Born amplitude multiplied 
by a complex variational parameter. For lower energies, say 30 eV, these two parts 
are equally important and have more or less a similar dependence on the scattering 
angle, and so the least squares method works nicely and yields good results for the 
scattering cross sections. As soon as an additional set of parameters is introduced 
in the four-parameter calculation to make the trial set more flexible the output breaks 
into three parts, i.e. the first Born amplitude, the second Born amplitude with a 
contribution from the intermediate ground state multiplied by the complex variational 
parameter a j + i bl , and the second Born amplitude with contributions from the 
remaining intermediate states multiplied by the other complex variational parameter 
a2 +ib2 • These last two parts have a drastically different analytical behaviour at 
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intermediate energies. In fact the third part is highly peaked towards the forward 
direction, dominating at small angles and falling off rapidly at large angles. In the 
four-parameter calculation there is no term in the input Ti~~ls with analytic behaviour 
comparable with this part of the output. Consequently, the least squares calculation 
cannot in this case produce the correct behaviour at small angles. The lack of stability 
of the least squares method is probably the reason for this incorrect behaviour. The 
situation is reminiscent of one in which use of orthogonal polynomials gives better 
results than a combination of simple powers in some simple variational calculations. 
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Fig. 1. Comparison of the second order Born contribution to the differential cross section (solid 
curve) from all intermediate states, other than the ground state, with the terms K4j{(kr-ki )2+K2}2 

for different values of K = Ji, vat 100 eV: (a) the real part and (b) the imaginary part. 

In a variational calculation for scattering problems the choice of a good trial function 
is a difficult problem. It is also the most crucial one. Even in a simple phase shift 
calculation for potential scattering by well known variational principles such as those 
of Kohn, a bad choice of the trial function may lead to absurd results (see e.g. Rudge 
1973). Thus the lack of stability and the lack of precise guidelines are some of the 
serious problems of our calculational method, and these are shared by almost all other 
variational principles for scattering problems. Under these circumstances what can 
be done is to add some compensating terms to the ones already tried and see whether 
the input and output have similar analytical behaviour. In this way one may obtain 
better results. 

We adopt this approach to improve the results at 50 and 100 eV, where the two
and four-parameter calculations are unsatisfactory. It should be noted here that both 
the real and imaginary parts of TIs ,1s, which are strongly varying with angle, can be 
represented by terms like K4/{(kr-kY+K2}2 (see Fig. 1) for intermediate energies 
and for a suitable choice of the parameter K. SO for an improved calculation at 50 
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and 100 eV we make the choice given by equations (10). From the comparison made 
in Fig. 1 for the strongly varying terms in the output with the last two terms in (lOa), 
it is reasonable to assume J.12 = 4'0 and v2 = 0·6 at 100 eV. We have made the 
same choice for 50 eV, though for other energies other values will be appropriate. 
Even with this choice the real part is poorly represented at small angles and the 
imaginary part at large angles. The effects of this are reflected in the results. 

Table 1. Differential cross sections of four-parameter calculation compared with other results for 
electron-hydrogen elastic scattering at low and high energies 

The differential cross sections are in units of a~ sc' ; the notation an represents a x IOn and the 
numbers in parentheses are uncertainties in the last digits 

Angle Kingston Fon Ermolaev & Das Present Williams 
(deg.) & et al. Walters (1979)A & work (1975) 

Walters (1981) Och. OD Biswas (Och. (exp.) 
(1980) exch. exch. (1980)B exch.) 

30eV 
10 8·58 5·63 4·82 5'70 4·46 2·49 5·32 (57) 
20 5·30 2·95 2·58 3·00 2·25 2·06 2·74 (28) 
30 3·44 1·63 1·56 1·70 1·29 1·59 1'60 (18) 
60 4· 95-' 4· 37-' 4· 73-' 4.60- 1 3.69-1 5'73-' 4·61-'(52) 
90 1· 60-' 1· 89-' 1· 62-' 1· 67-' 1.46- 1 2.25- 1 1·62-'(17) 

120 8.79- 2 1'08-' 7.25- 2 1· 20-' 1·28-'(10) 
140 7.13- 2 8.95- 2 5.40- 2 6.10- 2 5.33 -2 9.26- 2 9'10- 2(9) 

200 eV 
10 1·05 7· 79-' 8· 61-' 
20 3· 86-' 3.53-1 3· 79-' 4'19-'(40) 
30 1· 50-1 1.46- 1 1· 53- 1 1· 72- 1(17) 
60 1· 65- 2 1.63- 2 1.80- 2 1'87- 2 (19) 
90 4· 35- 3 4.50- 3 5.14- 3 5· 84 -3(61) 

120 1.97-3 2.20- 3 2.47- 3 2· 72- 3(35) 
140 1.40- 3 1· 60- 3 1.85- 3 1.78- 3(26) 

400 eV 
10 6.13 -, 5·66-' 5·93-' 
20 1· 69-' 1·70-' 1.70- 1 1'96- ' (21) 
30 5.10- 2 5.17- 2 5 .14- 2 6'17- 2(62) 
60 4.46- 3 4.68- 3 4· 71- 3 4· 38- 3(62) 
90 1.13- 3 1· 26- 3 1· 28- 3 1.04- 3(24) 

120 5.06-4 5.89-4 6.01-4 6.03-4 (122) 
140 3.66-4 4.34-4 4.44-4 5.06-4 (115) 

A Two-parameter calculation with exact second Born amplitudes. 
B Two-parameter calculation with OD exchange. 

The results of our four-parameter variational calculation are presented for lower 
(30 eV) and higher energies (200 and 400 eV) in the intermediate range in Table 1 and 
for some intermediate values (50 and 100 eV) in Table 2. We compare our results 
with the DWSBA results of Kingston and Walters (1980), the R-matrix results of 
Fon et al. (1981) and the experimental results of Williams (1975). The results are 
also compared in Table 1 with the two-parameter calculation of Das and Biswas 
(1980). (Here there was a minor programming error and so corrected results are 
used whenever reference to this calculation is made.) As already noted, we have tried 
in this calculation three different approximations for the exchange. For energies of 
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50 eV and above the Ochkur exchange and OD exchange give nearly identical results 
for the differential cross sections, although the two exchange terms differ considerably 
in phase. The MBO approximation gives significantly different cross sections at 
large angles (these last results are not shown in the tables). In fact for intermediate 
energies, say 50 or 100 eV, the Ochkur approximation (or the OD approximation) 
slightly overestimates the experimental results at large angles, while the MBO approx
imation slightly underestimates the results at these angles. With an increase of energy 
all these exchange amplitudes lead to nearly identiCal differential cross sections. From 
the results shown in Table 1, it is clear that for higher energies, say 200 or 400 eV, 
the agreement of our four-parameter results with experiment is good over the whole 
angular range, and better than the DWSBA results of Kingston and Walters (1980) 
or those of Byron and Joachain (1977) (not shown). Incidentally, it may be noted 
that our results agree quite closely with those of a pure static exchange. For energies 
of 50 or 100 eV, the present results are again better at large angles, but at small 
angles the agreement is not so good. Here the results are even inferior to the two
parameter calculation; the reasons for this have already been discussed. 

Table 2. DitJerential cross sections of two-, four- and six-parameter calculations compared with other 
results for electron-hydrogen elastic scattering at intermediate energies 

The differential cross sections are in units of a~ sr- 1 ; the notation a" represents a x 10" and the 
numbers in parentheses are uncertainties in the last digits 

Angle Fon Kingston Fon Present calculationA Williams 
(deg.) et at. & et al. 2P 4P 6P 6P (1975) 

(1978) Walters (1981) (Och. (Och. (Och. (OD (exp.) 
(1980) exch.) exch.) exch.) exch.) 

50eV 
10 2·69 5·09 3·83 2·40 1·76 3·84 4·16 5·04 (51) 
20 1·19 2·26 1·69 1·10 1·28 1·61 1·72 2·17 (23) 
30 6.80-1 1·08 8.68- 1 6· 68- 1 8.55-1 8· 35- 1 8.45- 1 1·12 (12) 
60 1.97-1 1.82- 1 1 .. 98- 1 1.83 -1 2.21- 1 1.97-1 1.92-1 2.05- 1(19) 
90 7.32- 2 5.72- 2 7.12- 2 5.67- 2 7.70- 2 6.21- 2 6.31- 2 7.16- 2(82) 

120 3.57- 2 2.92- 2 3.69- 2 2.59- 2 3.99- 2 2.88- 2 3.49- 2 (33) 
140 2.58- 2 2.23- 2 2.84- 2 1.89-2 3.06- 2 2.10- 2 2.21- 2 2.73- 2(26) 

100 eV 
10 1·41 2·22 1-21 1·22 1·87 1·94 
20 6.71-1 8.46- 1 6.05- 1 7.15-1 7· 36- 1 7.42-1 1·10 (10) 
30 3.71-1 3.83- 1 3· 39-1 3.82- 1 3.66-1 3.62-1 5.09-1(49) 
60 7'08- 2 5.62- 2 5.58- 2 6.40- 2 5.61- 2 5.63- 2 7.22- 2 (71) 
90 2.09- 2 1.62-2 1.57-2 1.96-2 1· 50- 2 1.52-2 2.09- 2 (20) 

120 9.5- 3 7.6- 3 7.4- 3 9.8- 3 6.7- 3 9.2- 3 (9) 
140 6.8- 3 5.6- 3 5.5- 3 7.4- 3 4.8- 3 4.9- 3 6· 5- 3 (7) 

A Results for the present calculation with two, four or six parameters . 

. Next we consider the results of the six-parameter calculation. We have already 
seen that the two- and four-parameter calculations together describe satisfactorily the 
experimental results at lower and higher energies in the intermediate range. Our 
six-parameter calculation is designed to match the experimental results for several 
energies in the intermediate range, say 50 and 100 eV, where the two- and four
parameter results are not in conformity with experiment. The six-parameter results 
are displayed in Table 2, where for the exchange amplitude we use the Ochkur or 
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OD approximations. Comparison with experimental (Williams 1975) and other 
theoretical work shows that the overall trend of the present results is good, although 
these appear to fall rather rapidly at large angles. It is again observed that OD 
exchange (which is the same as MBO exchange at these angles) gives better results 
at small angles. The disagreement that still remains is pardy due to the form of the 
compensating terms (we recall here that the imaginary part falls off rather too fast 
at large angles while the real part rises rather too slowly at small angles). In any 
case, the agreement for 50 eV may be considered satisfactory, while the results for 
100 eV appear to be unsatisfactory. Part of this disagreement may be due to experi
mental errors for this energy, however, this needs further confirmation. It may be 
mentioned in this context, that the six-parameter calculation depends sensitively on 
the choice of the parameters 112 and v2 (see equation lOa). An incorrect choice of 
for example 112 too small or v2 too large may lead to very poor results, a consequence 
of the lack of stability of the calculational method already mentioned. 

Perhaps for an accurate and stable calculation one may have to consider scattering 
in several channels jointly, analogous to a close-coupling calculation where some sort 
of feedback mechanism is adopted for continuous improvement of the results; for 
example, by the introduction of suitable compensating terms in the input, on the 
basis of observation of the outputs. 

4. Conclusions 

It is found that the two-parameter calculation gives results which are good at the 
lower and upper ends of the intermediate energy range and at higher energies for 
electron-hydrogen elastic scattering. The four-parameter calculation only marginally 
improves the results, except at higher energies where the improvement is significant. 
The inclusion of compensating terms then leads to satisfactory results from low to 
high energies. There remains some scope for improving the calculation still further. 
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