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Abstract 

Theorems are developed which extend to representations more general than those of the rotation 
group the usefulness of the concept of filled fermion shells, and the relationships between shells 
containing and shells lacking n fermions. 

1. Introduction 

Spectroscopy in widely diverse systems of fermions has profited greatly from the 
interpretive analytic techniques of group theory and from the use of determinantal 
wavefunctions. In the case of isolated atoms, the spherical symmetry of the 
Hamiltonian reduces the group theory problem to that of the familiar task of the 
addition of the angular momenta of the individual fermions to form eigenfunctions 
of the usual total angular momentum operators. For impurities in solids, spherical 
symmetry does not apply, so angular momentum addition procedures are not relevant. 
One nevertheless must determine a total wavefunction satisfying the appropriate 
symmetry requirements, by combining the symmetries of the one-particle states. For 
example, a Group I impurity such as· copper in a Group IV semiconductor will 
behave as a triple acceptor and the wavefunction of the resulting entity will describe 
three holes bound to the impurity site. For eu in Ge, the orbital for each hole 
will be a member of a r 8CTd ) manifold (Jones and Fisher 1970) (where r 8 is a four
dimensional representation of Td , Koster et al. 1963). For the construction of the 
ground state wavefunctions, four possible choices can be made of three one-particle 
functions drawn from a single r 8 manifold and the four choices lead to four distinct 
antisymmetric system wavefunctions. The representation(s) thus generated by the 
three holes must be one of the following alternatives: 2 x r 6, 2 x r 7, r 6 + r 7 or r 8 

(where r 6 and r 7 are two-dimensional representations of Td , Koster et al. 1963). 
Which of those alternatives describes the three-hole ground state? Answers to such 
questions can be resolved, while recognizing the requirements of the Pauli principle, 
by examining the symmetry properties of determinantal wavefunctions formed from 
states participating in the basis (or bases) for the representation(s) of the appropriate 
symmetry group. The theorems presented below are directed at simplifying such tasks. 
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2. Definitions and Mathematical Preliminaries 

Assume that U1 (r), u2(r), ... , uM(r) constitute a basis for some representation r II 
of group G. We wish to explore representations of G generated by determinantal 
functions constructed from these functions. We define 

"'= 

U1 (rtJ u2(r1) 

u1(r2 ) uir2 ) 

(1) 

Complementary minors of this determinant can be defined by selecting rows 
numbered '1' '2' ... , im (i1 < i2 < ... < im, m < M) and columns j1, j2, ... , jm 
(j1 < j2 < ... < jm)· Designate by p and q respectively the ordered sets i1, ... , im 
and j1, ... , jm, and by p' and q' respectively the complements of p and q. The minor 
"'~ is the determinant of the m x m matrix whose (IX, f3) element is the (i~, jp)element 
(where i~ E p, jp E q) of the array on the RHS of equation (1). The minor com
plementary to "'~ is ",~', defined in a similar way with respect to the sets p', q'. 
We also designate the sum of the subscripts in a set such as p or q as 

(2a, b) 

The transformation properties of", and "'~ under the operations of the group are 
determined by the transformation properties of {Uj}, which may be defined by 

M 

RU j = L ajj(R)uj , 
j=1 

(3) 

where R is any of the operators of G, and the matrices a(R) can in general be taken 
to be unitary. The determinant of the matrix a(R) will be designated 1 a(R) I. Again 
it is convenient to specify a notation for the minors of a(R), which, for the sets 
pand q as above, will be designated a~(R), and the complementary minor is a~:(R). 
Since a(R) is a matrix with definite values for each of its elements, a~(R) is a 
determinant with a definite value once the sets p and q have been designated. The 
values of these determinants can be arranged into a matrix A(R) with elements 
Ap,iR), in which the rows and columns of A(R) are labelled unambiguously by the 
set labels p and q. In like manner we can arrange the values of a~:(R) into a matrix 
A'(R) with elements A~'.q.(R). The matrices A(R) and A'(R) are of dimensionality 
M!J(M-m)!m! corresponding to the number of ways the setsp and q can be chosen. 

It will be shown below that for fixed m, {A(R): REG} forms a representation 
of G. Anticipating this result, and using the unitarity of {a(R)}, we can show that 
eacR- A(R) is unitary. The group property requires . 

and 

and the unitatity of the members of {a(R)} requires 

aij(R) = aJ;(R- 1). 

(4a, b) 

(5) 
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Now a~(R) is the determinant of a matrix of selected elements of a(R). By virtue 
of the selection procedure and the above property, a~(R-I) is the determinant of the 
Hermitian conjugate of the matrix of which a~(R) is the determinant. The value 
of a:(R- I ) is unaltered by transposing the matrix, in which case the elements are 
then simply the complex conjugates of the elements making up the determinant a~(R). 
That is, we have 

A;/(R) = A;q(R). (6a, b, c) 

In like manner the members of {A'(Rn are unitary matrices. 
In addition to the above functions, matrices and determinants we will have need 

of another set of functions VI (r), vir), ... , vN(r) which form a basis for the representa
tion r v of G. A determinantal function cP can be constructed from these in the manner 
in which t/I is formed from {ui(r)}. Minors cPJ, cPr are constructed by following 
identical procedures to those above; f, gare two ordered sets of n subscripts chosen 
from N in the same way that p, q are sets of m subscripts selected from M, and f' 
and g' are the ordered complements of f and g respectively. The transformation 
properties under G of {v i(r n are taken tb be 

N 

RVi = L bji(R)vj, (7) 
j=1 

where b(R) are unitary matrices. Minors of b(R) are designated bJ(R) and bnR), 
and their values arranged into matrices Bf,(R) and Bj"'g'(R), where the dimensionality 
of B(R) and B'(R) is N!/(N -n)!n! As above, B(R) and B'(R) are unitary. 

3. Theorems 

Theorem 1 ('Filled Shell' Theorem): t/I is a basis function for a one-dimensional 
representation of G, and the characters of this representation are {I a(R) I}. 

Proof: Operate with any R on t/I: 

Rt/I = det 

u1(rI) uirI ) 

uI(r2) uir2) 

um(rI ) all a12 

um(r2) a21 a22 

Since the determinant of a product is the product of the determinants, we have 

Rt/I = t/I I a(R) I . 

(8) 

(9) 

To demonstrate the group properties, we note that if I is the identity operator, I a(l) I 
is the determinant of a unit matrix and is trivally unity, and if T is an operator 
of G, not necessarily distinct from R, then 

T(Rt/I) = I a(R) I Tt/I = I aCT) II a(R) I t/I 

= I a(T)a(R) I t/I 

= I a(TR) I t/I =; (TR)t/I. 
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It should be noted that, although the unitarity of the members of {a(R)} requires 
each determinant to have a magnitude of unity, for some representations of some 
groups, for example those containing both proper and improper rotations, there may 
be more than one value in the character set {I a(R) I}, so that t/I does not necessarily 
generate the totally symmetric representation. Designate the representation generated 
as rt/!. 

Theorem 2 ('Filled Shell Minus n' Theorem): For fixed p, {t/I~} constitutes 
a basis for the representation of G, and so does {t/lr}; the representations generated 
by {t/I~} and {t/ln are simply related. 

Proof: Operate with R on any t/I~. The result is similar to equation (8) except 
that in the present case the first matrix would consist solely of the rows of t/I specified 
by p, and the second matrix would consist solely of the columns of a(R) specified 
by q. Thus the first matrix is m x M and the second is M x m. By a theorem on 
determinants (Muir 1960), the determinant of such a product is the sum of the 
determinants of all products of pairs of m x m matrices in which the first matrix 
of the pair is formed by choosing m columns from the m x M matrix (retaining their 
sequence of appearance), and the second matrix of the pair is formed by taking the 
corresponding m rows from the Mx m matrix (again preserving the sequence of 
appearance). Thus, for fixed p, we have 

(10) 

In equation (10), k is a set of m ordered subscripts, there being M em such sets possible. 
Since each Rt/I~ is a linear combination of the members of {t/I~}, it follows that {t/I~} 
is a candidate for a basis of a representation of G, with the representation matrices 
being {A(R)}. We now verify that the group properties are satisfied. 

(1) Consider first R = I, the identity operation. If the sets k and q are identical, 
then af(J) is the determinant of a unit matrix and has the value 1. If k and q are 
not identical, then af(I) is a determinant with at least one row and one column 
of zeros, and its value is necessarily zero. Thus A(I) is the unit matrix. 

(2) We demonstrate the group multiplication property by considering the 
operators T and TR, both of which are operators of G, not necessarily distinct or 
different from R: 

(11) 

while 

(TR)t/I~ = I.A,iTR)t/I~. (12) 
I 

We must show A(T)A(R) = A(TR). Since {a(R)} form a representation of G, 
we have 

aiiTR) = I. ait(T) atiR). (13) 
t 

In order to evaluate the determinant a'l(TR) we construct the matrix of its elements 
by selecting from a(TR) all elements indicated by the set of row subscripts I and 
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column subscripts q. It is clear from (13) that this matrix can be expressed as the 
product of an m x M matrix consisting of all the elements of the rows I of aCT), 
and an M x m matrix consisting of all the elements of columns q of a(R). Thus 
A,q(TR) is the determinant of this product. Using the determinant theorem cited 
above for such products, we have immediately 

(14) 

which is the desired result. 
(3) It follows from the results in (1) and (2) that 

A(R-1) = A -l(R). (15) 

In like manner {A'(R)} forms a representation of G. To establish the relationship 
between the representations {A(R)} and {A'(R)}, we construct another set of 
determinants {C~(R)} as follows. Let 0( and {3 be two ordered sets of m subscripts, 
and let 0(' and {3' be the ordered complements of these sets respectively. Then C~(R) 
is the determinant of the M x M array whose columns are specified by the following 
recipe: if i E 0(', then column i of C~(R) is taken to be column i of a(R); if i E 0(, 

suppose it to be the tth member of the ordered set 0(, choose the tth member of the 
ordered set {3, suppose it to be j, then column i of C~(R) is column j of a(R). 
If 0( :f= {3 then C~(R) must necessarily have two identical columns, and such a 
determinant has a value of zero. That is, we get 

C~(R) = b«p 1 a(R) I. (16) 

Using the Laplace expansion of the determinant (Ayres 1962), and utilizing the 
definition of the sum function given in equations (2), gives 

b«p 1 a(R) 1 = C~(R) = L (_I)S(P)+S(k)af(R) ak:(R) 
k 

= L (-l)S(P)+S(k)AkP(R)A~,«,(R). 
k 

Defining the matrices E and F by the relations 

Epk = (-l)S(P)+S(k)Akp(R)/1 a(R) I, 

equation (17) becomes 

or 

so that E = F-1 • That is, from (18) we write 

1 = EF, 

AkP(R) = (-Il(P)+S(k)1 a(R) 1 (A'(R»i/ 

= (_I)S(P)+S(k)1 a(R) 1 Ap'k,(R-1). 

(17) 

(I8a,b) 

(19) 

The characters of the representations are found by taking the traces of the representa
tion matrices, and therefore 

Tr(A(R» = 1 a(R) 1 Tr(A'(R- 1» 

= 1 a(R) 1 Tr(A'(R»* . (20) 
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Equations (19) and (20) are the connections between the representation generated 
by the determinantal functions formed by selecting m functions at a time from the 
M functions in {u;(r)}, and the representation generated by the determinantal 
functions formed by selecting M - m functions from the {ui(r)}. These relations 
will be especially useful in the special case m = M - 1, in which the determinantal 
wavefunctions will have symmetry properties closely similar to those of the single 
particle states. In some cases equation (20) will reveal the two character sets to 
be identical, which is all that is required to prove the representations to be equivalent. 
Thus, equation (20) can be used to answer the question raised in the Introduction 
concerning the three-hole ground state of eu in Ge: the ground state must necessarily 
be a r 8 state, just as the single particle states are, and not any of the other alternatives 
listed. 

Theorem 3 ('Two Shell' Theorem): For fixed m and n, the set of all 
determinantal functions of the type 

forms a basis for the representation of G, and this representation is simply the 
product of the representations generated by {l/J:} and {¢J}. 

Proof: ()qg can be represented symbolically as 

(21) 

Operate with R on ()qg, so that using the same symbolism, 

(22) 

(23) 

Here k is an ordered set of m subscripts and h is an ordered set of n subscripts. In 
proceeding from equation (22) to (23), the theorem cited above concerning the 
determinant of products of non-square matrices has been used, and in doing so 
certain terms have been omitted from the expansion because they are recognized 
to be zero. These terms are the ones in which the number of columns containing 
u functions in the first matrix of the products in (23) differs from m (with the 
consequence that the number of columns containing v functions differs from n). 
It is recognized that the operation of the symmetry operator R cannot replace a 
u with a v (or vice versa); in terms of the mathematical properties such terms are 
eliminated by the vanishing of the determinant of the coefficients as is easily seen 
by consideration of an appropriate Laplace expansion (Ayres 1962), in which a row 
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or column of zeros in one of the minors of each product in the expansion guarantees 
that the determinant vanishes. Thus, we get 

Reqg = L ekh I aZ II b~ I 
k,h 

(24) 

It is therefore seen that the transformation properties of {eqg } are those of the products 
of members of {"'~} with members of {¢J}, and thus the product representation is 
generated. This result can obviously be extended to any number of sets of functions. 

Corollary ('Filled Shell Plus n' Theorem): If m = M, the representation 
generated is r", x r n> where r n is the representation generated by {¢J}. It will 
frequently occur that r", is the totally symmetric representation, in which case the 
product representation is rn> but this is not a general result. 

4. Conclusions 

Techniques for the generation of properly anti symmetrized functions from a set 
of products of one-particle orbitals are well known and widely used. Most expositions 
of this topic concentrate on the development of spin orbitals with emphasis on 
angular momentum properties. Considerable understanding has flowed from the 
concept of filled shells, and the relationships between shells containing and shells 
lacking n particles. The present work is intended to underscore, as far as possible, 
the extension of such concepts to representations of a more general nature. In this 
respect equations (19) and (20) are the central results, providing as they do a way 
to replace a problem involving many ('filled shell minus n') particles with one 
involving fewer ('n') particles, a considerable advantage. The other results have 
been included for completeness, and their exposition implies a useful caution: that 
in determining the symmetry properties of a multiparticle system, filled shells cannot 
be neglected unless it can be shown that r", is the totally symmetric representation, 
a requirement which is not met in all cases. 
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