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Abstract 

The anharmonic temperature factor for binary compounds of the A NB8-N type possessing the 
wurtzite structure is derived as a perturbation expansion about the harmonic case. The terms in 
this expansion are obtained from combinations of spherical harmonics. The derivation utilizes 
group theory and follows the treatment of Von der Lage and Bethe (1947) and Nizzoli (1976). A 
set of constraints between the cubic anharmonic coefficients in the one-particle potential (OPP), 
which appear in the temperature factor, is then derived, enabling least-squares refinements to be 
carried out successfully. The use of the anharmonic temperature factor, with these constraints, is 
shown to result in a significant reduction in Hamilton's R factor for two extensive data sets. 

1. Introduction 

A generalized structure factor formalism has been developed by Dawson (1967a) 
for interpreting accurate X-ray and neutron diffraction data. One of the advantages 
of this formalism is that effects such as anharmonic thermal vibration and bonding are 
readily incorporated. It is with the first of these effects that this paper is primarily 
concerned. Bonding will be mentioned only briefly, since Moss (1977) has determined 
that bonding effects in wurtzite structures are small and they have been neglected 
in the analyses discussed here. 

In Section 2 we derive an expression for the anharmonic temperature factor. 
The approach used differs from that of Mair and Barnea (1975) and Whiteley et al. 
(1978), who expanded the one-particle potential (OPP) as a power series in the 
atomic displacements from appropriate positions (Mair and Wilkins 1981) within the 
restrictions imposed by the local site symmetry. In the present paper we use a group 
theory approach, demonstrated by Nizzoli (1976) for zinc. 

The final expression for the temperature factor, when included in the general 
structure factor, introduces six cubic anharmonic parameters (three for each atomic 
species, A and B). An attempt to refine the six parameters would result in severe 
correlation, both between these parameters themselves and with the other refined 
parameters. In Section 3 we derive approximate constraints which reduce the six 
anharmonic parameters to two (one for each atomic species), resulting in a model 
more amenable to least-squares refinement and producing more reliable parameter 
values. 

Tests of the structure factor model are described briefly in Section 4 for two 
extensive X-ray intensity data sets for cadmium sulfide and cadmium selenide. 
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2. Anharmonic Temperature Factor 

The point group for the hexagonal wurtzite structure is 3m, which specifies the 
symmetry for the electron charge distribution at an atomic position. Of the two one
dimensional irreducible representations of this point group (Al and A2 ), only A1 
ensures the invariance of the charge under the operations of the group (see the 
character table on p.58 of Bradley and Cracknell 1972). The angular dependence 
of the charge distribution p(r) can now be expanded using a set of hexagonal 
harmonics appropriate to A1 (combinations of spherical harmonics obtained from 
characteristic polynomials (CP)). The method of Von der Lage and Bethe (1947) 
is used in constructing this set from the CPo 

By using the compatibility tables of Bradley and Cracknell (1972; p. 73), the 
number of linearly independent polynomials which can be constructed for each 
value of the angular momentum L can be ascertained. In this case there is one 
polynomial for L = 0, 1 and 2, and two for L = 3. A possible choice of CP, denoted 
by Pu is 

Po = 1, 

P~ = (u-v)(u-w)(v-w). (1) 

In the Miller-Bravais notation used in equations (1) any given vector can be expressed 
in terms of the basis vectors i, h, k and I as ui +vh +wk +zl, with w = -(u+v). 
The basis vector I is perpendicular to the basal plane and the other three are in the 
basal plane at angles of 1200 to each other. 

The hexagonal harmonics of each order can now be constructed from equations 
(1) by dividing the CP by rL and imposing orthogonality conditions: 

Ho(r/r) = 1, 

H~(r/r) = (u-v)(u-w)(v-w)/r 3 , (2) 

where r2 = t(U2+V2+W2) +Z2 = r~+z2. 
Following Nizzoli (1976), p(r) can be written as the sum of a spherical term and 

angular dependent contributions, whose form is the product of a radial function 
(Dawson 1967b) and one of the hexagonal harmonics in equations (2). The Fourier 
transforms of these terms represent the various contributions to the atomic scattering 
factor, where the transform of the spherical term includes the Hartree-Fock spherical 
atom scattering factor. 

In order to obtain the anharmonic temperature factor we first construct the 
probability density function (PDF) for thermal motion in terms of the polynomials 
already obtained. The zero-order approximation for the PDF is taken to be a normal 
distribution (Johnson 1970) of the form 

t(r) = Nexp[ -H(r~/<uil»)+(z2/<U~3»)}], 

where N is a normalization constant and <ui 1) and <U~3> are the mean-square 
displacements in the basal plane and along the z-axis respectively. By using the 
table supplied by Johnson (1970), giving the number of unique coefficients in the 
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cumulant tensors which enter the generalized expansions of the PDF (for different 
orders (up to 5) and point groups), the number of independent terms for each order 
in the expansion can be ascertained. The expansion, to third order, is 

(3) 

where the single first-order term has been omitted. This omission is equivalent 
to making a Taylor expansion of the OPP about the positions defining the minima 
of that potential, in contrast to an expansion about the thermodynamic equilibrium 
positions, where a first-order term does occur (Mair and Wilkins 1981). Mair and 
Wilkins have shown that it is not possible to refine simultaneously both for the effect 
of the coefficient of the first-order term in the temperature factor and for the 
equilibrium position. Consequently, the first-order term must not occur in the 
expression for the temperature factor to be used in the least-squares refinement. 

By normalizing the PDF in equation (3) and then, with the help of Gradshteyn 
and Ryzhik (1965), taking the Fourier transform, results in the following expression 
for the temperature factor: 

T(s) = T(s){1 +j(4n/3a?B1 <Ui1)3(i-h)(i-k)(h-k) 

+jB2 <Ui1)<U~3)Sz(2 -S~<Ui1») 

+ jB3 <U~3)2sz(3 -S;<U~3»)}' (4) 

where the harmonic temperature factor is given by 

(5) 

In equations (4) and (5) s = lsi = 2sin O/A , 0 being the Bragg angle and A the 
wavelength of the incident radiation; j = (-1)t; a and c are the lattice constants; 
i, h, k and I are the Miller-Bravais indices of a plane, i = -(h+k); 

Sz = 2nl/c and SB = (2n/a){t(i2+h2+k2)}t. 

The high-temperature behaviour of T(s) can be determined by comparing 
equation (3), term by term, with the classical expression N exp{ - v(r)/ kB T}, where 
v(r) is the OPP, kB is Boltzmann's constant and T is the absolute temperature. To 
third order, v(r) has the form 

v(r) = /3001 + /3201 r 2 + /3225 !(3z2 - r 2) + /3313 zr 2 

(6) 

where (x, y, z) form a cartesian coordinate system with the x-axis perpendicular 
to the mirror plane, and the coefficients /3rst follow the notation of Whiteley et al. 
(1978). The absence of the first-order term, /3113Z, in equation (6) has been discussed 
in connection with equation (3). If the anharmonic distortions are small the comparison 
of the classical expression for t (r) and equation (3) gives 

B1 == - 3-/3 /3332/2kB T, 

B2 == (3/3337 - 2/3313)/2kB T, 

B3 == -(/3313 + /3337)/kD T, 

<Ui1) == kB T/(2/3201 -/322S)' 

<U~3) == kB T/{2(/3201 +/322S)}· 

(7) 
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Substituting equations (7) into (4) and (5) gives 

(8) 

where 

_ { (/2 2(i 2 + h2 + k 2) )} T(s) = exp -2n2kB T 2 + 2 • 
2c (fJ201 + fJ22S) 3a (2fJ201 - fJ22S) 

(9) 

Equations (8) and (9) can be shown to be equivalent to the expressions of Mair and 
Barnea (1975) and Whiteley et al. (1978). In particular, we have 

2fJ201 - fJZ2S = 8n2k B T / Bll , 

fJ201 + fJ22S = 4n2k B T /B33' 

where Bll and B33 are the conventional hexagonal temperature parameters. 

3. Constraints between Cubic Anharmonic Parameters 

(10) 

(11) 

If the anharmonic temperature factor given by equations (8) and (9) is included 
in a model for least-squares refinement of intensity (or structure factor) data, ten 
parameters must be varied (i.e. fJ201' fJ22S' fJ313' fJ332 and fJ337 for each atomic 
species). Such a refinement results in high correlations between the cubic anharmonic 
parameters themselves, as well as between these and other refined parameters. The 
resulting parameter values are unreliable and have high estimated standard deviations 
(e.s.d.). These high correlations are essentially independent of the quality of the 
data, but depend on the model being used and to some extent on the quantity of 
data (Geller 1961). 

Table 1. Sign conventions for cubic anharmonic parameters for each atom 
in unit cell 

Atom A(l) is at the origin 

Para- Sign convention 
meter A(l) A(2) B(l) B(2) 

P313 + + 
P332 + + 
P337 + + 

Whiteley et al. (1978), in carrying out a least-squares refinement of anharmonic 
intensity ratios, arbitrarily set all six cubic anharmonic parameters equal in magnitude. 
The sign conventions, for each of the four atoms in the unit cell, can be obtained by 
considering the relative orientations of the potential components. These sign 
conventions, which are relative, have been given by Whiteley et al. (1978) and are 
reproduced in Table 1 for convenience. 
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In an attempt to obtain more realistic relations between the cubic anharmonic 
parameters for a particular atomic species we make use of certain physical properties 
which impose restrictions on the form of the OPP. Initially the entire OPP in equation 
(6) is dealt with, but the use of the approximation Bll = B33 makes the treatment 
equivalent to starting with only cubic terms, i.e. the harmonic terms do not enter 
into the constraint equations when this approximation is made. The structure is 
treated as being ideal wurtzite, i.e. nearest neighbour atoms form a perfect tetrahedron. 
Such an approximation is reasonable for the cases of CdS and CdSe discussed in 
Section 4, where the cia ratios deviate by approximately 0'6% and 0·1 % from the 
ideal value of .Ji respectively. The equations and inequalities derived initially will 
apply to the A(l) atom and the results will subsequently be extended to the other 
atoms in the unit cell. Thus, by equating the OPP for such an atom for equal dis
placements along the c-axis bond and along anyone of the other three bonds, the 
following equation is obtained: 

(12) 

where we have assumed 

/3225 = 0. (13) 

Table 2. Approximate relationships for cubic anharmonic parameters 
The prime distinguishes between the anharmonic parameters for the two atomic species 

Para
meter A(l) 

0 
\ P332\ 

.j2\ P332\ 

A(2) 

0 
-\ P332\ 

.j21 P332\ 

Relationship 
B(l) B(2) 

0 0 
\ Pm\' -\Pm\' 

-.j2\P332\' -.j2\P332\' 

Table 3. Approximate relationships for cubic anharmonic,parameters of Mair and Barnea (1975) 

Para
meter A(1) 

\ P1\ 
-t.j6\ P1\ 

t.j6\ P1\ 

A(2) 

-\ P1\ 
-t.j6\ P1\ 

t.j6\ P, \ 

Relationship 
B(l) B(2) 

\ P1\' -\P1\' 
t.j6\ P, \' t.j6\ P,\' 

-t.j6\P1\' -t.j6\ P1\' 

Equation (13) implies that the conventional hexagonal temperature parameters, 
Bll and B33 , are equal (see equations 10 and 11). In the cases of CdS and CdSe 
the differences between Bll and B33 are approximately 3 % and 1· 5 % respectively 
(these differences are the averages of those for the two atomic species in each case). 

If the OPP in equation (6) is maximized along bonding directions and minimized 
along antibonding directions, and equation (13) is used, the following requirements 
are found: 

3/3313 +2.J2/3332 -2/3337 = 0, 

f3313 -4.J2/3332 -14/3337 < 0, 

/3313 + 6/3337 > O. 

(14) 

(15) 

(16) 



420 A. Fakineos et al. 

The antibonding directions used in the derivation of relations (14)-(16) refer to the 
directions of the three octahedral holes which, together with the tetrahedral hole 
centred on the e-axis, surround each atom. 

By using relations (12), (14) and (16) it is possible to obtain P313' P332,and P337 

in terms of a single parameter. The inequality (15) provides no new information, 
i.e. it can be obtained from relations (12), (14) and (16). Similar requirements can 
be derived for the other three atoms in the unit cell (A(2), B(l) and B(2)) and the 
final relationships are. summarized in Table 2. The sign conventions in Table 2 
are, as expected, i:onsistent with those in Table 1. By using Table 2 the six anharmonic 
parameters can be reduced to two. The refinements in Section 4 below were 
actually carried out with I P3321 = I P3321' because of the high correlation between 
these parameters. For convenience to those readers familiar with the notation of 
Mair and Barnea (1975), Table 3 contains the relationships in that notation. 

It is of particular interest to note that considerable differences in the magnitudes 
of the Prst parameters are predicted in Table 2, where P313 = O. The choice of 
constraints between the Prst parameters has its most pronounced effect on the predicted 
separation between the locations of the A and B atoms along the e-axis. The ratio 
of this distance and e, usually called the u (or z) parameter, is not determined by 
symmetry and has been included as one of the refined parameters in the analyses 
discussed in Section 4. The sensitivity of the u parameter to the model used for 
least-squares refinement will be discussed by Stevenson et al. (1982) and Stevenson 
and Barnea (1982) (hereafter referred to as 5MB and SB respectively) for CdS and 
CdSe respectively. 

If equation (14) is expressed in the notation of Mair and Barnea (1975) and the 
sign conventions of Table 3 are used the result is 

(17) 

which should be the same as equation (7) of Mair and Barnea (1975). The discrepancy 
between the two equations is due to an error made by these authors, which is rectified 
ifihe three terms in -their-equation are multiplied by a\ a2 e and c3 respectively. 

4. Experimental Tests 

The least-squares refinement program used for the analyses discussed here 
calculates the correlation matrix for refined parameters in accordance with Geller 
(1961) and Rollett (1965). This program also calculates weights for reflection data 
according to a scheme in.which the total variance contains contributions due to 
counting and population statistics, thermal diffuse scattering and extinction corrections 
a~d other sources (an inadequate weighting schem~ may cause strong interactions 
(high correlations) between refi,ned parameters). 

Analyses of. extensive X-ray data sets for CqS and GdSe will be reported by 
SMRanclSBJespectively. The analyses are carried out within Dawson) (1967a) 
structure fact~r fOfll1alism. So~e of the results are discussed briefly here, ,in order 
to demonstrate the improvement in the structure factor model as a result of including 
the anharmonic temperature factors and using realistic constraints between anharmonic 
parameters. 

Table 4 lists relevant details of the analyses for both CdS and CdSe data; no 
distinction was made between atqmic species in assigning the magnitudes of the 
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anharmonic parameters. Hamilton's R-factor ratios RX+l/Rx (X = lor 2) correspond 
to a rejection of the appropriate hypotheses at the o· 5 % significance level (Hamilton 
1965), which is 'highly significant' (Hamilton 1964). The largest correlation coefficients 
observed are approximately 0·8 (between, for example, the extinction parameter 
and the scale factor). Such coefficients are not so large as to be considered unreason
able. The largest coefficient involving the anharmonic parameter is approximately 
o· 5 (for interaction with the u parameter). 

Table 4. Analyses of CdS and CdSe data for three models 
Harmonic temperature factors for model I: P313 = P332 = P337 = 0; anharmonic temperature 
factors for model II: 1 P313 1 = I P3d = 1 P3371 (signs as in Table 1); anharmonic temperature 
factors for model III: 1 P313 1 = 0, 1 P337 1 = ../21 P332 1 (signs as in Table 2). The numbers of 

independent reflections for CdS and CdSe were 118 and 270 respectively 

() (deg.) A (A) T(K) RIA (%) RnA (%) RIIJA (%) GF)B GFIIB GFIIJ B 

CdS 21-65 0·7107 293(2) 1·065 0·716 0·691 1·538 1·038 1·000 
CdSe 15-61 0·7107 293(2) 1·363 0·981 0·941 1·737 1·252 1·201 

A Rx denotes Hamilton's R factor (Hamilton 1965) for model X. 
B GFx denotes the goodness-of-fit parameter for model X. 

The introduction of anharmonicity in the structure factor model has thus resulted 
in much better agreement between theory and experiment. The conseqllences of 
anharmonicity in wurtzite structures have been discussed by other authors (see e.g. 
Whiteley et al. 1978). Among these consequences, the existence of intensity differences 
for non-symmetry related reflections occurring at the same Bragg angle is of particular 
interest. Such differences were observed by Whiteley et al. and have been observed 
in both studies mentioned in this section, rendering the inclusion of anharmonicity 
in the theoretical model mandatory. In general, the neglect of anharmonic effects 
in room-temperature X-ray studies requires justification. 

Once the need to include anharmonic effects has been acknowledged, it is important 
to use a realistic model, with appropriate constraints between refinable parameters, 
if necessary. This is not only important if realistic anharmonic parameter values 
are desired but also for other parameters, in particular position parameters not 
determined by symmetry. This was demonstrated in the analysis of CdS data when 
the u parameter changed by between 8 and 9 e.s.d. (from 0·37774 to 0·37714) as a 
result of using model III rather than model II (see Table 4). The corresponding 
change in the u parameter for CdSe was between 16 and 17 e.s.d. (from 0·37661 to 
0·37596), the larger change being due predominantly to a smaller e.s.d. rather than 
a larger absolute change. The u parameter values obtained with model I are approx
imately midway between those from models II and III, in each case, and approximate 
closely the values corresponding to the equilibrium positions of the atoms (rather 
than the positions defining the minima of the OPP, as is the case with models II 
and III). 

The more extensive CdSe data set offers the opportunity of checking the degree 
of anisotropy of the cubic anharmonic parameters, as predicted in Table 2. This is 
achieved by refining special groups of reflections, for which the structure factor is 
independent of certain anharmonic parameters; for example structure fl:\ctors for 
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reflections with I = 0 only depend on P332' For the P337 determination, P313 was 
constrained to be zero. The results gave I P337/P332 I = 1·3(0'3), in good agreement 
with the predicted value of .J2. The somewhat large e.s.d. for I P337/P332 I is due 
primarily to the e.s.d. for P337' which reflects the intera~tion with the u parameter. 
The hkO reflections, from which P332 is determined, have structure factors which 
are independent of the u parameter and so no such correlation occurs in this case. 

A discussion of the use of constraint relations (for anharmonic parameters), which 
have been derived without assuming that the structure is ideal and without using 
equation (13), is given in the Appendix. These relations may be of particular interest 
when analysing data collected from the wurtzite structures which differ most from 
the ideal, for example AIN, whose cia ratio is approximately 2 % different from the 
ideal value. 

The findings of this paper for the wurtzite structure have general implications 
for structure analysis, especially in cases of lower symmetry where more parameters 
are needed to specify the model. The treatment of anharmonic thermal vibrations 
will, of course, be more important at elevated temperatures for both X-ray and neutron 
studies. 
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Appendix. More General Constraint Relations 

The effect of anharmoJiicity on the u parameter can be predicted theoretically by 
calculating the mean value of z for the two atoms concerned. Using the ensemble 
average, we get 

(z) = f zexp{ -v(r)/kB T} d3r 
f exp{ -v(r)/kB T} d 3r 

f zexp{ -vir)/kB T}{l -v3(r)/kB T} d3r 

~ f exp{ -vir)/kB T}{l -v3(r)/kB T} d3r ' 
(AI) 

where vi(r) denotes the sum of ith order terms in v(r). The expression for (z) given 
in equation (AI) does not depend on P332 because terms in the integrands containing 
P332 are all odd in at least one of the atomic displacements. Physically, this occurs 
because P332 is a force constant for motion in the basal plane only. The final 
expression for (z) is 

Equation (A2) is valid for the four atoms in the unit cell and is the same for the 
A(1) (B(1») and A(2) (B(2») atoms. The use of equation (A2) for predicting the 
effect of anharmonicity on the u parameter, with different constraints between the 
anharmonic parameters, will be discussed by 5MB and SB. In particular we note 
that if the constraints in Table 2 are substituted in equation (A2), remembering that 
Bll = B33 has been assumed, then (z) is zero for all atoms. This implies that, under 
the assumptions made in deriving the constraints in Table 2, the refined values of the 
u parameter from models I and III should be approximately the same. Any sizable 
differences can be attributed to a breakdown of the assumptions made. 

If the non-ideal nature of a wurtzite structure is to be allowed for in deriving a set 
of constraints between the anharmonic parameters, equation (12) cannot be used. 
More general relations, applicable to the A(1) atom and analogous to relations 
(14)-(16), are as follows: 

48n2k B Tac(u-t)(Bll-B3D -2a{3c2(u-t)2 +a2}P313 

16.J3n2k B T{3(u-t)2C2 -a2}(Bil-B3D 

-2.J3(u-t)c{3(U-t)2C2 +a2}P313 +6a{6(u-t)2c2 -a2}P332 

-3.J3(u-t)c{12(u-t)2c2 -lla2}P337 < 0, 

(A3) 

(A4) 

(AS) 

If the structure is assumed to be ideal (c/a = .Jt and u = t) and Bll = B33 is 
assumed, relations (A3)-(AS) reduce to (14)-(16) respectively. 
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Relations (A3)-(A5) do not contain sufficient information to yield suitable con
straints between /3313, /3332 and /3337' However, if the value of 1/33321 is deter
mined from a refinement of hkO reflections (as described in Section 4), equation 
(A3) becomes sufficient (where the signs of /3332 and /3337 are taken to be those in 
Table 2). The values of the refined parameters (u, Bll , B33 and 1/3337 J) can be 
substituted in inequalities (A4) and (A5) to ensure that they have been satisfied. 
This procedure is extended to the other atoms in the unit cell. 

In an attempt to demonstrate the usefulness of this technique the extensive CdSe 
data set was used (since the CdS data set contains too few hkO reflections with which 
to determine /3332)' The final value of the u parameter was O' 37586(4), significantly 
different from the value obtained using model III. SB will discuss this result in 
greater detail. The value of Hamilton's R factor was reduced (from 0·941 % for 
model III) to O' 937 % which, although 'not significant' (Hamilton 1964), offers 
some hope that these more general constraints between anharmonic parameters 
will be useful. This view is supported by the fact that the structure of CdSe is very 
close to that of ideal wurtzite, for example see the list of 20 wurtzite structures and 
their cia ratios given by Lawaetz (1972). 
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